blob: bbb9967de236769d9e056671725e71c331fcec45 [file] [log] [blame]
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__arm__)
#include "MacOSX/arm/DNBArchImpl.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "DNB.h"
#include "ARM_GCC_Registers.h"
#include "ARM_DWARF_Registers.h"
#include <sys/sysctl.h>
// BCR address match type
#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
#define BCR_M_RESERVED ((uint32_t)(3u << 21))
// Link a BVR/BCR or WVR/WCR pair to another
#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
// Byte Address Select
#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
// Break only in priveleged or user mode
#define S_RSVD ((uint32_t)(0u << 1))
#define S_PRIV ((uint32_t)(1u << 1))
#define S_USER ((uint32_t)(2u << 1))
#define S_PRIV_USER ((S_PRIV) | (S_USER))
#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))
// Watchpoint load/store
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))
// Definitions for the Debug Status and Control Register fields:
// [5:2] => Method of debug entry
//#define WATCHPOINT_OCCURRED ((uint32_t)(2u))
// I'm seeing this, instead.
#define WATCHPOINT_OCCURRED ((uint32_t)(10u))
//#define DNB_ARCH_MACH_ARM_DEBUG_SW_STEP 1
static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
// ARM conditions
#define COND_EQ 0x0
#define COND_NE 0x1
#define COND_CS 0x2
#define COND_HS 0x2
#define COND_CC 0x3
#define COND_LO 0x3
#define COND_MI 0x4
#define COND_PL 0x5
#define COND_VS 0x6
#define COND_VC 0x7
#define COND_HI 0x8
#define COND_LS 0x9
#define COND_GE 0xA
#define COND_LT 0xB
#define COND_GT 0xC
#define COND_LE 0xD
#define COND_AL 0xE
#define COND_UNCOND 0xF
#define MASK_CPSR_T (1u << 5)
#define MASK_CPSR_J (1u << 24)
#define MNEMONIC_STRING_SIZE 32
#define OPERAND_STRING_SIZE 128
void
DNBArchMachARM::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_ARM,
DNBArchMachARM::Create,
DNBArchMachARM::GetRegisterSetInfo,
DNBArchMachARM::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
DNBArchProtocol *
DNBArchMachARM::Create (MachThread *thread)
{
DNBArchMachARM *obj = new DNBArchMachARM (thread);
// When new thread comes along, it tries to inherit from the global debug state, if it is valid.
if (Valid_Global_Debug_State)
{
obj->m_state.dbg = Global_Debug_State;
kern_return_t kret = obj->SetDBGState();
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM::Create() Inherit and SetDBGState() => 0x%8.8x.", kret);
}
return obj;
}
const uint8_t * const
DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
switch (byte_size)
{
case 2: return g_thumb_breakpooint_opcode;
case 4: return g_arm_breakpoint_opcode;
}
return NULL;
}
uint32_t
DNBArchMachARM::GetCPUType()
{
return CPU_TYPE_ARM;
}
uint64_t
DNBArchMachARM::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__pc;
return failValue;
}
kern_return_t
DNBArchMachARM::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__pc = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchMachARM::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__sp;
return failValue;
}
kern_return_t
DNBArchMachARM::GetGPRState(bool force)
{
int set = e_regSetGPR;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
uint32_t *r = &m_state.context.gpr.__r[0];
DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
m_thread->ThreadID(),
ARM_THREAD_STATE,
ARM_THREAD_STATE_COUNT,
kret,
count,
r[0],
r[1],
r[2],
r[3],
r[4],
r[5],
r[6],
r[7],
r[8],
r[9],
r[10],
r[11],
r[12],
r[13],
r[14],
r[15],
r[16]);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::GetVFPState(bool force)
{
int set = e_regSetVFP;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny (LOG_THREAD))
{
uint32_t *r = &m_state.context.vfp.__r[0];
DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
m_thread->ThreadID(),
ARM_THREAD_STATE,
ARM_THREAD_STATE_COUNT,
kret,
count);
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x s5=%8.8x s6=%8.8x s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
}
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::GetEXCState(bool force)
{
int set = e_regSetEXC;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
m_state.SetError(set, Read, kret);
return kret;
}
static void
DumpDBGState(const DNBArchMachARM::DBG& dbg)
{
uint32_t i = 0;
for (i=0; i<16; i++) {
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
i, i, dbg.__bvr[i], dbg.__bcr[i],
i, i, dbg.__wvr[i], dbg.__wcr[i]);
}
}
kern_return_t
DNBArchMachARM::GetDBGState(bool force)
{
int set = e_regSetDBG;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::SetGPRState()
{
int set = e_regSetGPR;
kern_return_t kret = ::thread_set_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetVFPState()
{
int set = e_regSetVFP;
kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetEXCState()
{
int set = e_regSetEXC;
kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetDBGState()
{
int set = e_regSetDBG;
kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
void
DNBArchMachARM::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
bool step_handled = false;
// This is the primary thread, let the arch do anything it needs
if (NumSupportedHardwareBreakpoints() > 0)
{
#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
bool half_step = m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS;
#endif
step_handled = EnableHardwareSingleStep(true) == KERN_SUCCESS;
#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
if (!half_step)
step_handled = false;
#endif
}
if (!step_handled)
{
SetSingleStepSoftwareBreakpoints();
}
}
// Disable the triggered watchpoint temporarily before we resume.
// Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
if (m_watchpoint_did_occur)
{
if (m_watchpoint_hw_index >= 0)
{
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
// The watchpoint might have been disabled by the user. We don't need to do anything at all
// to enable hardware single stepping.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
return;
}
DisableHardwareWatchpoint0(m_watchpoint_hw_index, true);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
m_watchpoint_hw_index);
// Enable hardware single step to move past the watchpoint-triggering instruction.
m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
// If we are not able to enable single step to move past the watchpoint-triggering instruction,
// at least we should reset the two watchpoint member variables so that the next time around
// this callback function is invoked, the enclosing logical branch is skipped.
if (!m_watchpoint_resume_single_step_enabled) {
// Reset the two watchpoint member variables.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
}
else
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
}
}
}
bool
DNBArchMachARM::ThreadDidStop()
{
bool success = true;
m_state.InvalidateRegisterSetState (e_regSetALL);
if (m_watchpoint_resume_single_step_enabled)
{
// Great! We now disable the hardware single step as well as re-enable the hardware watchpoint.
// See also ThreadWillResume().
if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
{
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
{
EnableHardwareWatchpoint0(m_watchpoint_hw_index, true);
m_watchpoint_resume_single_step_enabled = false;
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
}
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
}
}
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
// Hardware single step must work if we are going to test software
// single step functionality
assert(success);
if (m_hw_single_chained_step_addr == INVALID_NUB_ADDRESS && m_sw_single_step_next_pc != INVALID_NUB_ADDRESS)
{
uint32_t sw_step_next_pc = m_sw_single_step_next_pc & 0xFFFFFFFEu;
bool sw_step_next_pc_is_thumb = (m_sw_single_step_next_pc & 1) != 0;
bool actual_next_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0;
if (m_state.context.gpr.__pc != sw_step_next_pc)
{
DNBLogError("curr pc = 0x%8.8x - calculated single step target PC was incorrect: 0x%8.8x != 0x%8.8x", m_state.context.gpr.__pc, sw_step_next_pc, m_state.context.gpr.__pc);
exit(1);
}
if (actual_next_pc_is_thumb != sw_step_next_pc_is_thumb)
{
DNBLogError("curr pc = 0x%8.8x - calculated single step calculated mode mismatch: sw single mode = %s != %s",
m_state.context.gpr.__pc,
actual_next_pc_is_thumb ? "Thumb" : "ARM",
sw_step_next_pc_is_thumb ? "Thumb" : "ARM");
exit(1);
}
m_sw_single_step_next_pc = INVALID_NUB_ADDRESS;
}
#else
// Are we software single stepping?
if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count)
{
// Remove any software single stepping breakpoints that we have set
// Do we have a normal software single step breakpoint?
if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
{
DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id);
success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true);
m_sw_single_step_break_id = INVALID_NUB_BREAK_ID;
}
// Do we have any Thumb IT breakpoints?
if (m_sw_single_step_itblock_break_count > 0)
{
// See if we hit one of our Thumb IT breakpoints?
DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.context.gpr.__pc);
if (step_bp)
{
// We did hit our breakpoint, tell the breakpoint it was
// hit so that it can run its callback routine and fixup
// the PC.
DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID());
step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID());
}
// Remove all Thumb IT breakpoints
for (int i = 0; i < m_sw_single_step_itblock_break_count; i++)
{
if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
{
DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]);
success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true);
m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
}
}
m_sw_single_step_itblock_break_count = 0;
#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
// Decode instructions up to the current PC to ensure the internal decoder state is valid for the IT block
// The decoder has to decode each instruction in the IT block even if it is not executed so that
// the fields are correctly updated
DecodeITBlockInstructions(m_state.context.gpr.__pc);
#endif
}
}
else
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
#endif
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool
DNBArchMachARM::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
default:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
{
// exc_code = EXC_ARM_DA_DEBUG
//
// Check whether this corresponds to a watchpoint hit event.
// If yes, retrieve the exc_sub_code as the data break address.
if (!HasWatchpointOccurred())
break;
// The data break address is passed as exc_data[1].
nub_addr_t addr = exc.exc_data[1];
// Find the hardware index with the side effect of possibly massaging the
// addr to return the starting address as seen from the debugger side.
uint32_t hw_index = GetHardwareWatchpointHit(addr);
if (hw_index != INVALID_NUB_HW_INDEX)
{
m_watchpoint_did_occur = true;
m_watchpoint_hw_index = hw_index;
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
}
return false;
}
bool
DNBArchMachARM::StepNotComplete ()
{
if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
{
kern_return_t kret = KERN_INVALID_ARGUMENT;
kret = GetGPRState(false);
if (kret == KERN_SUCCESS)
{
if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
{
DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
return true;
}
}
}
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
return false;
}
#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
void
DNBArchMachARM::DecodeITBlockInstructions(nub_addr_t curr_pc)
{
uint16_t opcode16;
uint32_t opcode32;
nub_addr_t next_pc_in_itblock;
nub_addr_t pc_in_itblock = m_last_decode_pc;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
// Decode IT block instruction from the instruction following the m_last_decoded_instruction at
// PC m_last_decode_pc upto and including the instruction at curr_pc
if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
{
opcode32 = opcode16;
pc_in_itblock += 2;
// Check for 32 bit thumb opcode and read the upper 16 bits if needed
if (((opcode32 & 0xE000) == 0xE000) && opcode32 & 0x1800)
{
// Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
// a 32 bit Thumb opcode
// Read bits 31:16 of a 32 bit Thumb opcode
if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
{
pc_in_itblock += 2;
// 32 bit thumb opcode
opcode32 = (opcode32 << 16) | opcode16;
}
else
{
DNBLogError("%s: Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8llx", __FUNCTION__, (uint64_t)pc_in_itblock);
}
}
}
else
{
DNBLogError("%s: Error reading 16-bit Thumb instruction at pc=0x%8.8x", __FUNCTION__, pc_in_itblock);
}
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc_in_itblock=0x%8.8x, curr_pc=0x%8.8x", __FUNCTION__, pc_in_itblock, curr_pc);
next_pc_in_itblock = pc_in_itblock;
while (next_pc_in_itblock <= curr_pc)
{
arm_error_t decodeError;
m_last_decode_pc = pc_in_itblock;
decodeError = DecodeInstructionUsingDisassembler(pc_in_itblock, m_state.context.gpr.__cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc_in_itblock);
pc_in_itblock = next_pc_in_itblock;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: next_pc_in_itblock=0x%8.8x", __FUNCTION__, next_pc_in_itblock);
}
}
#endif
// Set the single step bit in the processor status register.
kern_return_t
DNBArchMachARM::EnableHardwareSingleStep (bool enable)
{
DNBError err;
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
err = GetGPRState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Error();
}
err = GetDBGState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
return err.Error();
}
const uint32_t i = 0;
if (enable)
{
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
// Save our previous state
m_dbg_save = m_state.dbg;
// Set a breakpoint that will stop when the PC doesn't match the current one!
m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu; // Set the current PC as the breakpoint address
m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
S_USER | // Stop only in user mode
BCR_ENABLE; // Enable this breakpoint
if (m_state.context.gpr.__cpsr & 0x20)
{
// Thumb breakpoint
if (m_state.context.gpr.__pc & 2)
m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
else
m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
uint16_t opcode;
if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
{
if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
{
// 32 bit thumb opcode...
if (m_state.context.gpr.__pc & 2)
{
// We can't take care of a 32 bit thumb instruction single step
// with just IVA mismatching. We will need to chain an extra
// hardware single step in order to complete this single step...
m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
}
else
{
// Extend the number of bits to ignore for the mismatch
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
}
}
}
}
else
{
// ARM breakpoint
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
}
DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
for (uint32_t j=i+1; j<16; ++j)
{
// Disable all others
m_state.dbg.__bvr[j] = 0;
m_state.dbg.__bcr[j] = 0;
}
}
else
{
// Just restore the state we had before we did single stepping
m_state.dbg = m_dbg_save;
}
return SetDBGState();
}
// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit)
{
return (value >> bit) & 1u;
}
// return the bitfield "value[msbit:lsbit]".
