blob: c849fd34359257d83b0c880c4b98290c4dba65f5 [file] [log] [blame]
//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This represantation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//
#include "polly/ScopInfo.h"
#include "polly/TempScopInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "polly-scops"
#include "llvm/Support/Debug.h"
#include "isl/constraint.h"
#include "isl/set.h"
#include "isl/map.h"
#include "isl/aff.h"
#include "isl/printer.h"
#include "isl/local_space.h"
#include "isl/options.h"
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
/// Convert an int into a string.
static std::string convertInt(int number)
{
if (number == 0)
return "0";
std::string temp = "";
std::string returnvalue = "";
while (number > 0)
{
temp += number % 10 + 48;
number /= 10;
}
for (unsigned i = 0; i < temp.length(); i++)
returnvalue+=temp[temp.length() - i - 1];
return returnvalue;
}
/// Translate a SCEVExpression into an isl_pw_aff object.
struct SCEVAffinator : public SCEVVisitor<SCEVAffinator, isl_pw_aff*> {
private:
isl_ctx *ctx;
int NbLoopSpaces;
const Scop *scop;
public:
static isl_pw_aff *getPwAff(ScopStmt *stmt, const SCEV *scev) {
Scop *S = stmt->getParent();
const Region *Reg = &S->getRegion();
S->addParams(getParamsInAffineExpr(Reg, scev, *S->getSE()));
SCEVAffinator Affinator(stmt);
return Affinator.visit(scev);
}
isl_pw_aff *visit(const SCEV *scev) {
// In case the scev is a valid parameter, we do not further analyze this
// expression, but create a new parameter in the isl_pw_aff. This allows us
// to treat subexpressions that we cannot translate into an piecewise affine
// expression, as constant parameters of the piecewise affine expression.
if (isl_id *Id = scop->getIdForParam(scev)) {
isl_space *Space = isl_space_set_alloc(ctx, 1, NbLoopSpaces);
Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
isl_set *Domain = isl_set_universe(isl_space_copy(Space));
isl_aff *Affine = isl_aff_zero_on_domain(
isl_local_space_from_space(Space));
Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
return isl_pw_aff_alloc(Domain, Affine);
}
return SCEVVisitor<SCEVAffinator, isl_pw_aff*>::visit(scev);
}
SCEVAffinator(const ScopStmt *stmt) :
ctx(stmt->getIslCtx()),
NbLoopSpaces(stmt->getNumIterators()),
scop(stmt->getParent()) {}
__isl_give isl_pw_aff *visitConstant(const SCEVConstant *Constant) {
ConstantInt *Value = Constant->getValue();
isl_int v;
isl_int_init(v);
// LLVM does not define if an integer value is interpreted as a signed or
// unsigned value. Hence, without further information, it is unknown how
// this value needs to be converted to GMP. At the moment, we only support
// signed operations. So we just interpret it as signed. Later, there are
// two options:
//
// 1. We always interpret any value as signed and convert the values on
// demand.
// 2. We pass down the signedness of the calculation and use it to interpret
// this constant correctly.
MPZ_from_APInt(v, Value->getValue(), /* isSigned */ true);
isl_space *Space = isl_space_set_alloc(ctx, 0, NbLoopSpaces);
isl_local_space *ls = isl_local_space_from_space(isl_space_copy(Space));
isl_aff *Affine = isl_aff_zero_on_domain(ls);
isl_set *Domain = isl_set_universe(Space);
Affine = isl_aff_add_constant(Affine, v);
isl_int_clear(v);
return isl_pw_aff_alloc(Domain, Affine);
}
__isl_give isl_pw_aff *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
assert(0 && "Not yet supported");
}
__isl_give isl_pw_aff *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
assert(0 && "Not yet supported");
}
__isl_give isl_pw_aff *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
// Assuming the value is signed, a sign extension is basically a noop.
