blob: 37571b987aab2fe594498062ea54dd41a8941ae4 [file] [log] [blame]
//===-- DNBArchImplI386.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__i386__) || defined (__x86_64__)
#include <sys/cdefs.h>
#include "MacOSX/i386/DNBArchImplI386.h"
#include "DNBLog.h"
#include "MachThread.h"
#include "MachProcess.h"
extern "C" bool CPUHasAVX(); // Defined over in DNBArchImplX86_64.cpp
#if defined (LLDB_DEBUGSERVER_RELEASE) || defined (LLDB_DEBUGSERVER_DEBUG)
enum debugState {
debugStateUnknown,
debugStateOff,
debugStateOn
};
static debugState sFPUDebugState = debugStateUnknown;
static debugState sAVXForceState = debugStateUnknown;
static bool DebugFPURegs ()
{
if (sFPUDebugState == debugStateUnknown)
{
if (getenv("DNB_DEBUG_FPU_REGS"))
sFPUDebugState = debugStateOn;
else
sFPUDebugState = debugStateOff;
}
return (sFPUDebugState == debugStateOn);
}
static bool ForceAVXRegs ()
{
if (sFPUDebugState == debugStateUnknown)
{
if (getenv("DNB_DEBUG_X86_FORCE_AVX_REGS"))
sAVXForceState = debugStateOn;
else
sAVXForceState = debugStateOff;
}
return (sAVXForceState == debugStateOn);
}
#define DEBUG_FPU_REGS (DebugFPURegs())
#define FORCE_AVX_REGS (ForceAVXRegs())
#else
#define DEBUG_FPU_REGS (0)
#define FORCE_AVX_REGS (0)
#endif
enum
{
gpr_eax = 0,
gpr_ebx = 1,
gpr_ecx = 2,
gpr_edx = 3,
gpr_edi = 4,
gpr_esi = 5,
gpr_ebp = 6,
gpr_esp = 7,
gpr_ss = 8,
gpr_eflags = 9,
gpr_eip = 10,
gpr_cs = 11,
gpr_ds = 12,
gpr_es = 13,
gpr_fs = 14,
gpr_gs = 15,
k_num_gpr_regs
};
enum {
fpu_fcw,
fpu_fsw,
fpu_ftw,
fpu_fop,
fpu_ip,
fpu_cs,
fpu_dp,
fpu_ds,
fpu_mxcsr,
fpu_mxcsrmask,
fpu_stmm0,
fpu_stmm1,
fpu_stmm2,
fpu_stmm3,
fpu_stmm4,
fpu_stmm5,
fpu_stmm6,
fpu_stmm7,
fpu_xmm0,
fpu_xmm1,
fpu_xmm2,
fpu_xmm3,
fpu_xmm4,
fpu_xmm5,
fpu_xmm6,
fpu_xmm7,
fpu_ymm0,
fpu_ymm1,
fpu_ymm2,
fpu_ymm3,
fpu_ymm4,
fpu_ymm5,
fpu_ymm6,
fpu_ymm7,
k_num_fpu_regs,
// Aliases
fpu_fctrl = fpu_fcw,
fpu_fstat = fpu_fsw,
fpu_ftag = fpu_ftw,
fpu_fiseg = fpu_cs,
fpu_fioff = fpu_ip,
fpu_foseg = fpu_ds,
fpu_fooff = fpu_dp
};
enum {
exc_trapno,
exc_err,
exc_faultvaddr,
k_num_exc_regs,
};
enum
{
gcc_eax = 0,
gcc_ecx,
gcc_edx,
gcc_ebx,
gcc_ebp,
gcc_esp,
gcc_esi,
gcc_edi,
gcc_eip,
gcc_eflags
};
enum
{
dwarf_eax = 0,
dwarf_ecx,
dwarf_edx,
dwarf_ebx,
dwarf_esp,
dwarf_ebp,
dwarf_esi,
dwarf_edi,
dwarf_eip,
dwarf_eflags,
dwarf_stmm0 = 11,
dwarf_stmm1,
dwarf_stmm2,
dwarf_stmm3,
dwarf_stmm4,
dwarf_stmm5,
dwarf_stmm6,
dwarf_stmm7,
dwarf_xmm0 = 21,
dwarf_xmm1,
dwarf_xmm2,
dwarf_xmm3,
dwarf_xmm4,
dwarf_xmm5,
dwarf_xmm6,
dwarf_xmm7,
dwarf_ymm0 = dwarf_xmm0,
dwarf_ymm1 = dwarf_xmm1,
dwarf_ymm2 = dwarf_xmm2,
dwarf_ymm3 = dwarf_xmm3,
dwarf_ymm4 = dwarf_xmm4,
dwarf_ymm5 = dwarf_xmm5,
dwarf_ymm6 = dwarf_xmm6,
dwarf_ymm7 = dwarf_xmm7,
};
enum
{
gdb_eax = 0,
gdb_ecx = 1,
gdb_edx = 2,
gdb_ebx = 3,
gdb_esp = 4,
gdb_ebp = 5,
gdb_esi = 6,
gdb_edi = 7,
gdb_eip = 8,
gdb_eflags = 9,
gdb_cs = 10,
gdb_ss = 11,
gdb_ds = 12,
gdb_es = 13,
gdb_fs = 14,
gdb_gs = 15,
gdb_stmm0 = 16,
gdb_stmm1 = 17,
gdb_stmm2 = 18,
gdb_stmm3 = 19,
gdb_stmm4 = 20,
gdb_stmm5 = 21,
gdb_stmm6 = 22,
gdb_stmm7 = 23,
gdb_fctrl = 24, gdb_fcw = gdb_fctrl,
gdb_fstat = 25, gdb_fsw = gdb_fstat,
gdb_ftag = 26, gdb_ftw = gdb_ftag,
gdb_fiseg = 27, gdb_fpu_cs = gdb_fiseg,
gdb_fioff = 28, gdb_ip = gdb_fioff,
gdb_foseg = 29, gdb_fpu_ds = gdb_foseg,
gdb_fooff = 30, gdb_dp = gdb_fooff,
gdb_fop = 31,
gdb_xmm0 = 32,
gdb_xmm1 = 33,
gdb_xmm2 = 34,
gdb_xmm3 = 35,
gdb_xmm4 = 36,
gdb_xmm5 = 37,
gdb_xmm6 = 38,
gdb_xmm7 = 39,
gdb_mxcsr = 40,
gdb_mm0 = 41,
gdb_mm1 = 42,
gdb_mm2 = 43,
gdb_mm3 = 44,
gdb_mm4 = 45,
gdb_mm5 = 46,
gdb_mm6 = 47,
gdb_mm7 = 48,
gdb_ymm0 = gdb_xmm0,
gdb_ymm1 = gdb_xmm1,
gdb_ymm2 = gdb_xmm2,
gdb_ymm3 = gdb_xmm3,
gdb_ymm4 = gdb_xmm4,
gdb_ymm5 = gdb_xmm5,
gdb_ymm6 = gdb_xmm6,
gdb_ymm7 = gdb_xmm7
};
uint64_t
DNBArchImplI386::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__eip;
return failValue;
}
kern_return_t
DNBArchImplI386::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__eip = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchImplI386::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__esp;
return failValue;
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_GPR_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
//#define SET_GPR(reg) m_state.context.gpr.__##reg = gpr_##reg
kern_return_t
DNBArchImplI386::GetGPRState(bool force)
{
if (force || m_state.GetError(e_regSetGPR, Read))
{
#if DEBUG_GPR_VALUES
SET_GPR(eax);
SET_GPR(ebx);
SET_GPR(ecx);
SET_GPR(edx);
SET_GPR(edi);
SET_GPR(esi);
SET_GPR(ebp);
SET_GPR(esp);
SET_GPR(ss);
SET_GPR(eflags);
SET_GPR(eip);
SET_GPR(cs);
SET_GPR(ds);
SET_GPR(es);
SET_GPR(fs);
SET_GPR(gs);
m_state.SetError(e_regSetGPR, Read, 0);
#else
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read, ::thread_get_state(m_thread->ThreadID(), __i386_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count));