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
{
assert(msbit >= lsbit);
uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
value <<= shift_left; // shift anything above the msbit off of the unsigned edge
value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
return value; // return our result
}
bool
DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
{
uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
switch (condition) {
case COND_EQ: // (0x0)
if (cpsr_z == 1) return true;
break;
case COND_NE: // (0x1)
if (cpsr_z == 0) return true;
break;
case COND_CS: // (0x2)
if (cpsr_c == 1) return true;
break;
case COND_CC: // (0x3)
if (cpsr_c == 0) return true;
break;
case COND_MI: // (0x4)
if (cpsr_n == 1) return true;
break;
case COND_PL: // (0x5)
if (cpsr_n == 0) return true;
break;
case COND_VS: // (0x6)
if (cpsr_v == 1) return true;
break;
case COND_VC: // (0x7)
if (cpsr_v == 0) return true;
break;
case COND_HI: // (0x8)
if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
break;
case COND_LS: // (0x9)
if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
break;
case COND_GE: // (0xA)
if (cpsr_n == cpsr_v) return true;
break;
case COND_LT: // (0xB)
if (cpsr_n != cpsr_v) return true;
break;
case COND_GT: // (0xC)
if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
break;
case COND_LE: // (0xD)
if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
break;
default:
return true;
break;
}
return false;
}
#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
bool
DNBArchMachARM::ComputeNextPC(nub_addr_t currentPC, arm_decoded_instruction_t decodedInstruction, bool currentPCIsThumb, nub_addr_t *targetPC)
{
nub_addr_t myTargetPC, addressWherePCLives;
pid_t mypid;
uint32_t cpsr_c = bit(m_state.context.gpr.__cpsr, 29); // Carry condition code flag
uint32_t firstOperand=0, secondOperand=0, shiftAmount=0, secondOperandAfterShift=0, immediateValue=0;
uint32_t halfwords=0, baseAddress=0, immediateOffset=0, addressOffsetFromRegister=0, addressOffsetFromRegisterAfterShift;
uint32_t baseAddressIndex=INVALID_NUB_HW_INDEX;
uint32_t firstOperandIndex=INVALID_NUB_HW_INDEX;
uint32_t secondOperandIndex=INVALID_NUB_HW_INDEX;
uint32_t addressOffsetFromRegisterIndex=INVALID_NUB_HW_INDEX;
uint32_t shiftRegisterIndex=INVALID_NUB_HW_INDEX;
uint16_t registerList16, registerList16NoPC;
uint8_t registerList8;
uint32_t numRegistersToLoad=0;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: instruction->code=%d", __FUNCTION__, decodedInstruction.instruction->code);
// Get the following in this switch statement:
// - firstOperand, secondOperand, immediateValue, shiftAmount: For arithmetic, logical and move instructions
// - baseAddress, immediateOffset, shiftAmount: For LDR
// - numRegistersToLoad: For LDM and POP instructions
switch (decodedInstruction.instruction->code)
{
// Arithmetic operations that can change the PC
case ARM_INST_ADC:
case ARM_INST_ADCS:
case ARM_INST_ADD:
case ARM_INST_ADDS:
case ARM_INST_AND:
case ARM_INST_ANDS:
case ARM_INST_ASR:
case ARM_INST_ASRS:
case ARM_INST_BIC:
case ARM_INST_BICS:
case ARM_INST_EOR:
case ARM_INST_EORS:
case ARM_INST_ORR:
case ARM_INST_ORRS:
case ARM_INST_RSB:
case ARM_INST_RSBS:
case ARM_INST_RSC:
case ARM_INST_RSCS:
case ARM_INST_SBC:
case ARM_INST_SBCS:
case ARM_INST_SUB:
case ARM_INST_SUBS:
switch (decodedInstruction.addressMode)
{
case ARM_ADDR_DATA_IMM:
if (decodedInstruction.numOperands != 3)
{
DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get firstOperand register value (at index=1)
firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
firstOperand = m_state.context.gpr.__r[firstOperandIndex];
// Get immediateValue (at index=2)
immediateValue = decodedInstruction.op[2].value;
break;
case ARM_ADDR_DATA_REG:
if (decodedInstruction.numOperands != 3)
{
DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get firstOperand register value (at index=1)
firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
firstOperand = m_state.context.gpr.__r[firstOperandIndex];
// Get secondOperand register value (at index=2)
secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
break;
case ARM_ADDR_DATA_SCALED_IMM:
if (decodedInstruction.numOperands != 4)
{
DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get firstOperand register value (at index=1)
firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
firstOperand = m_state.context.gpr.__r[firstOperandIndex];
// Get secondOperand register value (at index=2)
secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
// Get shiftAmount as immediate value (at index=3)
shiftAmount = decodedInstruction.op[3].value;
break;
case ARM_ADDR_DATA_SCALED_REG:
if (decodedInstruction.numOperands != 4)
{
DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get firstOperand register value (at index=1)
firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
firstOperand = m_state.context.gpr.__r[firstOperandIndex];
// Get secondOperand register value (at index=2)
secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
// Get shiftAmount from register (at index=3)
shiftRegisterIndex = decodedInstruction.op[3].value; // second operand register index
shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex];
break;
case THUMB_ADDR_HR_HR:
if (decodedInstruction.numOperands != 2)
{
DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get firstOperand register value (at index=0)
firstOperandIndex = decodedInstruction.op[0].value; // first operand register index
firstOperand = m_state.context.gpr.__r[firstOperandIndex];
// Get secondOperand register value (at index=1)
secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
break;
default:
break;
}
break;
// Logical shifts and move operations that can change the PC
case ARM_INST_LSL:
case ARM_INST_LSLS:
case ARM_INST_LSR:
case ARM_INST_LSRS:
case ARM_INST_MOV:
case ARM_INST_MOVS:
case ARM_INST_MVN:
case ARM_INST_MVNS:
case ARM_INST_ROR:
case ARM_INST_RORS:
case ARM_INST_RRX:
case ARM_INST_RRXS:
// In these cases, the firstOperand is always 0, as if it does not exist
switch (decodedInstruction.addressMode)
{
case ARM_ADDR_DATA_IMM:
if (decodedInstruction.numOperands != 2)
{
DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get immediateValue (at index=1)
immediateValue = decodedInstruction.op[1].value;
break;
case ARM_ADDR_DATA_REG:
if (decodedInstruction.numOperands != 2)
{
DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get secondOperand register value (at index=1)
secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
break;
case ARM_ADDR_DATA_SCALED_IMM:
if (decodedInstruction.numOperands != 3)
{
DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get secondOperand register value (at index=1)
secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
// Get shiftAmount as immediate value (at index=2)
shiftAmount = decodedInstruction.op[2].value;
break;
case ARM_ADDR_DATA_SCALED_REG:
if (decodedInstruction.numOperands != 3)
{
DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get secondOperand register value (at index=1)
secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
// Get shiftAmount from register (at index=2)
shiftRegisterIndex = decodedInstruction.op[2].value; // second operand register index
shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex];
break;
case THUMB_ADDR_HR_HR:
if (decodedInstruction.numOperands != 2)
{
DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
if (decodedInstruction.op[0].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
// Get secondOperand register value (at index=1)
secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
secondOperand = m_state.context.gpr.__r[secondOperandIndex];
break;
default:
break;
}
break;
// Simple branches, used to hop around within a routine
case ARM_INST_B:
*targetPC = decodedInstruction.targetPC; // Known targetPC
return true;
break;
// Branch-and-link, used to call ARM subroutines
case ARM_INST_BL:
*targetPC = decodedInstruction.targetPC; // Known targetPC
return true;
break;
// Branch-and-link with exchange, used to call opposite-mode subroutines
case ARM_INST_BLX:
if ((decodedInstruction.addressMode == ARM_ADDR_BRANCH_IMM) ||
(decodedInstruction.addressMode == THUMB_ADDR_UNCOND))
{
*targetPC = decodedInstruction.targetPC; // Known targetPC
return true;
}
else // addressMode == ARM_ADDR_BRANCH_REG
{
// Unknown target unless we're branching to the PC itself,
// although this may not work properly with BLX
if (decodedInstruction.op[REG_RD].value == PC_REG)
{
// this should (almost) never happen
*targetPC = decodedInstruction.targetPC; // Known targetPC
return true;
}
// Get the branch address and return
if (decodedInstruction.numOperands != 1)
{
DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
// Get branch address in register (at index=0)
*targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value];
return true;
}
break;
// Branch with exchange, used to hop to opposite-mode code
// Branch to Jazelle code, used to execute Java; included here since it
// acts just like BX unless the Jazelle unit is active and JPC is
// already loaded into it.