// TODO: Reconsider this as soon as we support unsigned values.
return visit(Expr->getOperand());
}
__isl_give isl_pw_aff *visitAddExpr(const SCEVAddExpr *Expr) {
isl_pw_aff *Sum = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextSummand = visit(Expr->getOperand(i));
Sum = isl_pw_aff_add(Sum, NextSummand);
}
// TODO: Check for NSW and NUW.
return Sum;
}
__isl_give isl_pw_aff *visitMulExpr(const SCEVMulExpr *Expr) {
isl_pw_aff *Product = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
if (!isl_pw_aff_is_cst(Product) && !isl_pw_aff_is_cst(NextOperand)) {
isl_pw_aff_free(Product);
isl_pw_aff_free(NextOperand);
return NULL;
}
Product = isl_pw_aff_mul(Product, NextOperand);
}
// TODO: Check for NSW and NUW.
return Product;
}
__isl_give isl_pw_aff *visitUDivExpr(const SCEVUDivExpr *Expr) {
assert(0 && "Not yet supported");
}
int getLoopDepth(const Loop *L) {
Loop *outerLoop =
scop->getRegion().outermostLoopInRegion(const_cast<Loop*>(L));
assert(outerLoop && "Scop does not contain this loop");
return L->getLoopDepth() - outerLoop->getLoopDepth();
}
__isl_give isl_pw_aff *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
assert(scop->getRegion().contains(Expr->getLoop())
&& "Scop does not contain the loop referenced in this AddRec");
isl_pw_aff *Start = visit(Expr->getStart());
isl_pw_aff *Step = visit(Expr->getOperand(1));
isl_space *Space = isl_space_set_alloc(ctx, 0, NbLoopSpaces);
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
int loopDimension = getLoopDepth(Expr->getLoop());
isl_aff *LAff = isl_aff_set_coefficient_si(
isl_aff_zero_on_domain (LocalSpace), isl_dim_in, loopDimension, 1);
isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
// TODO: Do we need to check for NSW and NUW?
return isl_pw_aff_add(Start, isl_pw_aff_mul(Step, LPwAff));
}
__isl_give isl_pw_aff *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
isl_pw_aff *Max = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
Max = isl_pw_aff_max(Max, NextOperand);
}
return Max;
}
__isl_give isl_pw_aff *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
assert(0 && "Not yet supported");
}
__isl_give isl_pw_aff *visitUnknown(const SCEVUnknown *Expr) {
Value *Value = Expr->getValue();
isl_space *Space;
std::string ValueName = Value->getName();
isl_id *ID = isl_id_alloc(ctx, ValueName.c_str(), Value);
Space = isl_space_set_alloc(ctx, 1, NbLoopSpaces);
Space = isl_space_set_dim_id(Space, isl_dim_param, 0, ID);
isl_set *Domain = isl_set_universe(isl_space_copy(Space));
isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
return isl_pw_aff_alloc(Domain, Affine);
}
};
//===----------------------------------------------------------------------===//
MemoryAccess::~MemoryAccess() {
isl_map_free(AccessRelation);
isl_map_free(newAccessRelation);
}
static void replace(std::string& str, const std::string& find,
const std::string& replace) {
size_t pos = 0;
while((pos = str.find(find, pos)) != std::string::npos)
{
str.replace(pos, find.length(), replace);
pos += replace.length();
}
}
static void makeIslCompatible(std::string& str) {
str.erase(0, 1);
replace(str, ".", "_");
replace(str, "\"", "_");
}
void MemoryAccess::setBaseName() {
raw_string_ostream OS(BaseName);
WriteAsOperand(OS, getBaseAddr(), false);
BaseName = OS.str();
makeIslCompatible(BaseName);
BaseName = "MemRef_" + BaseName;
}
isl_map *MemoryAccess::getAccessRelation() const {
return isl_map_copy(AccessRelation);
}
std::string MemoryAccess::getAccessRelationStr() const {
return stringFromIslObj(AccessRelation);
}
isl_map *MemoryAccess::getNewAccessRelation() const {
return isl_map_copy(newAccessRelation);
}
isl_basic_map *MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
isl_space *Space = isl_space_alloc(Statement->getIslCtx(), 0,
Statement->getNumIterators(), 1);
setBaseName();
Space = isl_space_set_tuple_name(Space, isl_dim_out, getBaseName().c_str());
Space = isl_space_set_tuple_name(Space, isl_dim_in, Statement->getBaseName());
return isl_basic_map_universe(Space);
}
MemoryAccess::MemoryAccess(const IRAccess &Access, ScopStmt *Statement) {
newAccessRelation = NULL;
Type = Access.isRead() ? Read : Write;
statement = Statement;
BaseAddr = Access.getBase();
if (!Access.isAffine()) {
Type = (Type == Read) ? Read : MayWrite;
AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
return;
}
isl_pw_aff *Affine = SCEVAffinator::getPwAff(Statement, Access.getOffset());
setBaseName();
// Divide the access function by the size of the elements in the array.
