blob: 352de581a8f72d54d848e7f45d11f3581009aaae [file] [log] [blame]
//===-- High Precision Decimal ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See httpss//llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LIBC_SRC_SUPPORT_HIGH_PRECISION_DECIMAL_H
#define LIBC_SRC_SUPPORT_HIGH_PRECISION_DECIMAL_H
#include "src/__support/ctype_utils.h"
#include "src/__support/str_to_integer.h"
#include <stdint.h>
namespace __llvm_libc {
namespace internal {
struct LShiftTableEntry {
uint32_t newDigits;
char const *powerOfFive;
};
// This is based on the HPD data structure described as part of the Simple
// Decimal Conversion algorithm by Nigel Tao, described at this link:
// https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html
class HighPrecisionDecimal {
// This precomputed table speeds up left shifts by having the number of new
// digits that will be added by multiplying 5^i by 2^i. If the number is less
// than 5^i then it will add one fewer digit. There are only 60 entries since
// that's the max shift amount.
// This table was generated by the script at
// libc/utils/mathtools/GenerateHPDConstants.py
static constexpr LShiftTableEntry LEFT_SHIFT_DIGIT_TABLE[] = {
{0, ""},
{1, "5"},
{1, "25"},
{1, "125"},
{2, "625"},
{2, "3125"},
{2, "15625"},
{3, "78125"},
{3, "390625"},
{3, "1953125"},
{4, "9765625"},
{4, "48828125"},
{4, "244140625"},
{4, "1220703125"},
{5, "6103515625"},
{5, "30517578125"},
{5, "152587890625"},
{6, "762939453125"},
{6, "3814697265625"},
{6, "19073486328125"},
{7, "95367431640625"},
{7, "476837158203125"},
{7, "2384185791015625"},
{7, "11920928955078125"},
{8, "59604644775390625"},
{8, "298023223876953125"},
{8, "1490116119384765625"},
{9, "7450580596923828125"},
{9, "37252902984619140625"},
{9, "186264514923095703125"},
{10, "931322574615478515625"},
{10, "4656612873077392578125"},
{10, "23283064365386962890625"},
{10, "116415321826934814453125"},
{11, "582076609134674072265625"},
{11, "2910383045673370361328125"},
{11, "14551915228366851806640625"},
{12, "72759576141834259033203125"},
{12, "363797880709171295166015625"},
{12, "1818989403545856475830078125"},
{13, "9094947017729282379150390625"},
{13, "45474735088646411895751953125"},
{13, "227373675443232059478759765625"},
{13, "1136868377216160297393798828125"},
{14, "5684341886080801486968994140625"},
{14, "28421709430404007434844970703125"},
{14, "142108547152020037174224853515625"},
{15, "710542735760100185871124267578125"},
{15, "3552713678800500929355621337890625"},
{15, "17763568394002504646778106689453125"},
{16, "88817841970012523233890533447265625"},
{16, "444089209850062616169452667236328125"},
{16, "2220446049250313080847263336181640625"},
{16, "11102230246251565404236316680908203125"},
{17, "55511151231257827021181583404541015625"},
{17, "277555756156289135105907917022705078125"},
{17, "1387778780781445675529539585113525390625"},
{18, "6938893903907228377647697925567626953125"},
{18, "34694469519536141888238489627838134765625"},
{18, "173472347597680709441192448139190673828125"},
{19, "867361737988403547205962240695953369140625"},
};
// The maximum amount we can shift is the number of bits used in the
// accumulator, minus the number of bits needed to represent the base (in this
// case 4).
static constexpr uint32_t MAX_SHIFT_AMOUNT = sizeof(uint64_t) - 4;
// 800 is an arbitrary number of digits, but should be
// large enough for any practical number.
static constexpr uint32_t MAX_NUM_DIGITS = 800;
uint32_t numDigits = 0;
int32_t decimalPoint = 0;
bool truncated = false;
uint8_t digits[MAX_NUM_DIGITS];
private:
bool shouldRoundUp(uint32_t roundToDigit) {
if (roundToDigit < 0 || roundToDigit >= this->numDigits) {
return false;
}
// If we're right in the middle and there are no extra digits
if (this->digits[roundToDigit] == 5 &&
roundToDigit + 1 == this->numDigits) {
// Round up if we've truncated (since that means the result is slightly
// higher than what's represented.)