#endif
}
return m_state.GetError(e_regSetGPR, Read);
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_FPU_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
kern_return_t
DNBArchImplI386::GetFPUState(bool force)
{
if (force || m_state.GetError(e_regSetFPU, Read))
{
if (DEBUG_FPU_REGS)
{
if (CPUHasAVX() || FORCE_AVX_REGS)
{
m_state.context.fpu.avx.__fpu_reserved[0] = -1;
m_state.context.fpu.avx.__fpu_reserved[1] = -1;
*(uint16_t *)&(m_state.context.fpu.avx.__fpu_fcw) = 0x1234;
*(uint16_t *)&(m_state.context.fpu.avx.__fpu_fsw) = 0x5678;
m_state.context.fpu.avx.__fpu_ftw = 1;
m_state.context.fpu.avx.__fpu_rsrv1 = UINT8_MAX;
m_state.context.fpu.avx.__fpu_fop = 2;
m_state.context.fpu.avx.__fpu_ip = 3;
m_state.context.fpu.avx.__fpu_cs = 4;
m_state.context.fpu.avx.__fpu_rsrv2 = 5;
m_state.context.fpu.avx.__fpu_dp = 6;
m_state.context.fpu.avx.__fpu_ds = 7;
m_state.context.fpu.avx.__fpu_rsrv3 = UINT16_MAX;
m_state.context.fpu.avx.__fpu_mxcsr = 8;
m_state.context.fpu.avx.__fpu_mxcsrmask = 9;
int i;
for (i=0; i<16; ++i)
{
if (i<10)
{
m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = 'a';
m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = 'b';
m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = 'c';
m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = 'd';
m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = 'e';
m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = 'f';
m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = 'g';
m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = 'h';
}
else
{
m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
}
m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg[i] = '0';
m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg[i] = '1';
m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg[i] = '2';
m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg[i] = '3';
m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg[i] = '4';
m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg[i] = '5';
m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg[i] = '6';
m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg[i] = '7';
}
for (i=0; i<sizeof(m_state.context.fpu.avx.__fpu_rsrv4); ++i)
m_state.context.fpu.avx.__fpu_rsrv4[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_reserved1 = -1;
for (i=0; i<sizeof(m_state.context.fpu.avx.__avx_reserved1); ++i)
m_state.context.fpu.avx.__avx_reserved1[i] = INT8_MIN;
for (i = 0; i < 16; ++i)
{
m_state.context.fpu.avx.__fpu_ymmh0.__xmm_reg[i] = '0';
m_state.context.fpu.avx.__fpu_ymmh1.__xmm_reg[i] = '1';
m_state.context.fpu.avx.__fpu_ymmh2.__xmm_reg[i] = '2';
m_state.context.fpu.avx.__fpu_ymmh3.__xmm_reg[i] = '3';
m_state.context.fpu.avx.__fpu_ymmh4.__xmm_reg[i] = '4';
m_state.context.fpu.avx.__fpu_ymmh5.__xmm_reg[i] = '5';
m_state.context.fpu.avx.__fpu_ymmh6.__xmm_reg[i] = '6';
m_state.context.fpu.avx.__fpu_ymmh7.__xmm_reg[i] = '7';
}
}
else
{
m_state.context.fpu.no_avx.__fpu_reserved[0] = -1;
m_state.context.fpu.no_avx.__fpu_reserved[1] = -1;
*(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fcw) = 0x1234;
*(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fsw) = 0x5678;
m_state.context.fpu.no_avx.__fpu_ftw = 1;
m_state.context.fpu.no_avx.__fpu_rsrv1 = UINT8_MAX;
m_state.context.fpu.no_avx.__fpu_fop = 2;
m_state.context.fpu.no_avx.__fpu_ip = 3;
m_state.context.fpu.no_avx.__fpu_cs = 4;
m_state.context.fpu.no_avx.__fpu_rsrv2 = 5;
m_state.context.fpu.no_avx.__fpu_dp = 6;
m_state.context.fpu.no_avx.__fpu_ds = 7;
m_state.context.fpu.no_avx.__fpu_rsrv3 = UINT16_MAX;
m_state.context.fpu.no_avx.__fpu_mxcsr = 8;
m_state.context.fpu.no_avx.__fpu_mxcsrmask = 9;
int i;
for (i=0; i<16; ++i)
{
if (i<10)
{
m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = 'a';
m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = 'b';
m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = 'c';
m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = 'd';
m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = 'e';
m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = 'f';
m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = 'g';
m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = 'h';
}
else
{
m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
}
m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg[i] = '0';
m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg[i] = '1';
m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg[i] = '2';
m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg[i] = '3';
m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg[i] = '4';
m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg[i] = '5';
m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg[i] = '6';
m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg[i] = '7';
}