case ARM_INST_BX:
case ARM_INST_BXJ:
// Unknown target unless we're branching to the PC itself,
// although this can never switch to Thumb mode and is
// therefore pretty much useless
if (decodedInstruction.op[REG_RD].value == PC_REG)
{
// this should (almost) never happen
*targetPC = decodedInstruction.targetPC; // Known targetPC
return true;
}
// Get the branch address and return
if (decodedInstruction.numOperands != 1)
{
DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
// Get branch address in register (at index=0)
*targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value];
return true;
break;
// Compare and branch on zero/non-zero (Thumb-16 only)
// Unusual condition check built into the instruction
case ARM_INST_CBZ:
case ARM_INST_CBNZ:
// Branch address is known at compile time
// Get the branch address and return
if (decodedInstruction.numOperands != 2)
{
DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
// Get branch address as an immediate value (at index=1)
*targetPC = decodedInstruction.op[1].value;
return true;
break;
// Load register can be used to load PC, usually with a function pointer
case ARM_INST_LDR:
if (decodedInstruction.op[REG_RD].value != PC_REG)
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
switch (decodedInstruction.addressMode)
{
case ARM_ADDR_LSWUB_IMM:
case ARM_ADDR_LSWUB_IMM_PRE:
case ARM_ADDR_LSWUB_IMM_POST:
if (decodedInstruction.numOperands != 3)
{
DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
// Get baseAddress from register (at index=1)
baseAddressIndex = decodedInstruction.op[1].value;
baseAddress = m_state.context.gpr.__r[baseAddressIndex];
// Get immediateOffset (at index=2)
immediateOffset = decodedInstruction.op[2].value;
break;
case ARM_ADDR_LSWUB_REG:
case ARM_ADDR_LSWUB_REG_PRE:
case ARM_ADDR_LSWUB_REG_POST:
if (decodedInstruction.numOperands != 3)
{
DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
// Get baseAddress from register (at index=1)
baseAddressIndex = decodedInstruction.op[1].value;
baseAddress = m_state.context.gpr.__r[baseAddressIndex];
// Get immediateOffset from register (at index=2)
addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
break;
case ARM_ADDR_LSWUB_SCALED:
case ARM_ADDR_LSWUB_SCALED_PRE:
case ARM_ADDR_LSWUB_SCALED_POST:
if (decodedInstruction.numOperands != 4)
{
DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
// Get baseAddress from register (at index=1)
baseAddressIndex = decodedInstruction.op[1].value;
baseAddress = m_state.context.gpr.__r[baseAddressIndex];
// Get immediateOffset from register (at index=2)
addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
// Get shiftAmount (at index=3)
shiftAmount = decodedInstruction.op[3].value;
break;
default:
break;
}
break;
// 32b load multiple operations can load the PC along with everything else,
// usually to return from a function call
case ARM_INST_LDMDA:
case ARM_INST_LDMDB:
case ARM_INST_LDMIA:
case ARM_INST_LDMIB:
if (decodedInstruction.op[LDM_REGLIST].value & PC_REGLIST_BIT)
{
if (decodedInstruction.numOperands != 2)
{
DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
return false;
}
// Get baseAddress from register (at index=0)
baseAddressIndex = decodedInstruction.op[0].value;
baseAddress = m_state.context.gpr.__r[baseAddressIndex];
// Get registerList from register (at index=1)
registerList16 = (uint16_t)decodedInstruction.op[1].value;
// Count number of registers to load in the multiple register list excluding the PC
registerList16NoPC = registerList16&0x3FFF; // exclude the PC
numRegistersToLoad=0;
for (int i = 0; i < 16; i++)
{
if (registerList16NoPC & 0x1) numRegistersToLoad++;
registerList16NoPC = registerList16NoPC >> 1;
}
}
else
{
DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
return false;
}
break;
// Normal 16-bit LD multiple can't touch R15, but POP can
case ARM_INST_POP: // Can also get the PC & updates SP
// Get baseAddress from SP (at index=0)
baseAddress = m_state.context.gpr.__sp;
if (decodedInstruction.thumb16b)
{
// Get registerList from register (at index=0)
registerList8 = (uint8_t)decodedInstruction.op[0].value;
// Count number of registers to load in the multiple register list
numRegistersToLoad=0;
for (int i = 0; i < 8; i++)
{
if (registerList8 & 0x1) numRegistersToLoad++;
registerList8 = registerList8 >> 1;
}
}
else
{
// Get registerList from register (at index=0)
registerList16 = (uint16_t)decodedInstruction.op[0].value;
// Count number of registers to load in the multiple register list excluding the PC
registerList16NoPC = registerList16&0x3FFF; // exclude the PC
numRegistersToLoad=0;
for (int i = 0; i < 16; i++)
{
if (registerList16NoPC & 0x1) numRegistersToLoad++;
registerList16NoPC = registerList16NoPC >> 1;
}
}
break;
// 16b TBB and TBH instructions load a jump address from a table
case ARM_INST_TBB:
case ARM_INST_TBH:
// Get baseAddress from register (at index=0)
baseAddressIndex = decodedInstruction.op[0].value;
baseAddress = m_state.context.gpr.__r[baseAddressIndex];
// Get immediateOffset from register (at index=1)
addressOffsetFromRegisterIndex = decodedInstruction.op[1].value;
addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
break;
// ThumbEE branch-to-handler instructions: Jump to handlers at some offset
// from a special base pointer register (which is unknown at disassembly time)
case ARM_INST_HB:
case ARM_INST_HBP:
// TODO: ARM_INST_HB, ARM_INST_HBP
break;
case ARM_INST_HBL:
case ARM_INST_HBLP:
// TODO: ARM_INST_HBL, ARM_INST_HBLP
break;
// Breakpoint and software interrupt jump to interrupt handler (always ARM)
case ARM_INST_BKPT:
case ARM_INST_SMC:
case ARM_INST_SVC:
// Return from exception, obviously modifies PC [interrupt only!]
case ARM_INST_RFEDA:
case ARM_INST_RFEDB:
case ARM_INST_RFEIA:
case ARM_INST_RFEIB:
// Other instructions either can't change R15 or are "undefined" if you do,
// so no sane compiler should ever generate them & we don't care here.
// Also, R15 can only legally be used in a read-only manner for the
// various ARM addressing mode (to get PC-relative addressing of constants),
// but can NOT be used with any of the update modes.
default:
DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
return false;
break;
}
// Adjust PC if PC is one of the input operands
if (baseAddressIndex == PC_REG)
{
if (currentPCIsThumb)
baseAddress += 4;
else
baseAddress += 8;
}
if (firstOperandIndex == PC_REG)
{
if (currentPCIsThumb)
firstOperand += 4;
else
firstOperand += 8;
}
if (secondOperandIndex == PC_REG)
{
if (currentPCIsThumb)
secondOperand += 4;
else
secondOperand += 8;
}
if (addressOffsetFromRegisterIndex == PC_REG)
{
if (currentPCIsThumb)
addressOffsetFromRegister += 4;
else
addressOffsetFromRegister += 8;
}
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
"%s: firstOperand=%8.8x, secondOperand=%8.8x, immediateValue = %d, shiftAmount = %d, baseAddress = %8.8x, addressOffsetFromRegister = %8.8x, immediateOffset = %d, numRegistersToLoad = %d",
__FUNCTION__,
firstOperand,
secondOperand,
immediateValue,
shiftAmount,
baseAddress,
addressOffsetFromRegister,
immediateOffset,
numRegistersToLoad);
// Calculate following values after applying shiftAmount:
// - immediateOffsetAfterShift, secondOperandAfterShift
switch (decodedInstruction.scaleMode)
{
case ARM_SCALE_NONE:
addressOffsetFromRegisterAfterShift = addressOffsetFromRegister;
secondOperandAfterShift = secondOperand;
break;
case ARM_SCALE_LSL: // Logical shift left
addressOffsetFromRegisterAfterShift = addressOffsetFromRegister << shiftAmount;
secondOperandAfterShift = secondOperand << shiftAmount;
break;
case ARM_SCALE_LSR: // Logical shift right
addressOffsetFromRegisterAfterShift = addressOffsetFromRegister >> shiftAmount;
secondOperandAfterShift = secondOperand >> shiftAmount;
break;
case ARM_SCALE_ASR: // Arithmetic shift right
asm("mov %0, %1, asr %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
asm("mov %0, %1, asr %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
break;
case ARM_SCALE_ROR: // Rotate right
asm("mov %0, %1, ror %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
asm("mov %0, %1, ror %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
break;
case ARM_SCALE_RRX: // Rotate right, pulling in carry (1-bit shift only)
asm("mov %0, %1, rrx" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister));
asm("mov %0, %1, rrx" : "=r" (secondOperandAfterShift) : "r" (secondOperand));
break;
}
// Emulate instruction to calculate targetPC
// All branches are already handled in the first switch statement. A branch should not reach this switch
switch (decodedInstruction.instruction->code)
{
// Arithmetic operations that can change the PC
case ARM_INST_ADC:
case ARM_INST_ADCS:
// Add with Carry
*targetPC = firstOperand + (secondOperandAfterShift + immediateValue) + cpsr_c;
break;
case ARM_INST_ADD:
case ARM_INST_ADDS:
*targetPC = firstOperand + (secondOperandAfterShift + immediateValue);