if (this->truncated) {
return true;
}
// If this exactly halfway, round to even.
return this->digits[roundToDigit - 1] % 2 != 0;
}
// If there are digits after roundToDigit, they must be non-zero since we
// trim trailing zeroes after all operations that change digits.
return this->digits[roundToDigit] >= 5;
}
// Takes an amount to left shift and returns the number of new digits needed
// to store the result based on LEFT_SHIFT_DIGIT_TABLE.
uint32_t getNumNewDigits(uint32_t lShiftAmount) {
const char *powerOfFive = LEFT_SHIFT_DIGIT_TABLE[lShiftAmount].powerOfFive;
uint32_t newDigits = LEFT_SHIFT_DIGIT_TABLE[lShiftAmount].newDigits;
uint32_t digitIndex = 0;
while (powerOfFive[digitIndex] != 0) {
if (digitIndex >= this->numDigits) {
return newDigits - 1;
}
if (this->digits[digitIndex] != powerOfFive[digitIndex] - '0') {
return newDigits -
((this->digits[digitIndex] < powerOfFive[digitIndex] - '0') ? 1
: 0);
}
++digitIndex;
}
return newDigits;
}
// Trim all trailing 0s
void trimTrailingZeroes() {
while (this->numDigits > 0 && this->digits[this->numDigits - 1] == 0) {
--this->numDigits;
}
if (this->numDigits == 0) {
this->decimalPoint = 0;
}
}
// Perform a digitwise binary non-rounding right shift on this value by
// shiftAmount. The shiftAmount can't be more than MAX_SHIFT_AMOUNT to prevent
// overflow.
void rightShift(uint32_t shiftAmount) {
uint32_t readIndex = 0;
uint32_t writeIndex = 0;
uint64_t accumulator = 0;
const uint64_t shiftMask = (uint64_t(1) << shiftAmount) - 1;
// Warm Up phase: we don't have enough digits to start writing, so just
// read them into the accumulator.
while (accumulator >> shiftAmount == 0) {
uint64_t readDigit = 0;
// If there are still digits to read, read the next one, else the digit is
// assumed to be 0.
if (readIndex < this->numDigits) {
readDigit = this->digits[readIndex];
}
accumulator = accumulator * 10 + readDigit;
++readIndex;
}
// Shift the decimal point by the number of digits it took to fill the
// accumulator.
this->decimalPoint -= readIndex - 1;
// Middle phase: we have enough digits to write, as well as more digits to
// read. Keep reading until we run out of digits.
while (readIndex < this->numDigits) {
uint64_t readDigit = this->digits[readIndex];
uint64_t writeDigit = accumulator >> shiftAmount;
accumulator &= shiftMask;
this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
accumulator = accumulator * 10 + readDigit;
++readIndex;
++writeIndex;
}
// Cool Down phase: All of the readable digits have been read, so just write
// the remainder, while treating any more digits as 0.
while (accumulator > 0) {
uint64_t writeDigit = accumulator >> shiftAmount;
accumulator &= shiftMask;
if (writeIndex < MAX_NUM_DIGITS) {
this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
++writeIndex;
} else if (writeDigit > 0) {
this->truncated = true;
}
accumulator = accumulator * 10;
}
this->numDigits = writeIndex;
this->trimTrailingZeroes();
}
// Perform a digitwise binary non-rounding left shift on this value by
// shiftAmount. The shiftAmount can't be more than MAX_SHIFT_AMOUNT to prevent
// overflow.
void leftShift(uint32_t shiftAmount) {
uint32_t newDigits = this->getNumNewDigits(shiftAmount);
int32_t readIndex = this->numDigits - 1;
uint32_t writeIndex = this->numDigits + newDigits;
uint64_t accumulator = 0;
// No Warm Up phase. Since we're putting digits in at the top and taking
// digits from the bottom we don't have to wait for the accumulator to fill.