//
// A stride one array access in C expressed as A[i] is expressed in LLVM-IR
// as something like A[i * elementsize]. This hides the fact that two
// subsequent values of 'i' index two values that are stored next to each
// other in memory. By this division we make this characteristic obvious
// again.
isl_int v;
isl_int_init(v);
isl_int_set_si(v, Access.getElemSizeInBytes());
Affine = isl_pw_aff_scale_down(Affine, v);
isl_int_clear(v);
AccessRelation = isl_map_from_pw_aff(Affine);
AccessRelation = isl_map_set_tuple_name(AccessRelation, isl_dim_in,
Statement->getBaseName());
AccessRelation = isl_map_set_tuple_name(AccessRelation, isl_dim_out,
getBaseName().c_str());
}
void MemoryAccess::realignParams() {
isl_space *ParamSpace = statement->getParent()->getParamSpace();
AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}
MemoryAccess::MemoryAccess(const Value *BaseAddress, ScopStmt *Statement) {
newAccessRelation = NULL;
BaseAddr = BaseAddress;
Type = Read;
statement = Statement;
isl_basic_map *BasicAccessMap = createBasicAccessMap(Statement);
AccessRelation = isl_map_from_basic_map(BasicAccessMap);
isl_space *ParamSpace = Statement->getParent()->getParamSpace();
AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}
void MemoryAccess::print(raw_ostream &OS) const {
OS.indent(12) << (isRead() ? "Read" : "Write") << "Access := \n";
OS.indent(16) << getAccessRelationStr() << ";\n";
}
void MemoryAccess::dump() const {
print(errs());
}
// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
// getEqualAndLarger(set[i0, i1, ..., iX]):
//
// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl_map *getEqualAndLarger(isl_space *setDomain) {
isl_space *Space = isl_space_map_from_set(setDomain);
isl_map *Map = isl_map_universe(isl_space_copy(Space));
isl_local_space *MapLocalSpace = isl_local_space_from_space(Space);
// Set all but the last dimension to be equal for the input and output
//
// input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
for (unsigned i = 0; i < isl_map_dim(Map, isl_dim_in) - 1; ++i)
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
// Set the last dimension of the input to be strict smaller than the
// last dimension of the output.
//
// input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
//
unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
isl_int v;
isl_int_init(v);
isl_constraint *c = isl_inequality_alloc(isl_local_space_copy(MapLocalSpace));
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_in, lastDimension, v);
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_out, lastDimension, v);
isl_int_set_si(v, -1);
isl_constraint_set_constant(c, v);
isl_int_clear(v);
Map = isl_map_add_constraint(Map, c);
isl_local_space_free(MapLocalSpace);
return Map;
}
isl_set *MemoryAccess::getStride(__isl_take const isl_set *domainSubset) const {
isl_map *accessRelation = getAccessRelation();
isl_set *scatteringDomain = const_cast<isl_set*>(domainSubset);
isl_map *scattering = getStatement()->getScattering();
scattering = isl_map_reverse(scattering);
int difference = isl_map_n_in(scattering) - isl_set_n_dim(scatteringDomain);
scattering = isl_map_project_out(scattering, isl_dim_in,
isl_set_n_dim(scatteringDomain),
difference);
// Remove all names of the scattering dimensions, as the names may be lost
// anyways during the project. This leads to consistent results.