break;
case ARM_INST_AND:
case ARM_INST_ANDS:
*targetPC = firstOperand & (secondOperandAfterShift + immediateValue);
break;
case ARM_INST_ASR:
case ARM_INST_ASRS:
asm("mov %0, %1, asr %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
*targetPC = myTargetPC;
break;
case ARM_INST_BIC:
case ARM_INST_BICS:
asm("bic %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
*targetPC = myTargetPC;
break;
case ARM_INST_EOR:
case ARM_INST_EORS:
asm("eor %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
*targetPC = myTargetPC;
break;
case ARM_INST_ORR:
case ARM_INST_ORRS:
asm("orr %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
*targetPC = myTargetPC;
break;
case ARM_INST_RSB:
case ARM_INST_RSBS:
asm("rsb %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
*targetPC = myTargetPC;
break;
case ARM_INST_RSC:
case ARM_INST_RSCS:
myTargetPC = secondOperandAfterShift - (firstOperand + !cpsr_c);
*targetPC = myTargetPC;
break;
case ARM_INST_SBC:
case ARM_INST_SBCS:
asm("sbc %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue + !cpsr_c));
*targetPC = myTargetPC;
break;
case ARM_INST_SUB:
case ARM_INST_SUBS:
asm("sub %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
*targetPC = myTargetPC;
break;
// Logical shifts and move operations that can change the PC
case ARM_INST_LSL:
case ARM_INST_LSLS:
case ARM_INST_LSR:
case ARM_INST_LSRS:
case ARM_INST_MOV:
case ARM_INST_MOVS:
case ARM_INST_ROR:
case ARM_INST_RORS:
case ARM_INST_RRX:
case ARM_INST_RRXS:
myTargetPC = secondOperandAfterShift + immediateValue;
*targetPC = myTargetPC;
break;
case ARM_INST_MVN:
case ARM_INST_MVNS:
myTargetPC = !(secondOperandAfterShift + immediateValue);
*targetPC = myTargetPC;
break;
// Load register can be used to load PC, usually with a function pointer
case ARM_INST_LDR:
switch (decodedInstruction.addressMode) {
case ARM_ADDR_LSWUB_IMM_POST:
case ARM_ADDR_LSWUB_REG_POST:
case ARM_ADDR_LSWUB_SCALED_POST:
addressWherePCLives = baseAddress;
break;
case ARM_ADDR_LSWUB_IMM:
case ARM_ADDR_LSWUB_REG:
case ARM_ADDR_LSWUB_SCALED:
case ARM_ADDR_LSWUB_IMM_PRE:
case ARM_ADDR_LSWUB_REG_PRE:
case ARM_ADDR_LSWUB_SCALED_PRE:
addressWherePCLives = baseAddress + (addressOffsetFromRegisterAfterShift + immediateOffset);
break;
default:
break;
}
mypid = m_thread->ProcessID();
if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
{
DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
return false;
}
*targetPC = myTargetPC;
break;
// 32b load multiple operations can load the PC along with everything else,
// usually to return from a function call
case ARM_INST_LDMDA:
mypid = m_thread->ProcessID();
addressWherePCLives = baseAddress;
if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
{
DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
return false;
}
*targetPC = myTargetPC;
break;
case ARM_INST_LDMDB:
mypid = m_thread->ProcessID();
addressWherePCLives = baseAddress - 4;
if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
{
DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
return false;
}
*targetPC = myTargetPC;
break;
case ARM_INST_LDMIB:
mypid = m_thread->ProcessID();
addressWherePCLives = baseAddress + numRegistersToLoad*4 + 4;
if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
{
DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
return false;
}
*targetPC = myTargetPC;
break;
case ARM_INST_LDMIA: // same as pop
// Normal 16-bit LD multiple can't touch R15, but POP can
case ARM_INST_POP: // Can also get the PC & updates SP
mypid = m_thread->ProcessID();
addressWherePCLives = baseAddress + numRegistersToLoad*4;
if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) != sizeof(nub_addr_t))
{
DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
return false;
}
*targetPC = myTargetPC;
break;
// 16b TBB and TBH instructions load a jump address from a table
case ARM_INST_TBB:
mypid = m_thread->ProcessID();
addressWherePCLives = baseAddress + addressOffsetFromRegisterAfterShift;
if (DNBProcessMemoryRead(mypid, addressWherePCLives, 1, &halfwords) != 1)
{
DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBB instruction!", addressWherePCLives);
return false;
}
// add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
*targetPC = (currentPC + 4) + 2*halfwords;
break;
case ARM_INST_TBH:
mypid = m_thread->ProcessID();
addressWherePCLives = ((baseAddress + (addressOffsetFromRegisterAfterShift << 1)) & ~0x1);
if (DNBProcessMemoryRead(mypid, addressWherePCLives, 2, &halfwords) != 2)
{
DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBH instruction!", addressWherePCLives);
return false;
}
// add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
*targetPC = (currentPC + 4) + 2*halfwords;
break;
// ThumbEE branch-to-handler instructions: Jump to handlers at some offset
// from a special base pointer register (which is unknown at disassembly time)
case ARM_INST_HB:
case ARM_INST_HBP:
// TODO: ARM_INST_HB, ARM_INST_HBP
break;
case ARM_INST_HBL:
case ARM_INST_HBLP:
// TODO: ARM_INST_HBL, ARM_INST_HBLP
break;
// Breakpoint and software interrupt jump to interrupt handler (always ARM)
case ARM_INST_BKPT:
case ARM_INST_SMC:
case ARM_INST_SVC:
// TODO: ARM_INST_BKPT, ARM_INST_SMC, ARM_INST_SVC
break;
// Return from exception, obviously modifies PC [interrupt only!]
case ARM_INST_RFEDA:
case ARM_INST_RFEDB:
case ARM_INST_RFEIA:
case ARM_INST_RFEIB:
// TODO: ARM_INST_RFEDA, ARM_INST_RFEDB, ARM_INST_RFEIA, ARM_INST_RFEIB
break;
// Other instructions either can't change R15 or are "undefined" if you do,
// so no sane compiler should ever generate them & we don't care here.
// Also, R15 can only legally be used in a read-only manner for the
// various ARM addressing mode (to get PC-relative addressing of constants),
// but can NOT be used with any of the update modes.
default:
DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
return false;
break;
}
return true;
}
void
DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC, uint32_t cpsr, bool currentPCIsThumb, nub_addr_t *nextPC, bool *nextPCIsThumb)
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup() called");
nub_addr_t targetPC = INVALID_NUB_ADDRESS;
uint32_t registerValue;
arm_error_t decodeError;
nub_addr_t currentPCInITBlock, nextPCInITBlock;
int i;
bool last_decoded_instruction_executes = true;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: default nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
// Update *nextPC and *nextPCIsThumb for special cases
if (m_last_decode_thumb.itBlockRemaining) // we are in an IT block
{
// Set the nextPC to the PC of the instruction which will execute in the IT block
// If none of the instruction execute in the IT block based on the condition flags,
// then point to the instruction immediately following the IT block
const int itBlockRemaining = m_last_decode_thumb.itBlockRemaining;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%8.8x", __FUNCTION__, itBlockRemaining);
// Determine the PC at which the next instruction resides
if (m_last_decode_arm.thumb16b)
currentPCInITBlock = currentPC + 2;
else
currentPCInITBlock = currentPC + 4;
for (i = 0; i < itBlockRemaining; i++)
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: currentPCInITBlock=%8.8x", __FUNCTION__, currentPCInITBlock);
decodeError = DecodeInstructionUsingDisassembler(currentPCInITBlock, cpsr, &m_last_decode_arm, &m_last_decode_thumb, &nextPCInITBlock);
if (decodeError != ARM_SUCCESS)
DNBLogError("unable to disassemble instruction at 0x%8.8llx", (uint64_t)currentPCInITBlock);
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: condition=%d", __FUNCTION__, m_last_decode_arm.condition);
if (ConditionPassed(m_last_decode_arm.condition, cpsr))
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes matched for instruction %d", __FUNCTION__, i);
break; // break from the for loop
}
else
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes DID NOT matched for instruction %d", __FUNCTION__, i);
}
// update currentPC and nextPCInITBlock
currentPCInITBlock = nextPCInITBlock;
}
if (i == itBlockRemaining) // We came out of the IT block without executing any instructions
last_decoded_instruction_executes = false;
*nextPC = currentPCInITBlock;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: After IT block step-through: *nextPC=%8.8x", __FUNCTION__, *nextPC);
}
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
"%s: cpsr = %8.8x, thumb16b = %d, thumb = %d, branch = %d, conditional = %d, knownTarget = %d, links = %d, canSwitchMode = %d, doesSwitchMode = %d",
__FUNCTION__,
cpsr,
m_last_decode_arm.thumb16b,
m_last_decode_arm.thumb,
m_last_decode_arm.branch,
m_last_decode_arm.conditional,
m_last_decode_arm.knownTarget,
m_last_decode_arm.links,
m_last_decode_arm.canSwitchMode,
m_last_decode_arm.doesSwitchMode);
if (last_decoded_instruction_executes && // Was this a conditional instruction that did execute?