for (i=0; i<sizeof(m_state.context.fpu.avx.__fpu_rsrv4); ++i)
m_state.context.fpu.no_avx.__fpu_rsrv4[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_reserved1 = -1;
}
m_state.SetError(e_regSetFPU, Read, 0);
}
else
{
if (CPUHasAVX() || FORCE_AVX_REGS)
{
mach_msg_type_number_t count = e_regSetWordSizeAVX;
m_state.SetError (e_regSetFPU, Read, ::thread_get_state(m_thread->ThreadID(), __i386_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, &count));
DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &avx, %u (%u passed in)) => 0x%8.8x",
m_thread->ThreadID(), __i386_AVX_STATE, count, e_regSetWordSizeAVX,
m_state.GetError(e_regSetFPU, Read));
}
else
{
mach_msg_type_number_t count = e_regSetWordSizeFPU;
m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->ThreadID(), __i386_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, &count));
DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &fpu, %u (%u passed in) => 0x%8.8x",
m_thread->ThreadID(), __i386_FLOAT_STATE, count, e_regSetWordSizeFPU,
m_state.GetError(e_regSetFPU, Read));
}
}
}
return m_state.GetError(e_regSetFPU, Read);
}
kern_return_t
DNBArchImplI386::GetEXCState(bool force)
{
if (force || m_state.GetError(e_regSetEXC, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read, ::thread_get_state(m_thread->ThreadID(), __i386_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t
DNBArchImplI386::SetGPRState()
{
m_state.SetError(e_regSetGPR, Write, ::thread_set_state(m_thread->ThreadID(), __i386_THREAD_STATE, (thread_state_t)&m_state.context.gpr, e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t
DNBArchImplI386::SetFPUState()
{
if (DEBUG_FPU_REGS)
{
m_state.SetError(e_regSetFPU, Write, 0);
return m_state.GetError(e_regSetFPU, Write);
}
else
{
if (CPUHasAVX() || FORCE_AVX_REGS)
m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->ThreadID(), __i386_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, e_regSetWordSizeAVX));
else
m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->ThreadID(), __i386_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, e_regSetWordSizeFPU));
return m_state.GetError(e_regSetFPU, Write);
}
}
kern_return_t
DNBArchImplI386::SetEXCState()
{
m_state.SetError(e_regSetEXC, Write, ::thread_set_state(m_thread->ThreadID(), __i386_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t
DNBArchImplI386::GetDBGState(bool force)
{
if (force || m_state.GetError(e_regSetDBG, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeDBG;
m_state.SetError(e_regSetDBG, Read, ::thread_get_state(m_thread->ThreadID(), __i386_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, &count));
}
return m_state.GetError(e_regSetDBG, Read);
}
kern_return_t
DNBArchImplI386::SetDBGState()
{
m_state.SetError(e_regSetDBG, Write, ::thread_set_state(m_thread->ThreadID(), __i386_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG));
return m_state.GetError(e_regSetDBG, Write);
}
void
DNBArchImplI386::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
// This is the primary thread, let the arch do anything it needs
EnableHardwareSingleStep(true);
}
// Reset the debug status register, if necessary, before we resume.
kern_return_t kret = GetDBGState(false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::ThreadWillResume() GetDBGState() => 0x%8.8x.", kret);
if (kret != KERN_SUCCESS)
return;
DBG &debug_state = m_state.context.dbg;
bool need_reset = false;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
if (IsWatchpointHit(debug_state, i))
need_reset = true;
if (need_reset)
{
ClearWatchpointHits(debug_state);
kret = SetDBGState();
DNBLogThreadedIf(LOG_WATCHPOINTS,"DNBArchImplI386::ThreadWillResume() SetDBGState() => 0x%8.8x.", kret);
}
}
bool
DNBArchImplI386::ThreadDidStop()
{
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool
DNBArchImplI386::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
case EXC_BAD_ACCESS:
break;
case EXC_BAD_INSTRUCTION:
break;
case EXC_ARITHMETIC:
break;
case EXC_EMULATION:
break;
case EXC_SOFTWARE:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2)
{
// exc_code = EXC_I386_BPT
//
nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
if (pc != INVALID_NUB_ADDRESS && pc > 0)
{
pc -= 1;
// Check for a breakpoint at one byte prior to the current PC value
// since the PC will be just past the trap.
nub_break_t breakID = m_thread->Process()->Breakpoints().FindIDByAddress(pc);
if (NUB_BREAK_ID_IS_VALID(breakID))
{
// Backup the PC for i386 since the trap was taken and the PC
// is at the address following the single byte trap instruction.
if (m_state.context.gpr.__eip > 0)
{
m_state.context.gpr.__eip = pc;
// Write the new PC back out
SetGPRState ();
}
}
return true;
}
}
else if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 1)
{
// exc_code = EXC_I386_SGL
//
// Check whether this corresponds to a watchpoint hit event.