scattering = isl_map_set_tuple_name(scattering, isl_dim_in, "");
scatteringDomain = isl_set_set_tuple_name(scatteringDomain, "");
isl_map *nextScatt = getEqualAndLarger(isl_set_get_space(scatteringDomain));
nextScatt = isl_map_lexmin(nextScatt);
scattering = isl_map_intersect_domain(scattering, scatteringDomain);
nextScatt = isl_map_apply_range(nextScatt, isl_map_copy(scattering));
nextScatt = isl_map_apply_range(nextScatt, isl_map_copy(accessRelation));
nextScatt = isl_map_apply_domain(nextScatt, scattering);
nextScatt = isl_map_apply_domain(nextScatt, accessRelation);
return isl_map_deltas(nextScatt);
}
bool MemoryAccess::isStrideX(__isl_take const isl_set *DomainSubset,
int StrideWidth) const {
isl_set *Stride, *StrideX;
bool IsStrideX;
Stride = getStride(DomainSubset);
StrideX = isl_set_universe(isl_set_get_space(Stride));
StrideX = isl_set_fix_si(StrideX, isl_dim_set, 0, StrideWidth);
IsStrideX = isl_set_is_equal(Stride, StrideX);
isl_set_free(StrideX);
isl_set_free(Stride);
return IsStrideX;
}
bool MemoryAccess::isStrideZero(const isl_set *DomainSubset) const {
return isStrideX(DomainSubset, 0);
}
bool MemoryAccess::isStrideOne(const isl_set *DomainSubset) const {
return isStrideX(DomainSubset, 1);
}
void MemoryAccess::setNewAccessRelation(isl_map *newAccess) {
isl_map_free(newAccessRelation);
newAccessRelation = newAccess;
}
//===----------------------------------------------------------------------===//
isl_map *ScopStmt::getScattering() const {
return isl_map_copy(Scattering);
}
void ScopStmt::setScattering(isl_map *NewScattering) {
isl_map_free(Scattering);
Scattering = NewScattering;
}
void ScopStmt::buildScattering(SmallVectorImpl<unsigned> &Scatter) {
unsigned NbIterators = getNumIterators();
unsigned NbScatteringDims = Parent.getMaxLoopDepth() * 2 + 1;
isl_space *Space = isl_space_alloc(getIslCtx(), 0, NbIterators,
NbScatteringDims);
Space = isl_space_set_tuple_name(Space, isl_dim_out, "scattering");
Space = isl_space_set_tuple_name(Space, isl_dim_in, getBaseName());
Scattering = isl_map_universe(Space);
// Loop dimensions.
for (unsigned i = 0; i < NbIterators; ++i)
Scattering = isl_map_equate(Scattering, isl_dim_out, 2 * i + 1,
isl_dim_in, i);
// Constant dimensions
for (unsigned i = 0; i < NbIterators + 1; ++i)
Scattering = isl_map_fix_si(Scattering, isl_dim_out, 2 * i, Scatter[i]);
// Fill scattering dimensions.
for (unsigned i = 2 * NbIterators + 1; i < NbScatteringDims; ++i)
Scattering = isl_map_fix_si(Scattering, isl_dim_out, i, 0);
Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
}
void ScopStmt::buildAccesses(TempScop &tempScop, const Region &CurRegion) {
const AccFuncSetType *AccFuncs = tempScop.getAccessFunctions(BB);
for (AccFuncSetType::const_iterator I = AccFuncs->begin(),
E = AccFuncs->end(); I != E; ++I) {
MemAccs.push_back(new MemoryAccess(I->first, this));
InstructionToAccess[I->second] = MemAccs.back();
}
}
void ScopStmt::realignParams() {
for (memacc_iterator MI = memacc_begin(), ME = memacc_end(); MI != ME; ++MI)
(*MI)->realignParams();
Domain = isl_set_align_params(Domain, Parent.getParamSpace());
Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
}
__isl_give isl_set *ScopStmt::buildConditionSet(const Comparison &Comp) {
isl_pw_aff *L = SCEVAffinator::getPwAff(this, Comp.getLHS());
isl_pw_aff *R = SCEVAffinator::getPwAff(this, Comp.getRHS());
switch (Comp.getPred()) {
case ICmpInst::ICMP_EQ:
return isl_pw_aff_eq_set(L, R);
case ICmpInst::ICMP_NE:
return isl_pw_aff_ne_set(L, R);
case ICmpInst::ICMP_SLT:
return isl_pw_aff_lt_set(L, R);
case ICmpInst::ICMP_SLE:
return isl_pw_aff_le_set(L, R);
case ICmpInst::ICMP_SGT:
return isl_pw_aff_gt_set(L, R);
case ICmpInst::ICMP_SGE:
return isl_pw_aff_ge_set(L, R);
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_UGE:
llvm_unreachable("Unsigned comparisons not yet supported");
default:
llvm_unreachable("Non integer predicate not supported");
}
}
__isl_give isl_set *ScopStmt::addLoopBoundsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop) {
isl_space *Space;
isl_local_space *LocalSpace;
Space = isl_set_get_space(Domain);
LocalSpace = isl_local_space_from_space(Space);
for (int i = 0, e = getNumIterators(); i != e; ++i) {
isl_aff *Zero = isl_aff_zero_on_domain(isl_local_space_copy(LocalSpace));
isl_pw_aff *IV = isl_pw_aff_from_aff(
isl_aff_set_coefficient_si(Zero, isl_dim_in, i, 1));
// 0 <= IV.