m_last_decode_arm.branch && // Can this instruction change the PC?
(m_last_decode_arm.instruction->code != ARM_INST_SVC)) // If this instruction is not an SVC instruction
{
// Set targetPC. Compute if needed.
if (m_last_decode_arm.knownTarget)
{
// Fixed, known PC-relative
targetPC = m_last_decode_arm.targetPC;
}
else
{
// if targetPC is not known at compile time (PC-relative target), compute targetPC
if (!ComputeNextPC(currentPC, m_last_decode_arm, currentPCIsThumb, &targetPC))
{
DNBLogError("%s: Unable to compute targetPC for instruction at 0x%8.8llx", __FUNCTION__, (uint64_t)currentPC);
targetPC = INVALID_NUB_ADDRESS;
}
}
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: targetPC=0x%8.8x, cpsr=0x%8.8x, condition=0x%hhx", __FUNCTION__, targetPC, cpsr, m_last_decode_arm.condition);
// Refine nextPC computation
if ((m_last_decode_arm.instruction->code == ARM_INST_CBZ) ||
(m_last_decode_arm.instruction->code == ARM_INST_CBNZ))
{
// Compare and branch on zero/non-zero (Thumb-16 only)
// Unusual condition check built into the instruction
registerValue = m_state.context.gpr.__r[m_last_decode_arm.op[REG_RD].value];
if (m_last_decode_arm.instruction->code == ARM_INST_CBZ)
{
if (registerValue == 0)
*nextPC = targetPC;
}
else
{
if (registerValue != 0)
*nextPC = targetPC;
}
}
else if (m_last_decode_arm.conditional) // Is the change conditional on flag results?
{
if (ConditionPassed(m_last_decode_arm.condition, cpsr)) // conditions match
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition matched!", __FUNCTION__);
*nextPC = targetPC;
}
else
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition did not match!", __FUNCTION__);
}
}
else
{
*nextPC = targetPC;
}
// Refine nextPCIsThumb computation
if (m_last_decode_arm.doesSwitchMode)
{
*nextPCIsThumb = !currentPCIsThumb;
}
else if (m_last_decode_arm.canSwitchMode)
{
// Legal to switch ARM <--> Thumb mode with this branch
// dependent on bit[0] of targetPC
*nextPCIsThumb = (*nextPC & 1u) != 0;
}
else
{
*nextPCIsThumb = currentPCIsThumb;
}
}
DNBLogThreadedIf(LOG_STEP, "%s: calculated nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
}
arm_error_t
DNBArchMachARM::DecodeInstructionUsingDisassembler(nub_addr_t curr_pc, uint32_t curr_cpsr, arm_decoded_instruction_t *decodedInstruction, thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc)
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc=0x%8.8x, cpsr=0x%8.8x", __FUNCTION__, curr_pc, curr_cpsr);
const uint32_t isetstate_mask = MASK_CPSR_T | MASK_CPSR_J;
const uint32_t curr_isetstate = curr_cpsr & isetstate_mask;
uint32_t opcode32;
nub_addr_t nextPC = curr_pc;
arm_error_t decodeReturnCode = ARM_SUCCESS;
m_last_decode_pc = curr_pc;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
switch (curr_isetstate) {
case 0x0: // ARM Instruction
// Read the ARM opcode
if (m_thread->Process()->Task().ReadMemory(curr_pc, 4, &opcode32) != 4)
{
DNBLogError("unable to read opcode bits 31:0 for an ARM opcode at 0x%8.8llx", (uint64_t)curr_pc);
decodeReturnCode = ARM_ERROR;
}
else
{
nextPC += 4;
decodeReturnCode = ArmDisassembler((uint64_t)curr_pc, opcode32, false, decodedInstruction, NULL, 0, NULL, 0);
if (decodeReturnCode != ARM_SUCCESS)
DNBLogError("Unable to decode ARM instruction 0x%8.8x at 0x%8.8llx", opcode32, (uint64_t)curr_pc);
}
break;
case 0x20: // Thumb Instruction
uint16_t opcode16;
// Read the a 16 bit Thumb opcode
if (m_thread->Process()->Task().ReadMemory(curr_pc, 2, &opcode16) != 2)
{
DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8llx", (uint64_t)curr_pc);
decodeReturnCode = ARM_ERROR;
}
else
{
nextPC += 2;
opcode32 = opcode16;
decodeReturnCode = ThumbDisassembler((uint64_t)curr_pc, opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
switch (decodeReturnCode) {
case ARM_SKIP:
// 32 bit thumb opcode
nextPC += 2;
if (m_thread->Process()->Task().ReadMemory(curr_pc+2, 2, &opcode16) != 2)
{
DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8llx", (uint64_t)curr_pc+2);
}
else
{
opcode32 = (opcode32 << 16) | opcode16;
decodeReturnCode = ThumbDisassembler((uint64_t)(curr_pc+2), opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
if (decodeReturnCode != ARM_SUCCESS)
DNBLogError("Unable to decode 2nd half of Thumb instruction 0x%8.4hx at 0x%8.8llx", opcode16, (uint64_t)curr_pc+2);
break;
}
break;
case ARM_SUCCESS:
// 16 bit thumb opcode; at this point we are done decoding the opcode
break;
default:
DNBLogError("Unable to decode Thumb instruction 0x%8.4hx at 0x%8.8llx", opcode16, (uint64_t)curr_pc);
decodeReturnCode = ARM_ERROR;
break;
}
}
break;
default:
break;
}
if (next_pc)
*next_pc = nextPC;
return decodeReturnCode;
}
#endif
nub_bool_t
DNBArchMachARM::BreakpointHit (nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton)
{
nub_addr_t bkpt_pc = (nub_addr_t)baton;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc);
DNBRegisterValue pc_value;
DNBThreadGetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
pc_value.value.uint32 = bkpt_pc;
return DNBThreadSetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchMachARM::SetSingleStepSoftwareBreakpoints()
{
DNBError err;
#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
err = GetGPRState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Error();
}
nub_addr_t curr_pc = m_state.context.gpr.__pc;
uint32_t curr_cpsr = m_state.context.gpr.__cpsr;
nub_addr_t next_pc = curr_pc;
bool curr_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0;
bool next_pc_is_thumb = curr_pc_is_thumb;
uint32_t curr_itstate = ((curr_cpsr & 0x6000000) >> 25) | ((curr_cpsr & 0xFC00) >> 8);
bool inITBlock = (curr_itstate & 0xF) ? 1 : 0;
bool lastInITBlock = ((curr_itstate & 0xF) == 0x8) ? 1 : 0;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: curr_pc=0x%8.8x (%s), curr_itstate=0x%x, inITBlock=%d, lastInITBlock=%d", __FUNCTION__, curr_pc, curr_pc_is_thumb ? "Thumb" : "ARM", curr_itstate, inITBlock, lastInITBlock);
// If the instruction is not in the IT block, then decode using the Disassembler and compute next_pc
if (!inITBlock)
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Decoding an instruction NOT in the IT block", __FUNCTION__);
arm_error_t decodeReturnCode = DecodeInstructionUsingDisassembler(curr_pc, curr_cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc);
if (decodeReturnCode != ARM_SUCCESS)
{
err = KERN_INVALID_ARGUMENT;
DNBLogError("DNBArchMachARM::SetSingleStepSoftwareBreakpoints: Unable to disassemble instruction at 0x%8.8llx", (uint64_t)curr_pc);
}
}
else
{
next_pc = curr_pc + ((m_last_decode_arm.thumb16b) ? 2 : 4);
}
// Instruction is NOT in the IT block OR
if (!inITBlock)
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: normal instruction", __FUNCTION__);
EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
}
else if (inITBlock && !m_last_decode_arm.setsFlags)
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that doesn't set flags", __FUNCTION__);
EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
}
else if (lastInITBlock && m_last_decode_arm.branch)
{
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction which last in the IT block and is a branch", __FUNCTION__);
EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
}
else
{
// Instruction is in IT block and can modify the CPSR flags
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that sets flags", __FUNCTION__);
// NOTE: When this point of code is reached, the instruction at curr_pc has already been decoded
