blob: 8822f0d4e7d59e41f8726dc6be959bc34dbb32d6 [file] [log] [blame]
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include "instrument.h"
/* Default problem size. */
#ifndef M
# define M 500
#endif
#ifndef N
# define N 500
#endif
/* Default data type is double. */
#ifndef DATA_TYPE
# define DATA_TYPE double
#endif
#ifndef DATA_PRINTF_MODIFIER
# define DATA_PRINTF_MODIFIER "%0.2lf "
#endif
/* Array declaration. Enable malloc if POLYBENCH_TEST_MALLOC. */
DATA_TYPE float_n = 321414134.01;
DATA_TYPE eps = 0.005;
#ifndef POLYBENCH_TEST_MALLOC
DATA_TYPE data[M + 1][N + 1];
DATA_TYPE symmat[M + 1][M + 1];
DATA_TYPE stddev[M + 1];
DATA_TYPE mean[M + 1];
#else
DATA_TYPE** data = (DATA_TYPE**)malloc((M + 1) * sizeof(DATA_TYPE*));
DATA_TYPE** symmat = (DATA_TYPE**)malloc((M + 1) * sizeof(DATA_TYPE*));
DATA_TYPE* stddev = (DATA_TYPE*)malloc((M + 1) * sizeof(DATA_TYPE));
DATA_TYPE* mean = (DATA_TYPE*)malloc((M + 1) * sizeof(DATA_TYPE));
{
int i;
for (i = 0; i <= M; ++i)
{
data[i] = (DATA_TYPE*)malloc((N + 1) * sizeof(DATA_TYPE));
symmat[i] = (DATA_TYPE*)malloc((M + 1) * sizeof(DATA_TYPE));
}
}
#endif
inline
void init_array()
{
int i, j;
for (i = 0; i <= M; i++)
for (j = 0; j <= N; j++)
data[i][j] = ((DATA_TYPE) i*j) / M;
}
/* Define the live-out variables. Code is not executed unless
POLYBENCH_DUMP_ARRAYS is defined. */
inline
void print_array(int argc, char** argv)
{
int i, j;
#ifndef POLYBENCH_DUMP_ARRAYS
if (argc > 42 && ! strcmp(argv[0], ""))
#endif
{
for (i = 0; i <= M; i++)
for (j = 0; j <= M; j++) {
fprintf(stderr, DATA_PRINTF_MODIFIER, symmat[i][j]);
if ((i * M + j) % 80 == 20) fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
}
#ifndef SCOP_PARAM
void scop_func() {
long m = M;
long n = N;
#else
void scop_func(long m, long n) {
#endif
int i, j, j1, j2;
#pragma scop
#pragma live-out symmat
/* Center and reduce the column vectors. */
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
{
data[i][j] -= mean[j];
data[i][j] /= sqrt(float_n) * stddev[j];
}
/* Calculate the m * m correlation matrix. */
for (j1 = 1; j1 <= m-1; j1++)
{
symmat[j1][j1] = 1.0;
for (j2 = j1+1; j2 <= m; j2++)
{
symmat[j1][j2] = 0.0;
for (i = 1; i <= n; i++)
symmat[j1][j2] += (data[i][j1] * data[i][j2]);
symmat[j2][j1] = symmat[j1][j2];
}
}
#pragma endscop
}
int main(int argc, char** argv)
{
int i, j, j1, j2;
int m = M;
int n = N;
/* Initialize array. */
init_array();
/* Start timer. */
polybench_start_instruments;
#define sqrt_of_array_cell(x,j) sqrt(x[j])
/* Determine mean of column vectors of input data matrix */
for (j = 1; j <= m; j++)
{
mean[j] = 0.0;
for (i = 1; i <= n; i++)
mean[j] += data[i][j];
mean[j] /= float_n;
}
/* Determine standard deviations of column vectors of data matrix. */
for (j = 1; j <= m; j++)
{
stddev[j] = 0.0;
for (i = 1; i <= n; i++)
stddev[j] += (data[i][j] - mean[j]) * (data[i][j] - mean[j]);
stddev[j] /= float_n;
stddev[j] = sqrt_of_array_cell(stddev, j);
/* The following in an inelegant but usual way to handle
near-zero std. dev. values, which below would cause a zero-
divide. */
stddev[j] = stddev[j] <= eps ? 1.0 : stddev[j];
}
#ifndef SCOP_PARAM
scop_func();
#else
scop_func(m, n);
#endif
symmat[m][m] = 1.0;
/* Stop and print timer. */
polybench_stop_instruments;
polybench_print_instruments;
print_array(argc, argv);
return 0;
}