isl_set *LowerBound = isl_pw_aff_nonneg_set(isl_pw_aff_copy(IV));
Domain = isl_set_intersect(Domain, LowerBound);
// IV <= LatchExecutions.
const Loop *L = getLoopForDimension(i);
const SCEV *LatchExecutions = tempScop.getLoopBound(L);
isl_pw_aff *UpperBound = SCEVAffinator::getPwAff(this, LatchExecutions);
isl_set *UpperBoundSet = isl_pw_aff_le_set(IV, UpperBound);
Domain = isl_set_intersect(Domain, UpperBoundSet);
}
isl_local_space_free(LocalSpace);
return Domain;
}
__isl_give isl_set *ScopStmt::addConditionsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop,
const Region &CurRegion) {
const Region *TopRegion = tempScop.getMaxRegion().getParent(),
*CurrentRegion = &CurRegion;
const BasicBlock *BranchingBB = BB;
do {
if (BranchingBB != CurrentRegion->getEntry()) {
if (const BBCond *Condition = tempScop.getBBCond(BranchingBB))
for (BBCond::const_iterator CI = Condition->begin(),
CE = Condition->end(); CI != CE; ++CI) {
isl_set *ConditionSet = buildConditionSet(*CI);
Domain = isl_set_intersect(Domain, ConditionSet);
}
}
BranchingBB = CurrentRegion->getEntry();
CurrentRegion = CurrentRegion->getParent();
} while (TopRegion != CurrentRegion);
return Domain;
}
__isl_give isl_set *ScopStmt::buildDomain(TempScop &tempScop,
const Region &CurRegion) {
isl_space *Space;
isl_set *Domain;
Space = isl_space_set_alloc(getIslCtx(), 0, getNumIterators());
Domain = isl_set_universe(Space);
Domain = addLoopBoundsToDomain(Domain, tempScop);
Domain = addConditionsToDomain(Domain, tempScop, CurRegion);
Domain = isl_set_set_tuple_name(Domain, getBaseName());
return Domain;
}
ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop,
const Region &CurRegion, BasicBlock &bb,
SmallVectorImpl<Loop*> &NestLoops,
SmallVectorImpl<unsigned> &Scatter)
: Parent(parent), BB(&bb), IVS(NestLoops.size()) {
// Setup the induction variables.
for (unsigned i = 0, e = NestLoops.size(); i < e; ++i) {
PHINode *PN = NestLoops[i]->getCanonicalInductionVariable();
assert(PN && "Non canonical IV in Scop!");
IVS[i] = std::make_pair(PN, NestLoops[i]);
}
raw_string_ostream OS(BaseName);
WriteAsOperand(OS, &bb, false);
BaseName = OS.str();
makeIslCompatible(BaseName);
BaseName = "Stmt_" + BaseName;
Domain = buildDomain(tempScop, CurRegion);
buildScattering(Scatter);
buildAccesses(tempScop, CurRegion);
}
std::string ScopStmt::getDomainStr() const {
return stringFromIslObj(Domain);
}
std::string ScopStmt::getScatteringStr() const {
return stringFromIslObj(Scattering);
}
unsigned ScopStmt::getNumParams() const {
return Parent.getNumParams();
}
unsigned ScopStmt::getNumIterators() const {
// The final read has one dimension with one element.