// If yes, set the exc_sub_code to the data break address.
nub_addr_t addr = 0;
uint32_t hw_index = GetHardwareWatchpointHit(addr);
if (hw_index != INVALID_NUB_HW_INDEX)
{
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
case EXC_SYSCALL:
break;
case EXC_MACH_SYSCALL:
break;
case EXC_RPC_ALERT:
break;
}
return false;
}
uint32_t
DNBArchImplI386::NumSupportedHardwareWatchpoints()
{
// Available debug address registers: dr0, dr1, dr2, dr3.
return 4;
}
static uint32_t
size_and_rw_bits(nub_size_t size, bool read, bool write)
{
uint32_t rw;
if (read) {
rw = 0x3; // READ or READ/WRITE
} else if (write) {
rw = 0x1; // WRITE
} else {
assert(0 && "read and write cannot both be false");
}
switch (size) {
case 1:
return rw;
case 2:
return (0x1 << 2) | rw;
case 4:
return (0x3 << 2) | rw;
case 8:
return (0x2 << 2) | rw;
default:
assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
}
}
void
DNBArchImplI386::SetWatchpoint(DBG &debug_state, uint32_t hw_index, nub_addr_t addr, nub_size_t size, bool read, bool write)
{
// Set both dr7 (debug control register) and dri (debug address register).
// dr7{7-0} encodes the local/gloabl enable bits:
// global enable --. .-- local enable
// | |
// v v
// dr0 -> bits{1-0}
// dr1 -> bits{3-2}
// dr2 -> bits{5-4}
// dr3 -> bits{7-6}
//
// dr7{31-16} encodes the rw/len bits:
// b_x+3, b_x+2, b_x+1, b_x
// where bits{x+1, x} => rw
// 0b00: execute, 0b01: write, 0b11: read-or-write, 0b10: io read-or-write (unused)
// and bits{x+3, x+2} => len
// 0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
//
// dr0 -> bits{19-16}
// dr1 -> bits{23-20}
// dr2 -> bits{27-24}
// dr3 -> bits{31-28}
debug_state.__dr7 |= (1 << (2*hw_index) |
size_and_rw_bits(size, read, write) << (16+4*hw_index));
uint32_t addr_32 = addr & 0xffffffff;
switch (hw_index) {
case 0:
debug_state.__dr0 = addr_32; break;
case 1:
debug_state.__dr1 = addr_32; break;
case 2:
debug_state.__dr2 = addr_32; break;
case 3:
debug_state.__dr3 = addr_32; break;
default:
assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
}
return;
}
void
DNBArchImplI386::ClearWatchpoint(DBG &debug_state, uint32_t hw_index)
{
debug_state.__dr7 &= ~(3 << (2*hw_index));
switch (hw_index) {
case 0:
debug_state.__dr0 = 0; break;
case 1:
debug_state.__dr1 = 0; break;
case 2:
debug_state.__dr2 = 0; break;
case 3:
debug_state.__dr3 = 0; break;
default:
assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
}
return;
}
bool
DNBArchImplI386::IsWatchpointVacant(const DBG &debug_state, uint32_t hw_index)
{
// Check dr7 (debug control register) for local/global enable bits:
// global enable --. .-- local enable
// | |
// v v
// dr0 -> bits{1-0}
// dr1 -> bits{3-2}
// dr2 -> bits{5-4}
// dr3 -> bits{7-6}
return (debug_state.__dr7 & (3 << (2*hw_index))) == 0;
}
// Resets local copy of debug status register to wait for the next debug excpetion.
void
DNBArchImplI386::ClearWatchpointHits(DBG &debug_state)
{
// See also IsWatchpointHit().
debug_state.__dr6 = 0;
return;
}
bool
DNBArchImplI386::IsWatchpointHit(const DBG &debug_state, uint32_t hw_index)
{
// Check dr6 (debug status register) whether a watchpoint hits:
// is watchpoint hit?
// |
// v
// dr0 -> bits{0}
// dr1 -> bits{1}
// dr2 -> bits{2}
// dr3 -> bits{3}
return (debug_state.__dr6 & (1 << hw_index));
}
nub_addr_t
DNBArchImplI386::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
{
switch (hw_index) {
case 0:
return debug_state.__dr0;
case 1:
return debug_state.__dr1;
case 2:
return debug_state.__dr2;
case 3:
return debug_state.__dr3;
default:
assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
}
}
uint32_t
DNBArchImplI386::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint(addr = 0x%llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can only watch 1, 2, 4, or 8 bytes.
if (!(size == 1 || size == 2 || size == 4 || size == 8))
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS)
{
// Check to make sure we have the needed hardware support
uint32_t i = 0;
DBG &debug_state = m_state.context.dbg;
for (i = 0; i < num_hw_watchpoints; ++i)
{
if (IsWatchpointVacant(debug_state, i))
break;
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_watchpoints)
{
// Modify our local copy of the debug state, first.
SetWatchpoint(debug_state, i, addr, size, read, write);
// Now set the watch point in the inferior.
kret = SetDBGState();
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchImplI386::DisableHardwareWatchpoint (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.context.dbg;
if (hw_index < num_hw_points && !IsWatchpointVacant(debug_state, hw_index))
{
// Modify our local copy of the debug state, first.
ClearWatchpoint(debug_state, hw_index);
// Now disable the watch point in the inferior.
kret = SetDBGState();
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::DisableHardwareWatchpoint( %u )",
hw_index);
if (kret == KERN_SUCCESS)
return true;
}
}
return false;
}
DNBArchImplI386::DBG DNBArchImplI386::Global_Debug_State = {0,0,0,0,0,0,0,0};
bool DNBArchImplI386::Valid_Global_Debug_State = false;
// Use this callback from MachThread, which in turn was called from MachThreadList, to update
// the global view of the hardware watchpoint state, so that when new thread comes along, they
// get to inherit the existing hardware watchpoint state.
void
DNBArchImplI386::HardwareWatchpointStateChanged ()
{
Global_Debug_State = m_state.context.dbg;
Valid_Global_Debug_State = true;
}
// Iterate through the debug status register; return the index of the first hit.