// inside the function ThreadDidStop(). Therefore m_last_decode_arm, m_last_decode_thumb
// reflect the decoded instruction at curr_pc
// If we find an instruction inside the IT block which will set/modify the condition flags (NZCV bits in CPSR),
// we set breakpoints at all remaining instructions inside the IT block starting from the instruction immediately
// following this one AND a breakpoint at the instruction immediately following the IT block. We do this because
// we cannot determine the next_pc until the instruction at which we are currently stopped executes. Hence we
// insert (m_last_decode_thumb.itBlockRemaining+1) 16-bit Thumb breakpoints at consecutive memory locations
// starting at addrOfNextInstructionInITBlock. We record these breakpoints in class variable m_sw_single_step_itblock_break_id[],
// and also record the total number of IT breakpoints set in the variable 'm_sw_single_step_itblock_break_count'.
// The instructions inside the IT block, which are replaced by the 16-bit Thumb breakpoints (opcode=0xDEFE)
// instructions, can be either Thumb-16 or Thumb-32. When a Thumb-32 instruction (say, inst#1) is replaced Thumb
// by a 16-bit breakpoint (OS only supports 16-bit breakpoints in Thumb mode and 32-bit breakpoints in ARM mode), the
// breakpoint for the next instruction (say instr#2) is saved in the upper half of this Thumb-32 (instr#1)
// instruction. Hence if the execution stops at Breakpoint2 corresponding to instr#2, the PC is offset by 16-bits.
// We therefore have to keep track of PC of each instruction in the IT block that is being replaced with the 16-bit
// Thumb breakpoint, to ensure that when the breakpoint is hit, the PC is adjusted to the correct value. We save
// the actual PC corresponding to each instruction in the IT block by associating a call back with each breakpoint
// we set and passing it as a baton. When the breakpoint hits and the callback routine is called, the routine
// adjusts the PC based on the baton that is passed to it.
nub_addr_t addrOfNextInstructionInITBlock, pcInITBlock, nextPCInITBlock, bpAddressInITBlock;
uint16_t opcode16;
uint32_t opcode32;
addrOfNextInstructionInITBlock = (m_last_decode_arm.thumb16b) ? curr_pc + 2 : curr_pc + 4;
pcInITBlock = addrOfNextInstructionInITBlock;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%d", __FUNCTION__, m_last_decode_thumb.itBlockRemaining);
m_sw_single_step_itblock_break_count = 0;
for (int i = 0; i <= m_last_decode_thumb.itBlockRemaining; i++)
{
if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
{
DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Array m_sw_single_step_itblock_break_id should not contain any valid breakpoint IDs at this point. But found a valid breakID=%d at index=%d", m_sw_single_step_itblock_break_id[i], i);
}
else
{
nextPCInITBlock = pcInITBlock;
// Compute nextPCInITBlock based on opcode present at pcInITBlock
if (m_thread->Process()->Task().ReadMemory(pcInITBlock, 2, &opcode16) == 2)
{
opcode32 = opcode16;
nextPCInITBlock += 2;
// Check for 32 bit thumb opcode and read the upper 16 bits if needed
if (((opcode32 & 0xE000) == 0xE000) && (opcode32 & 0x1800))
{
// Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
// a 32 bit Thumb opcode
// Read bits 31:16 of a 32 bit Thumb opcode
if (m_thread->Process()->Task().ReadMemory(pcInITBlock+2, 2, &opcode16) == 2)
{
// 32 bit thumb opcode
opcode32 = (opcode32 << 16) | opcode16;
nextPCInITBlock += 2;
}
else
{
DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8llx", (uint64_t)nextPCInITBlock);
}
}
}
else
{
DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Error reading 16-bit Thumb instruction at pc=0x%8.8x", nextPCInITBlock);
}
// Set breakpoint and associate a callback function with it
bpAddressInITBlock = addrOfNextInstructionInITBlock + 2*i;
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Setting IT breakpoint[%d] at address: 0x%8.8x", __FUNCTION__, i, bpAddressInITBlock);
m_sw_single_step_itblock_break_id[i] = m_thread->Process()->CreateBreakpoint(bpAddressInITBlock, 2, false, m_thread->ThreadID());
if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
err = KERN_INVALID_ARGUMENT;
else
{
DNBLogThreadedIf(LOG_STEP, "%s: Set IT breakpoint[%i]=%d set at 0x%8.8x for instruction at 0x%8.8x", __FUNCTION__, i, m_sw_single_step_itblock_break_id[i], bpAddressInITBlock, pcInITBlock);
// Set the breakpoint callback for these special IT breakpoints
// so that if one of these breakpoints gets hit, it knows to
// update the PC to the original address of the conditional
// IT instruction.
DNBBreakpointSetCallback(m_thread->ProcessID(), m_sw_single_step_itblock_break_id[i], DNBArchMachARM::BreakpointHit, (void*)pcInITBlock);
m_sw_single_step_itblock_break_count++;
}
}
pcInITBlock = nextPCInITBlock;
}
DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Set %u IT software single breakpoints.", __FUNCTION__, m_sw_single_step_itblock_break_count);
}
DNBLogThreadedIf(LOG_STEP, "%s: next_pc=0x%8.8x (%s)", __FUNCTION__, next_pc, next_pc_is_thumb ? "Thumb" : "ARM");
if (next_pc & 0x1)
{
assert(next_pc_is_thumb);
}
if (next_pc_is_thumb)
{
next_pc &= ~0x1;
}
else
{
assert((next_pc & 0x3) == 0);
}
if (!inITBlock || (inITBlock && !m_last_decode_arm.setsFlags) || (lastInITBlock && m_last_decode_arm.branch))
{
err = KERN_SUCCESS;
#if defined DNB_ARCH_MACH_ARM_DEBUG_SW_STEP
m_sw_single_step_next_pc = next_pc;
if (next_pc_is_thumb)
m_sw_single_step_next_pc |= 1; // Set bit zero if the next PC is expected to be Thumb
#else
const DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(next_pc);
if (bp == NULL)
{
m_sw_single_step_break_id = m_thread->Process()->CreateBreakpoint(next_pc, next_pc_is_thumb ? 2 : 4, false, m_thread->ThreadID());
if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
err = KERN_INVALID_ARGUMENT;
DNBLogThreadedIf(LOG_STEP, "%s: software single step breakpoint with breakID=%d set at 0x%8.8x", __FUNCTION__, m_sw_single_step_break_id, next_pc);
}
#endif
}
#else
err.LogThreaded("%s: ARMDisassembler.framework support is disabled", __FUNCTION__);
#endif
return err.Error();
}
uint32_t
DNBArchMachARM::NumSupportedHardwareBreakpoints()
{
// Set the init value to something that will let us know that we need to
// autodetect how many breakpoints are supported dynamically...
static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
if (g_num_supported_hw_breakpoints == UINT_MAX)
{
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_breakpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof (n);
if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
{
g_num_supported_hw_breakpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
}
else
{
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many BRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
// Zero is reserved for the BRP count, so don't increment it if it is zero
if (numBRPs > 0)
numBRPs++;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
if (numBRPs > 0)
{
uint32_t cpusubtype;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
{
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_breakpoints = numBRPs;
}
}
}
}
return g_num_supported_hw_breakpoints;
}
uint32_t
DNBArchMachARM::NumSupportedHardwareWatchpoints()
{
// Set the init value to something that will let us know that we need to
// autodetect how many watchpoints are supported dynamically...