if (!BB)
return 1;
return IVS.size();
}
unsigned ScopStmt::getNumScattering() const {
return isl_map_dim(Scattering, isl_dim_out);
}
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
const PHINode *ScopStmt::getInductionVariableForDimension(unsigned Dimension)
const {
return IVS[Dimension].first;
}
const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
return IVS[Dimension].second;
}
const SCEVAddRecExpr *ScopStmt::getSCEVForDimension(unsigned Dimension)
const {
PHINode *PN =
const_cast<PHINode*>(getInductionVariableForDimension(Dimension));
return cast<SCEVAddRecExpr>(getParent()->getSE()->getSCEV(PN));
}
isl_ctx *ScopStmt::getIslCtx() const {
return Parent.getIslCtx();
}
isl_set *ScopStmt::getDomain() const {
return isl_set_copy(Domain);
}
isl_space *ScopStmt::getDomainSpace() const {
return isl_set_get_space(Domain);
}
ScopStmt::~ScopStmt() {
while (!MemAccs.empty()) {
delete MemAccs.back();
MemAccs.pop_back();
}
isl_set_free(Domain);
isl_map_free(Scattering);
}
void ScopStmt::print(raw_ostream &OS) const {
OS << "\t" << getBaseName() << "\n";
OS.indent(12) << "Domain :=\n";
if (Domain) {
OS.indent(16) << getDomainStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
OS.indent(12) << "Scattering :=\n";
if (Domain) {
OS.indent(16) << getScatteringStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
for (MemoryAccessVec::const_iterator I = MemAccs.begin(), E = MemAccs.end();
I != E; ++I)
(*I)->print(OS);
}
void ScopStmt::dump() const { print(dbgs()); }
//===----------------------------------------------------------------------===//
/// Scop class implement
void Scop::setContext(__isl_take isl_set *NewContext) {
NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
isl_set_free(Context);
Context = NewContext;
}
void Scop::addParams(std::vector<const SCEV*> NewParameters) {
for (std::vector<const SCEV*>::iterator PI = NewParameters.begin(),
PE = NewParameters.end(); PI != PE; ++PI) {
const SCEV *Parameter = *PI;
if (ParameterIds.find(Parameter) != ParameterIds.end())
continue;
int dimension = Parameters.size();
Parameters.push_back(Parameter);
ParameterIds[Parameter] = dimension;
}
}
__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) const {
ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);
if (IdIter == ParameterIds.end())
return NULL;
std::string ParameterName;
if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
Value *Val = ValueParameter->getValue();
ParameterName = Val->getName();
}
if (ParameterName == "" || ParameterName.substr(0, 2) == "p_")
ParameterName = "p_" + convertInt(IdIter->second);
return isl_id_alloc(getIslCtx(), ParameterName.c_str(), (void *) Parameter);
}
void Scop::buildContext() {
isl_space *Space = isl_space_params_alloc(IslCtx, 0);
Context = isl_set_universe (Space);
}
void Scop::realignParams() {
// Add all parameters into a common model.
isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());
for (ParamIdType::iterator PI = ParameterIds.begin(), PE = ParameterIds.end();
PI != PE; ++PI) {
const SCEV *Parameter = PI->first;
isl_id *id = getIdForParam(Parameter);
Space = isl_space_set_dim_id(Space, isl_dim_param, PI->second, id);
}
// Align the parameters of all data structures to the model.
Context = isl_set_align_params(Context, Space);
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->realignParams();
}
Scop::Scop(TempScop &tempScop, LoopInfo &LI, ScalarEvolution &ScalarEvolution,
isl_ctx *Context)
: SE(&ScalarEvolution), R(tempScop.getMaxRegion()),
MaxLoopDepth(tempScop.getMaxLoopDepth()) {
IslCtx = Context;
buildContext();
SmallVector<Loop*, 8> NestLoops;
SmallVector<unsigned, 8> Scatter;
Scatter.assign(MaxLoopDepth + 1, 0);
// Build the iteration domain, access functions and scattering functions
// traversing the region tree.