uint32_t
DNBArchImplI386::GetHardwareWatchpointHit(nub_addr_t &addr)
{
// Read the debug state
kern_return_t kret = GetDBGState(false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.context.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
{
if (IsWatchpointHit(debug_state, i))
{
addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchImplI386::GetHardwareWatchpointHit() found => %u (addr = 0x%llx).",
i, (uint64_t)addr);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchImplI386::EnableHardwareSingleStep (bool enable)
{
if (GetGPRState(false) == KERN_SUCCESS)
{
const uint32_t trace_bit = 0x100u;
if (enable)
m_state.context.gpr.__eflags |= trace_bit;
else
m_state.context.gpr.__eflags &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information defintions
//----------------------------------------------------------------------
#define GPR_OFFSET(reg) (offsetof (DNBArchImplI386::GPR, __##reg))
#define FPU_OFFSET(reg) (offsetof (DNBArchImplI386::FPU, __fpu_##reg) + offsetof (DNBArchImplI386::Context, fpu.no_avx))
#define AVX_OFFSET(reg) (offsetof (DNBArchImplI386::AVX, __fpu_##reg) + offsetof (DNBArchImplI386::Context, fpu.avx))
#define EXC_OFFSET(reg) (offsetof (DNBArchImplI386::EXC, __##reg) + offsetof (DNBArchImplI386::Context, exc))
#define GPR_SIZE(reg) (sizeof(((DNBArchImplI386::GPR *)NULL)->__##reg))
#define FPU_SIZE_UINT(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg))
#define FPU_SIZE_MMST(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__mmst_reg))
#define FPU_SIZE_XMM(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__xmm_reg))
#define FPU_SIZE_YMM(reg) (32)
#define EXC_SIZE(reg) (sizeof(((DNBArchImplI386::EXC *)NULL)->__##reg))
// This does not accurately identify the location of ymm0...7 in
// Context.fpu.avx. That is because there is a bunch of padding
// in Context.fpu.avx that we don't need. Offset macros lay out
// the register state that Debugserver transmits to the debugger
// -- not to interpret the thread_get_state info.
#define AVX_OFFSET_YMM(n) (AVX_OFFSET(xmm7) + FPU_SIZE_XMM(xmm7) + (32 * n))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
// General purpose registers for 64 bit
const DNBRegisterInfo
DNBArchImplI386::g_gpr_registers[] =
{
{ e_regSetGPR, gpr_eax, "eax" , NULL , Uint, Hex, GPR_SIZE(eax), GPR_OFFSET(eax) , gcc_eax , dwarf_eax , -1U , gdb_eax },
{ e_regSetGPR, gpr_ebx, "ebx" , NULL , Uint, Hex, GPR_SIZE(ebx), GPR_OFFSET(ebx) , gcc_ebx , dwarf_ebx , -1U , gdb_ebx },
{ e_regSetGPR, gpr_ecx, "ecx" , NULL , Uint, Hex, GPR_SIZE(ecx), GPR_OFFSET(ecx) , gcc_ecx , dwarf_ecx , -1U , gdb_ecx },
{ e_regSetGPR, gpr_edx, "edx" , NULL , Uint, Hex, GPR_SIZE(edx), GPR_OFFSET(edx) , gcc_edx , dwarf_edx , -1U , gdb_edx },
{ e_regSetGPR, gpr_edi, "edi" , NULL , Uint, Hex, GPR_SIZE(edi), GPR_OFFSET(edi) , gcc_edi , dwarf_edi , -1U , gdb_edi },
{ e_regSetGPR, gpr_esi, "esi" , NULL , Uint, Hex, GPR_SIZE(esi), GPR_OFFSET(esi) , gcc_esi , dwarf_esi , -1U , gdb_esi },
{ e_regSetGPR, gpr_ebp, "ebp" , "fp" , Uint, Hex, GPR_SIZE(ebp), GPR_OFFSET(ebp) , gcc_ebp , dwarf_ebp , GENERIC_REGNUM_FP , gdb_ebp },
{ e_regSetGPR, gpr_esp, "esp" , "sp" , Uint, Hex, GPR_SIZE(esp), GPR_OFFSET(esp) , gcc_esp , dwarf_esp , GENERIC_REGNUM_SP , gdb_esp },
{ e_regSetGPR, gpr_ss, "ss" , NULL , Uint, Hex, GPR_SIZE(ss), GPR_OFFSET(ss) , -1U , -1U , -1U , gdb_ss },
{ e_regSetGPR, gpr_eflags, "eflags", "flags" , Uint, Hex, GPR_SIZE(eflags), GPR_OFFSET(eflags) , gcc_eflags, dwarf_eflags , GENERIC_REGNUM_FLAGS , gdb_eflags},
{ e_regSetGPR, gpr_eip, "eip" , "pc" , Uint, Hex, GPR_SIZE(eip), GPR_OFFSET(eip) , gcc_eip , dwarf_eip , GENERIC_REGNUM_PC , gdb_eip },
{ e_regSetGPR, gpr_cs, "cs" , NULL , Uint, Hex, GPR_SIZE(cs), GPR_OFFSET(cs) , -1U , -1U , -1U , gdb_cs },
{ e_regSetGPR, gpr_ds, "ds" , NULL , Uint, Hex, GPR_SIZE(ds), GPR_OFFSET(ds) , -1U , -1U , -1U , gdb_ds },
{ e_regSetGPR, gpr_es, "es" , NULL , Uint, Hex, GPR_SIZE(es), GPR_OFFSET(es) , -1U , -1U , -1U , gdb_es },
{ e_regSetGPR, gpr_fs, "fs" , NULL , Uint, Hex, GPR_SIZE(fs), GPR_OFFSET(fs) , -1U , -1U , -1U , gdb_fs },
{ e_regSetGPR, gpr_gs, "gs" , NULL , Uint, Hex, GPR_SIZE(gs), GPR_OFFSET(gs) , -1U , -1U , -1U , gdb_gs }
};
const DNBRegisterInfo
DNBArchImplI386::g_fpu_registers_no_avx[] =
{
{ e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , FPU_OFFSET(fcw) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , FPU_OFFSET(fsw) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , FPU_OFFSET(ftw) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , FPU_OFFSET(fop) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , FPU_OFFSET(ip) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , FPU_OFFSET(cs) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , FPU_OFFSET(dp) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , FPU_OFFSET(ds) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , FPU_OFFSET(mxcsr) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , FPU_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), -1U, dwarf_stmm0, -1U, gdb_stmm0 },
{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), -1U, dwarf_stmm1, -1U, gdb_stmm1 },
{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), -1U, dwarf_stmm2, -1U, gdb_stmm2 },
{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), -1U, dwarf_stmm3, -1U, gdb_stmm3 },
{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), -1U, dwarf_stmm4, -1U, gdb_stmm4 },
{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), -1U, dwarf_stmm5, -1U, gdb_stmm5 },
{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), -1U, dwarf_stmm6, -1U, gdb_stmm6 },
{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), -1U, dwarf_stmm7, -1U, gdb_stmm7 },
{ e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0), FPU_OFFSET(xmm0), -1U, dwarf_xmm0, -1U, gdb_xmm0 },
{ e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1), FPU_OFFSET(xmm1), -1U, dwarf_xmm1, -1U, gdb_xmm1 },
{ e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2), FPU_OFFSET(xmm2), -1U, dwarf_xmm2, -1U, gdb_xmm2 },
