commit | 3b4c51bb3243a02526313c51207a674139b67a00 | [log] [tgz] |
---|---|---|
author | Anutosh Bhat <andersonbhat491@gmail.com> | Mon Jun 02 20:14:28 2025 +0530 |
committer | GitHub <noreply@github.com> | Mon Jun 02 20:14:28 2025 +0530 |
tree | 23731cbd5941c954a9b2ecdff428fd91fc394706 | |
parent | a4b9e82fc4b27741b2fbb30697dd047d50fcdc83 [diff] |
[clang-repl] Fix error recovery while PTU cleanup (#127467) Fixes #123300 What is seen ``` clang-repl> int x = 42; clang-repl> auto capture = [&]() { return x * 2; }; In file included from <<< inputs >>>:1: input_line_4:1:17: error: non-local lambda expression cannot have a capture-default 1 | auto capture = [&]() { return x * 2; }; | ^ zsh: segmentation fault clang-repl --Xcc="-v" (lldb) bt * thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x8) * frame #0: 0x0000000107b4f8b8 libclang-cpp.19.1.dylib`clang::IncrementalParser::CleanUpPTU(clang::PartialTranslationUnit&) + 988 frame #1: 0x0000000107b4f1b4 libclang-cpp.19.1.dylib`clang::IncrementalParser::ParseOrWrapTopLevelDecl() + 416 frame #2: 0x0000000107b4fb94 libclang-cpp.19.1.dylib`clang::IncrementalParser::Parse(llvm::StringRef) + 612 frame #3: 0x0000000107b52fec libclang-cpp.19.1.dylib`clang::Interpreter::ParseAndExecute(llvm::StringRef, clang::Value*) + 180 frame #4: 0x0000000100003498 clang-repl`main + 3560 frame #5: 0x000000018d39a0e0 dyld`start + 2360 ``` Though the error is justified, we shouldn't be interested in exiting through a segfault in such cases. The issue is that empty named decls weren't being taken care of resulting into this assert https://github.com/llvm/llvm-project/blob/c1a229252617ed58f943bf3f4698bd8204ee0f04/clang/include/clang/AST/DeclarationName.h#L503 Can also be seen when the example is attempted through xeus-cpp-lite. 
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.