buildScop(tempScop, getRegion(), NestLoops, Scatter, LI);
realignParams();
assert(NestLoops.empty() && "NestLoops not empty at top level!");
}
Scop::~Scop() {
isl_set_free(Context);
// Free the statements;
for (iterator I = begin(), E = end(); I != E; ++I)
delete *I;
}
std::string Scop::getContextStr() const {
return stringFromIslObj(Context);
}
std::string Scop::getNameStr() const {
std::string ExitName, EntryName;
raw_string_ostream ExitStr(ExitName);
raw_string_ostream EntryStr(EntryName);
WriteAsOperand(EntryStr, R.getEntry(), false);
EntryStr.str();
if (R.getExit()) {
WriteAsOperand(ExitStr, R.getExit(), false);
ExitStr.str();
} else
ExitName = "FunctionExit";
return EntryName + "---" + ExitName;
}
__isl_give isl_set *Scop::getContext() const {
return isl_set_copy(Context);
}
__isl_give isl_space *Scop::getParamSpace() const {
return isl_set_get_space(this->Context);
}
void Scop::printContext(raw_ostream &OS) const {
OS << "Context:\n";
if (!Context) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getContextStr() << "\n";
for (ParamVecType::const_iterator PI = Parameters.begin(),
PE = Parameters.end(); PI != PE; ++PI) {
const SCEV *Parameter = *PI;
int Dim = ParameterIds.find(Parameter)->second;
OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
}
}
void Scop::printStatements(raw_ostream &OS) const {
OS << "Statements {\n";
for (const_iterator SI = begin(), SE = end();SI != SE; ++SI)
OS.indent(4) << (**SI);
OS.indent(4) << "}\n";
}
void Scop::print(raw_ostream &OS) const {
printContext(OS.indent(4));
printStatements(OS.indent(4));
}
void Scop::dump() const { print(dbgs()); }
isl_ctx *Scop::getIslCtx() const { return IslCtx; }
__isl_give isl_union_set *Scop::getDomains() {
isl_union_set *Domain = NULL;
for (Scop::iterator SI = begin(), SE = end(); SI != SE; ++SI)
if (!Domain)
Domain = isl_union_set_from_set((*SI)->getDomain());
else
Domain = isl_union_set_union(Domain,
isl_union_set_from_set((*SI)->getDomain()));
return Domain;
}
ScalarEvolution *Scop::getSE() const { return SE; }
bool Scop::isTrivialBB(BasicBlock *BB, TempScop &tempScop) {
if (tempScop.getAccessFunctions(BB))
return false;
return true;
}
void Scop::buildScop(TempScop &tempScop,
const Region &CurRegion,
SmallVectorImpl<Loop*> &NestLoops,
SmallVectorImpl<unsigned> &Scatter,
LoopInfo &LI) {
Loop *L = castToLoop(CurRegion, LI);
if (L)
NestLoops.push_back(L);
unsigned loopDepth = NestLoops.size();
assert(Scatter.size() > loopDepth && "Scatter not big enough!");
for (Region::const_element_iterator I = CurRegion.element_begin(),
E = CurRegion.element_end(); I != E; ++I)
if (I->isSubRegion())
buildScop(tempScop, *(I->getNodeAs<Region>()), NestLoops, Scatter, LI);
else {
BasicBlock *BB = I->getNodeAs<BasicBlock>();
if (isTrivialBB(BB, tempScop))
continue;
Stmts.push_back(new ScopStmt(*this, tempScop, CurRegion, *BB, NestLoops,
Scatter));
// Increasing the Scattering function is OK for the moment, because
// we are using a depth first iterator and the program is well structured.
++Scatter[loopDepth];
}
if (!L)
return;
// Exiting a loop region.
Scatter[loopDepth] = 0;
NestLoops.pop_back();
++Scatter[loopDepth-1];
}
//===----------------------------------------------------------------------===//
ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
ctx = isl_ctx_alloc();
isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT);
}
ScopInfo::~ScopInfo() {
clear();
isl_ctx_free(ctx);
}
void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addRequired<RegionInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TempScopInfo>();
AU.setPreservesAll();
}
bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
LoopInfo &LI = getAnalysis<LoopInfo>();
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
TempScop *tempScop = getAnalysis<TempScopInfo>().getTempScop(R);
// This region is no Scop.
if (!tempScop) {
scop = 0;
return false;
}
// Statistics.
++ScopFound;
if (tempScop->getMaxLoopDepth() > 0) ++RichScopFound;
scop = new Scop(*tempScop, LI, SE, ctx);
return false;
}
char ScopInfo::ID = 0;
INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(RegionInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TempScopInfo)
INITIALIZE_PASS_END(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false)
Pass *polly::createScopInfoPass() {
return new ScopInfo();
}