{ e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3), FPU_OFFSET(xmm3), -1U, dwarf_xmm3, -1U, gdb_xmm3 },
{ e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4), FPU_OFFSET(xmm4), -1U, dwarf_xmm4, -1U, gdb_xmm4 },
{ e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5), FPU_OFFSET(xmm5), -1U, dwarf_xmm5, -1U, gdb_xmm5 },
{ e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6), FPU_OFFSET(xmm6), -1U, dwarf_xmm6, -1U, gdb_xmm6 },
{ e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7), FPU_OFFSET(xmm7), -1U, dwarf_xmm7, -1U, gdb_xmm7 }
};
const DNBRegisterInfo
DNBArchImplI386::g_fpu_registers_avx[] =
{
{ e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , AVX_OFFSET(fcw) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , AVX_OFFSET(fsw) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , AVX_OFFSET(ftw) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , AVX_OFFSET(fop) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , AVX_OFFSET(ip) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , AVX_OFFSET(cs) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , AVX_OFFSET(dp) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , AVX_OFFSET(ds) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , AVX_OFFSET(mxcsr) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , AVX_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U },
{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), -1U, dwarf_stmm0, -1U, gdb_stmm0 },
{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), -1U, dwarf_stmm1, -1U, gdb_stmm1 },
{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), -1U, dwarf_stmm2, -1U, gdb_stmm2 },
{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), -1U, dwarf_stmm3, -1U, gdb_stmm3 },
{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), -1U, dwarf_stmm4, -1U, gdb_stmm4 },
{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), -1U, dwarf_stmm5, -1U, gdb_stmm5 },
{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), -1U, dwarf_stmm6, -1U, gdb_stmm6 },
{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), -1U, dwarf_stmm7, -1U, gdb_stmm7 },
{ e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0), AVX_OFFSET(xmm0), -1U, dwarf_xmm0, -1U, gdb_xmm0 },
{ e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1), AVX_OFFSET(xmm1), -1U, dwarf_xmm1, -1U, gdb_xmm1 },
{ e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2), AVX_OFFSET(xmm2), -1U, dwarf_xmm2, -1U, gdb_xmm2 },
{ e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3), AVX_OFFSET(xmm3), -1U, dwarf_xmm3, -1U, gdb_xmm3 },
{ e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4), AVX_OFFSET(xmm4), -1U, dwarf_xmm4, -1U, gdb_xmm4 },
{ e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5), AVX_OFFSET(xmm5), -1U, dwarf_xmm5, -1U, gdb_xmm5 },
{ e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6), AVX_OFFSET(xmm6), -1U, dwarf_xmm6, -1U, gdb_xmm6 },
{ e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7), AVX_OFFSET(xmm7), -1U, dwarf_xmm7, -1U, gdb_xmm7 },
{ e_regSetFPU, fpu_ymm0, "ymm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm0), AVX_OFFSET_YMM(0), -1U, dwarf_ymm0, -1U, gdb_ymm0 },
{ e_regSetFPU, fpu_ymm1, "ymm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm1), AVX_OFFSET_YMM(1), -1U, dwarf_ymm1, -1U, gdb_ymm1 },
{ e_regSetFPU, fpu_ymm2, "ymm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm2), AVX_OFFSET_YMM(2), -1U, dwarf_ymm2, -1U, gdb_ymm2 },
{ e_regSetFPU, fpu_ymm3, "ymm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm3), AVX_OFFSET_YMM(3), -1U, dwarf_ymm3, -1U, gdb_ymm3 },
{ e_regSetFPU, fpu_ymm4, "ymm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm4), AVX_OFFSET_YMM(4), -1U, dwarf_ymm4, -1U, gdb_ymm4 },
{ e_regSetFPU, fpu_ymm5, "ymm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm5), AVX_OFFSET_YMM(5), -1U, dwarf_ymm5, -1U, gdb_ymm5 },
{ e_regSetFPU, fpu_ymm6, "ymm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm6), AVX_OFFSET_YMM(6), -1U, dwarf_ymm6, -1U, gdb_ymm6 },
{ e_regSetFPU, fpu_ymm7, "ymm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm7), AVX_OFFSET_YMM(7), -1U, dwarf_ymm7, -1U, gdb_ymm7 },
};
const DNBRegisterInfo
DNBArchImplI386::g_exc_registers[] =
{
{ e_regSetEXC, exc_trapno, "trapno" , NULL, Uint, Hex, EXC_SIZE (trapno) , EXC_OFFSET (trapno) , -1U, -1U, -1U, -1U },
{ e_regSetEXC, exc_err, "err" , NULL, Uint, Hex, EXC_SIZE (err) , EXC_OFFSET (err) , -1U, -1U, -1U, -1U },
{ e_regSetEXC, exc_faultvaddr, "faultvaddr", NULL, Uint, Hex, EXC_SIZE (faultvaddr), EXC_OFFSET (faultvaddr) , -1U, -1U, -1U, -1U }
};
// Number of registers in each register set
const size_t DNBArchImplI386::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_fpu_registers_no_avx = sizeof(g_fpu_registers_no_avx)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_fpu_registers_avx = sizeof(g_fpu_registers_avx)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_all_registers_no_avx = k_num_gpr_registers + k_num_fpu_registers_no_avx + k_num_exc_registers;
const size_t DNBArchImplI386::k_num_all_registers_avx = k_num_gpr_registers + k_num_fpu_registers_avx + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchImplI386::g_reg_sets_no_avx[] =
{
{ "i386 Registers", NULL, k_num_all_registers_no_avx },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_fpu_registers_no_avx, k_num_fpu_registers_no_avx },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
const DNBRegisterSetInfo
DNBArchImplI386::g_reg_sets_avx[] =
{
{ "i386 Registers", NULL, k_num_all_registers_avx },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_fpu_registers_avx, k_num_fpu_registers_avx },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchImplI386::k_num_register_sets = sizeof(g_reg_sets_no_avx)/sizeof(DNBRegisterSetInfo);
DNBArchProtocol *
DNBArchImplI386::Create (MachThread *thread)
{
DNBArchImplI386 *obj = new DNBArchImplI386 (thread);
// When new thread comes along, it tries to inherit from the global debug state, if it is valid.
