blob: 6f759a81fdef6aeb7f0c9d4db78c736572b29dc8 [file] [log] [blame]
//===- llvm/Analysis/DivergenceAnalysis.h - Divergence Analysis -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// The divergence analysis determines which instructions and branches are
// divergent given a set of divergent source instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DIVERGENCEANALYSIS_H
#define LLVM_ANALYSIS_DIVERGENCEANALYSIS_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/Analysis/SyncDependenceAnalysis.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include <vector>
namespace llvm {
class Module;
class Value;
class Instruction;
class Loop;
class raw_ostream;
class TargetTransformInfo;
/// \brief Generic divergence analysis for reducible CFGs.
///
/// This analysis propagates divergence in a data-parallel context from sources
/// of divergence to all users. It requires reducible CFGs. All assignments
/// should be in SSA form.
class DivergenceAnalysisImpl {
public:
/// \brief This instance will analyze the whole function \p F or the loop \p
/// RegionLoop.
///
/// \param RegionLoop if non-null the analysis is restricted to \p RegionLoop.
/// Otherwise the whole function is analyzed.
/// \param IsLCSSAForm whether the analysis may assume that the IR in the
/// region in in LCSSA form.
DivergenceAnalysisImpl(const Function &F, const Loop *RegionLoop,
const DominatorTree &DT, const LoopInfo &LI,
SyncDependenceAnalysis &SDA, bool IsLCSSAForm);
/// \brief The loop that defines the analyzed region (if any).
const Loop *getRegionLoop() const { return RegionLoop; }
const Function &getFunction() const { return F; }
/// \brief Whether \p BB is part of the region.
bool inRegion(const BasicBlock &BB) const;
/// \brief Whether \p I is part of the region.
bool inRegion(const Instruction &I) const;
/// \brief Mark \p UniVal as a value that is always uniform.
void addUniformOverride(const Value &UniVal);
/// \brief Mark \p DivVal as a value that is always divergent. Will not do so
/// if `isAlwaysUniform(DivVal)`.
/// \returns Whether the tracked divergence state of \p DivVal changed.
bool markDivergent(const Value &DivVal);
/// \brief Propagate divergence to all instructions in the region.
/// Divergence is seeded by calls to \p markDivergent.
void compute();
/// \brief Whether any value was marked or analyzed to be divergent.
bool hasDetectedDivergence() const { return !DivergentValues.empty(); }
/// \brief Whether \p Val will always return a uniform value regardless of its
/// operands
bool isAlwaysUniform(const Value &Val) const;
/// \brief Whether \p Val is divergent at its definition.
bool isDivergent(const Value &Val) const;
/// \brief Whether \p U is divergent. Uses of a uniform value can be
/// divergent.
bool isDivergentUse(const Use &U) const;
private:
/// \brief Mark \p Term as divergent and push all Instructions that become
/// divergent as a result on the worklist.
void analyzeControlDivergence(const Instruction &Term);
/// \brief Mark all phi nodes in \p JoinBlock as divergent and push them on
/// the worklist.
void taintAndPushPhiNodes(const BasicBlock &JoinBlock);
/// \brief Identify all Instructions that become divergent because \p DivExit
/// is a divergent loop exit of \p DivLoop. Mark those instructions as
/// divergent and push them on the worklist.
void propagateLoopExitDivergence(const BasicBlock &DivExit,
const Loop &DivLoop);
/// \brief Internal implementation function for propagateLoopExitDivergence.
void analyzeLoopExitDivergence(const BasicBlock &DivExit,
const Loop &OuterDivLoop);
/// \brief Mark all instruction as divergent that use a value defined in \p
/// OuterDivLoop. Push their users on the worklist.
void analyzeTemporalDivergence(const Instruction &I,
const Loop &OuterDivLoop);
/// \brief Push all users of \p Val (in the region) to the worklist.
void pushUsers(const Value &I);
/// \brief Whether \p Val is divergent when read in \p ObservingBlock.
bool isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const;
private:
const Function &F;
// If regionLoop != nullptr, analysis is only performed within \p RegionLoop.
// Otherwise, analyze the whole function
const Loop *RegionLoop;
const DominatorTree &DT;
const LoopInfo &LI;
// Recognized divergent loops
DenseSet<const Loop *> DivergentLoops;
// The SDA links divergent branches to divergent control-flow joins.
SyncDependenceAnalysis &SDA;
// Use simplified code path for LCSSA form.
bool IsLCSSAForm;
// Set of known-uniform values.
DenseSet<const Value *> UniformOverrides;
// Detected/marked divergent values.
DenseSet<const Value *> DivergentValues;
// Internal worklist for divergence propagation.
std::vector<const Instruction *> Worklist;
};
class DivergenceInfo {
Function &F;
// If the function contains an irreducible region the divergence
// analysis can run indefinitely. We set ContainsIrreducible and no
// analysis is actually performed on the function. All values in
// this function are conservatively reported as divergent instead.
bool ContainsIrreducible;
std::unique_ptr<SyncDependenceAnalysis> SDA;
std::unique_ptr<DivergenceAnalysisImpl> DA;
public:
DivergenceInfo(Function &F, const DominatorTree &DT,
const PostDominatorTree &PDT, const LoopInfo &LI,
const TargetTransformInfo &TTI, bool KnownReducible);
/// Whether any divergence was detected.
bool hasDivergence() const {
return ContainsIrreducible || DA->hasDetectedDivergence();
}
/// The GPU kernel this analysis result is for
const Function &getFunction() const { return F; }
/// Whether \p V is divergent at its definition.
bool isDivergent(const Value &V) const {
return ContainsIrreducible || DA->isDivergent(V);
}
/// Whether \p U is divergent. Uses of a uniform value can be divergent.
bool isDivergentUse(const Use &U) const {
return ContainsIrreducible || DA->isDivergentUse(U);
}
/// Whether \p V is uniform/non-divergent.
bool isUniform(const Value &V) const { return !isDivergent(V); }
/// Whether \p U is uniform/non-divergent. Uses of a uniform value can be
/// divergent.
bool isUniformUse(const Use &U) const { return !isDivergentUse(U); }
};
/// \brief Divergence analysis frontend for GPU kernels.
class DivergenceAnalysis : public AnalysisInfoMixin<DivergenceAnalysis> {
friend AnalysisInfoMixin<DivergenceAnalysis>;
static AnalysisKey Key;
public:
using Result = DivergenceInfo;
/// Runs the divergence analysis on @F, a GPU kernel
Result run(Function &F, FunctionAnalysisManager &AM);
};
/// Printer pass to dump divergence analysis results.
struct DivergenceAnalysisPrinterPass
: public PassInfoMixin<DivergenceAnalysisPrinterPass> {
DivergenceAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
private:
raw_ostream &OS;
}; // class DivergenceAnalysisPrinterPass
} // namespace llvm
#endif // LLVM_ANALYSIS_DIVERGENCEANALYSIS_H