// Middle phase: while we have more digits to read, keep reading as well as
// writing.
while (readIndex >= 0) {
accumulator += static_cast<uint64_t>(this->digits[readIndex])
<< shiftAmount;
uint64_t nextAccumulator = accumulator / 10;
uint64_t writeDigit = accumulator - (10 * nextAccumulator);
--writeIndex;
if (writeIndex < MAX_NUM_DIGITS) {
this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
} else if (writeDigit != 0) {
this->truncated = true;
}
accumulator = nextAccumulator;
--readIndex;
}
// Cool Down phase: there are no more digits to read, so just write the
// remaining digits in the accumulator.
while (accumulator > 0) {
uint64_t nextAccumulator = accumulator / 10;
uint64_t writeDigit = accumulator - (10 * nextAccumulator);
--writeIndex;
if (writeIndex < MAX_NUM_DIGITS) {
this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
} else if (writeDigit != 0) {
this->truncated = true;
}
accumulator = nextAccumulator;
}
this->numDigits += newDigits;
if (this->numDigits > MAX_NUM_DIGITS) {
this->numDigits = MAX_NUM_DIGITS;
}
this->decimalPoint += newDigits;
this->trimTrailingZeroes();
}
public:
// numString is assumed to be a string of numeric characters. It doesn't
// handle leading spaces.
HighPrecisionDecimal(const char *__restrict numString) {
bool sawDot = false;
while (isdigit(*numString) || *numString == '.') {
if (*numString == '.') {
if (sawDot) {
break;
}
this->decimalPoint = this->numDigits;
sawDot = true;
} else {
if (*numString == '0' && this->numDigits == 0) {
--this->decimalPoint;
++numString;
continue;
}
if (this->numDigits < MAX_NUM_DIGITS) {
this->digits[this->numDigits] = *numString - '0';
++this->numDigits;
} else if (*numString != '0') {
this->truncated = true;
}
}
++numString;
}
if (!sawDot) {
this->decimalPoint = this->numDigits;
}
if ((*numString | 32) == 'e') {
++numString;
if (isdigit(*numString) || *numString == '+' || *numString == '-') {
int32_t addToExp = strtointeger<int32_t>(numString, nullptr, 10);
if (addToExp > 100000) {
addToExp = 100000;
} else if (addToExp < -100000) {
addToExp = -100000;
}
this->decimalPoint += addToExp;
}
}
this->trimTrailingZeroes();
}
// Binary shift left (shiftAmount > 0) or right (shiftAmount < 0)
void shift(int shiftAmount) {
if (shiftAmount == 0) {
return;
}
// Left
else if (shiftAmount > 0) {
while (static_cast<uint32_t>(shiftAmount) > MAX_SHIFT_AMOUNT) {
this->leftShift(MAX_SHIFT_AMOUNT);
shiftAmount -= MAX_SHIFT_AMOUNT;
}
this->leftShift(shiftAmount);
}
// Right
else {
while (static_cast<uint32_t>(shiftAmount) < -MAX_SHIFT_AMOUNT) {
this->rightShift(MAX_SHIFT_AMOUNT);
shiftAmount += MAX_SHIFT_AMOUNT;
}
this->rightShift(-shiftAmount);
}
}
// Round the number represented to the closest value of unsigned int type T.
// This is done ignoring overflow.
template <class T> T roundToIntegerType() {
T result = 0;
uint32_t curDigit = 0;
while (static_cast<int32_t>(curDigit) < this->decimalPoint &&
curDigit < this->numDigits) {
result = result * 10 + (this->digits[curDigit]);
++curDigit;
}
// If there are implicit 0s at the end of the number, include those.
while (static_cast<int32_t>(curDigit) < this->decimalPoint) {
result *= 10;
++curDigit;
}
if (this->shouldRoundUp(this->decimalPoint)) {
++result;
}
return result;
}
// Extra functions for testing.
uint8_t *getDigits() { return this->digits; }
uint32_t getNumDigits() { return this->numDigits; }
int32_t getDecimalPoint() { return this->decimalPoint; }
void setTruncated(bool trunc) { this->truncated = trunc; }
};
} // namespace internal
} // namespace __llvm_libc
#endif // LIBC_SRC_SUPPORT_HIGH_PRECISION_DECIMAL_H