if (Valid_Global_Debug_State)
{
obj->m_state.context.dbg = Global_Debug_State;
kern_return_t kret = obj->SetDBGState();
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchImplX86_64::Create() Inherit and SetDBGState() => 0x%8.8x.", kret);
}
return obj;
}
const uint8_t * const
DNBArchImplI386::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
static const uint8_t g_breakpoint_opcode[] = { 0xCC };
if (byte_size == 1)
return g_breakpoint_opcode;
return NULL;
}
const DNBRegisterSetInfo *
DNBArchImplI386::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
if (CPUHasAVX() || FORCE_AVX_REGS)
return g_reg_sets_avx;
else
return g_reg_sets_no_avx;
}
void
DNBArchImplI386::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_I386,
DNBArchImplI386::Create,
DNBArchImplI386::GetRegisterSetInfo,
DNBArchImplI386::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
bool
DNBArchImplI386::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_eip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_esp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_ebp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_eflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint32 = ((uint32_t*)(&m_state.context.gpr))[reg];
return true;
}
break;
case e_regSetFPU:
if (CPUHasAVX() || FORCE_AVX_REGS)
{
switch (reg)
{
case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw)); return true;
case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw)); return true;
case fpu_ftw: value->value.uint8 = m_state.context.fpu.avx.__fpu_ftw; return true;
case fpu_fop: value->value.uint16 = m_state.context.fpu.avx.__fpu_fop; return true;
case fpu_ip: value->value.uint32 = m_state.context.fpu.avx.__fpu_ip; return true;
case fpu_cs: value->value.uint16 = m_state.context.fpu.avx.__fpu_cs; return true;
case fpu_dp: value->value.uint32 = m_state.context.fpu.avx.__fpu_dp; return true;
case fpu_ds: value->value.uint16 = m_state.context.fpu.avx.__fpu_ds; return true;
case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsr; return true;
case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsrmask; return true;
case fpu_stmm0: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg, 10); return true;
case fpu_stmm1: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg, 10); return true;
case fpu_stmm2: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg, 10); return true;
case fpu_stmm3: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg, 10); return true;
case fpu_stmm4: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg, 10); return true;
case fpu_stmm5: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg, 10); return true;
case fpu_stmm6: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg, 10); return true;
case fpu_stmm7: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg, 10); return true;
case fpu_xmm0: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg, 16); return true;
case fpu_xmm1: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg, 16); return true;
case fpu_xmm2: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg, 16); return true;
case fpu_xmm3: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg, 16); return true;
case fpu_xmm4: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg, 16); return true;
case fpu_xmm5: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg, 16); return true;
case fpu_xmm6: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg, 16); return true;
case fpu_xmm7: memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg, 16); return true;
#define MEMCPY_YMM(n) \
memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg, 16); \
memcpy((&value->value.uint8) + 16, m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg, 16);
case fpu_ymm0: MEMCPY_YMM(0); return true;
case fpu_ymm1: MEMCPY_YMM(1); return true;
case fpu_ymm2: MEMCPY_YMM(2); return true;
case fpu_ymm3: MEMCPY_YMM(3); return true;
case fpu_ymm4: MEMCPY_YMM(4); return true;
case fpu_ymm5: MEMCPY_YMM(5); return true;
case fpu_ymm6: MEMCPY_YMM(6); return true;
case fpu_ymm7: MEMCPY_YMM(7); return true;
#undef MEMCPY_YMM
}
}
else
{
switch (reg)
{
case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)); return true;
case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)); return true;
case fpu_ftw: value->value.uint8 = m_state.context.fpu.no_avx.__fpu_ftw; return true;
case fpu_fop: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_fop; return true;
case fpu_ip: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_ip; return true;
case fpu_cs: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_cs; return true;
case fpu_dp: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_dp; return true;
case fpu_ds: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_ds; return true;
case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsr; return true;
case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsrmask; return true;
case fpu_stmm0: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg, 10); return true;
case fpu_stmm1: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg, 10); return true;
case fpu_stmm2: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg, 10); return true;
case fpu_stmm3: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg, 10); return true;
case fpu_stmm4: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg, 10); return true;
case fpu_stmm5: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg, 10); return true;
case fpu_stmm6: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg, 10); return true;
case fpu_stmm7: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg, 10); return true;
case fpu_xmm0: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg, 16); return true;
case fpu_xmm1: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg, 16); return true;
case fpu_xmm2: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg, 16); return true;
case fpu_xmm3: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg, 16); return true;
case fpu_xmm4: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg, 16); return true;
case fpu_xmm5: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg, 16); return true;
case fpu_xmm6: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg, 16); return true;
case fpu_xmm7: memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg, 16); return true;
}
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
value->value.uint32 = (&m_state.context.exc.__trapno)[reg];
return true;
}
break;
}
}
return false;
}
bool
DNBArchImplI386::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_eip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_esp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_ebp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_eflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
((uint32_t*)(&m_state.context.gpr))[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetFPU:
if (CPUHasAVX() || FORCE_AVX_REGS)
{
switch (reg)
{
case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw)) = value->value.uint16; success = true; break;
case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw)) = value->value.uint16; success = true; break;
case fpu_ftw: m_state.context.fpu.avx.__fpu_ftw = value->value.uint8; success = true; break;
case fpu_fop: m_state.context.fpu.avx.__fpu_fop = value->value.uint16; success = true; break;
case fpu_ip: m_state.context.fpu.avx.__fpu_ip = value->value.uint32; success = true; break;
case fpu_cs: m_state.context.fpu.avx.__fpu_cs = value->value.uint16; success = true; break;
case fpu_dp: m_state.context.fpu.avx.__fpu_dp = value->value.uint32; success = true; break;
case fpu_ds: m_state.context.fpu.avx.__fpu_ds = value->value.uint16; success = true; break;
case fpu_mxcsr: m_state.context.fpu.avx.__fpu_mxcsr = value->value.uint32; success = true; break;
case fpu_mxcsrmask: m_state.context.fpu.avx.__fpu_mxcsrmask = value->value.uint32; success = true; break;
case fpu_stmm0: memcpy (m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm1: memcpy (m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm2: memcpy (m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm3: memcpy (m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm4: memcpy (m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm5: memcpy (m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm6: memcpy (m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm7: memcpy (m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_xmm0: memcpy(m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm1: memcpy(m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm2: memcpy(m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm3: memcpy(m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm4: memcpy(m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm5: memcpy(m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm6: memcpy(m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm7: memcpy(m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg, &value->value.uint8, 16); success = true; break;
#define MEMCPY_YMM(n) \
memcpy(m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg, &value->value.uint8, 16); \
memcpy(m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg, (&value->value.uint8) + 16, 16);
case fpu_ymm0: MEMCPY_YMM(0); return true;
case fpu_ymm1: MEMCPY_YMM(1); return true;
case fpu_ymm2: MEMCPY_YMM(2); return true;
case fpu_ymm3: MEMCPY_YMM(3); return true;
case fpu_ymm4: MEMCPY_YMM(4); return true;
case fpu_ymm5: MEMCPY_YMM(5); return true;
case fpu_ymm6: MEMCPY_YMM(6); return true;
case fpu_ymm7: MEMCPY_YMM(7); return true;
#undef MEMCPY_YMM
}
}
else
{
switch (reg)
{
case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)) = value->value.uint16; success = true; break;
case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)) = value->value.uint16; success = true; break;
case fpu_ftw: m_state.context.fpu.no_avx.__fpu_ftw = value->value.uint8; success = true; break;
case fpu_fop: m_state.context.fpu.no_avx.__fpu_fop = value->value.uint16; success = true; break;
case fpu_ip: m_state.context.fpu.no_avx.__fpu_ip = value->value.uint32; success = true; break;
case fpu_cs: m_state.context.fpu.no_avx.__fpu_cs = value->value.uint16; success = true; break;
case fpu_dp: m_state.context.fpu.no_avx.__fpu_dp = value->value.uint32; success = true; break;
case fpu_ds: m_state.context.fpu.no_avx.__fpu_ds = value->value.uint16; success = true; break;
case fpu_mxcsr: m_state.context.fpu.no_avx.__fpu_mxcsr = value->value.uint32; success = true; break;
case fpu_mxcsrmask: m_state.context.fpu.no_avx.__fpu_mxcsrmask = value->value.uint32; success = true; break;
case fpu_stmm0: memcpy (m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm1: memcpy (m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm2: memcpy (m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm3: memcpy (m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm4: memcpy (m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm5: memcpy (m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm6: memcpy (m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_stmm7: memcpy (m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg, &value->value.uint8, 10); success = true; break;
case fpu_xmm0: memcpy(m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm1: memcpy(m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm2: memcpy(m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm3: memcpy(m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm4: memcpy(m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm5: memcpy(m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm6: memcpy(m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg, &value->value.uint8, 16); success = true; break;
case fpu_xmm7: memcpy(m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg, &value->value.uint8, 16); success = true; break;
}
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
(&m_state.context.exc.__trapno)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
nub_size_t
DNBArchImplI386::GetRegisterContext (void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf && buf_len)
{
if (size > buf_len)
size = buf_len;
bool force = false;
kern_return_t kret;
if ((kret = GetGPRState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) error: GPR regs failed to read: %u ", buf, buf_len, kret);
size = 0;
}
else if ((kret = GetFPUState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) error: %s regs failed to read: %u", buf, buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
size = 0;
}
else if ((kret = GetEXCState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) error: EXC regs failed to read: %u", buf, buf_len, kret);
size = 0;
}
else
{
// Success
::memcpy (buf, &m_state.context, size);
}
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchImplI386::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
::memcpy (&m_state.context, buf, size);
kern_return_t kret;
if ((kret = SetGPRState()) != KERN_SUCCESS)
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) error: GPR regs failed to write: %u", buf, buf_len, kret);
if ((kret = SetFPUState()) != KERN_SUCCESS)
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) error: %s regs failed to write: %u", buf, buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
if ((kret = SetEXCState()) != KERN_SUCCESS)
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) error: EXP regs failed to write: %u", buf, buf_len, kret);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
return size;
}
kern_return_t
DNBArchImplI386::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) | GetFPUState(force) | GetEXCState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetFPU: return GetFPUState(force);
case e_regSetEXC: return GetEXCState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchImplI386::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
if (RegisterSetStateIsValid(set))
{
switch (set)
{
case e_regSetALL: return SetGPRState() | SetFPUState() | SetEXCState();
case e_regSetGPR: return SetGPRState();
case e_regSetFPU: return SetFPUState();
case e_regSetEXC: return SetEXCState();
default: break;
}
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchImplI386::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
#endif // #if defined (__i386__)