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
if (g_num_supported_hw_watchpoints == UINT_MAX)
{
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_watchpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof (n);
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
{
g_num_supported_hw_watchpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
}
else
{
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many WRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
if (numWRPs > 0)
{
uint32_t cpusubtype;
size_t len;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
{
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_watchpoints = numWRPs;
}
}
}
}
return g_num_supported_hw_watchpoints;
}
uint32_t
DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
{
// Make sure our address isn't bogus
if (addr & 1)
return INVALID_NUB_HW_INDEX;
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS)
{
const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
uint32_t i;
for (i=0; i<num_hw_breakpoints; ++i)
{
if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
break; // We found an available hw breakpoint slot (in i)
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_breakpoints)
{
// Make sure bits 1:0 are clear in our address
m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
if (size == 2 || addr & 2)
{
uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
// We have a thumb breakpoint
// We have an ARM breakpoint
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
byte_addr_select | // Set the correct byte address select so we only trigger on the correct opcode
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %zu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
(uint64_t)addr,
size,
i,
i,
m_state.dbg.__bvr[i],
m_state.dbg.__bcr[i]);
}
else if (size == 4)
{
// We have an ARM breakpoint
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %zu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
(uint64_t)addr,
size,
i,
i,
m_state.dbg.__bvr[i],
m_state.dbg.__bcr[i]);
}
kret = SetDBGState();
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %zu) => all hardware breakpoint resources are being used.", (uint64_t)addr, size);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
if (kret == KERN_SUCCESS)
{
if (hw_index < num_hw_points)
{
m_state.dbg.__bcr[hw_index] = 0;
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x BCR%u = 0x%8.8x",
hw_index,
hw_index,
m_state.dbg.__bvr[hw_index],
hw_index,
m_state.dbg.__bcr[hw_index]);
kret = SetDBGState();
if (kret == KERN_SUCCESS)
return true;
}
}
return false;
}
// This stores the lo->hi mappings. It's safe to initialize to all 0's
// since hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = { 0 };
uint32_t
DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can't watch zero bytes
if (size == 0)
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Divide-and-conquer for size == 8.
if (size == 8)
{
uint32_t lo = EnableHardwareWatchpoint(addr, 4, read, write);
if (lo == INVALID_NUB_HW_INDEX)
return INVALID_NUB_HW_INDEX;
uint32_t hi = EnableHardwareWatchpoint(addr+4, 4, read, write);
if (hi == INVALID_NUB_HW_INDEX)
{
DisableHardwareWatchpoint(lo);
return INVALID_NUB_HW_INDEX;
}
// Tag this lo->hi mapping in our database.
LoHi[lo] = hi;
return lo;
}
// Otherwise, can't watch more than 4 bytes per WVR/WCR pair
if (size > 4)
return INVALID_NUB_HW_INDEX;
// We can only watch up to four bytes that follow a 4 byte aligned address
// per watchpoint register pair. Since we can only watch until the next 4
// byte boundary, we need to make sure we can properly encode this.
// addr_word_offset = addr % 4, i.e, is in set([0, 1, 2, 3])
//
// +---+---+---+---+
// | 0 | 1 | 2 | 3 |
// +---+---+---+---+
// ^
// |
// word address (4-byte aligned) = addr & 0xFFFFFFFC => goes into WVR
//
// examples:
// 1. addr_word_offset = 1, size = 1 to watch a uint_8 => byte_mask = (0b0001 << 1) = 0b0010
// 2. addr_word_offset = 2, size = 2 to watch a uint_16 => byte_mask = (0b0011 << 2) = 0b1100
//
// where byte_mask goes into WCR[8:5]
uint32_t addr_word_offset = addr % 4;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
if (byte_mask > 0xfu)
return INVALID_NUB_HW_INDEX;
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS)
{
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i=0; i<num_hw_watchpoints; ++i)
{
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot (in i)
}
// See if we found an available hw watchpoint slot above
if (i < num_hw_watchpoints)
{
//DumpDBGState(m_state.dbg);
// Make the byte_mask into a valid Byte Address Select mask
uint32_t byte_address_select = byte_mask << 5;
// Make sure bits 1:0 are clear in our address
m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3); // DVA (Data Virtual Address)
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the DVA that we will watch
S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
kret = SetDBGState();
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchMachARM::EnableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
if (Delegate && LoHi[hw_index]) {
// Enable lo and hi watchpoint hardware indexes.
return EnableHardwareWatchpoint0(hw_index, false) &&
EnableHardwareWatchpoint0(LoHi[hw_index], false);
}
m_state.dbg.__wcr[hw_index] |= (nub_addr_t)WCR_ENABLE;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x WCR%u = 0x%8.8x",
hw_index,
hw_index,
m_state.dbg.__wvr[hw_index],
hw_index,
m_state.dbg.__wcr[hw_index]);
kret = SetDBGState();
return (kret == KERN_SUCCESS);
}
bool
DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
{
return DisableHardwareWatchpoint0(hw_index, true);
}
bool
DNBArchMachARM::DisableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
if (Delegate && LoHi[hw_index]) {
// Disable lo and hi watchpoint hardware indexes.
return DisableHardwareWatchpoint0(hw_index, false) &&
DisableHardwareWatchpoint0(LoHi[hw_index], false);
}
m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x WCR%u = 0x%8.8x",
hw_index,
hw_index,
m_state.dbg.__wvr[hw_index],
hw_index,
m_state.dbg.__wcr[hw_index]);
kret = SetDBGState();
return (kret == KERN_SUCCESS);
}
// {0} -> __bvr[16], {0} -> __bcr[16], {0} --> __wvr[16], {0} -> __wcr{16}
DNBArchMachARM::DBG DNBArchMachARM::Global_Debug_State = {{0},{0},{0},{0}};
bool DNBArchMachARM::Valid_Global_Debug_State = false;
// Use this callback from MachThread, which in turn was called from MachThreadList, to update
// the global view of the hardware watchpoint state, so that when new thread comes along, they
// get to inherit the existing hardware watchpoint state.
void
DNBArchMachARM::HardwareWatchpointStateChanged ()
{
Global_Debug_State = m_state.dbg;
Valid_Global_Debug_State = true;
}
// Returns -1 if the trailing bit patterns are not one of:
// { 0b???1, 0b??10, 0b?100, 0b1000 }.
static inline
int32_t
LowestBitSet(uint32_t val)
{
for (unsigned i = 0; i < 4; ++i) {
if (bit(val, i))
return i;
}
return -1;
}
// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
// As a side effect, the starting address as understood by the debugger is returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t
DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
{
// Read the debug state
kern_return_t kret = GetDBGState(true);
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
// This is the watchpoint value to match against, i.e., word address.
nub_addr_t wp_val = addr & ~((nub_addr_t)3);
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
{
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
i, (uint64_t)wp_addr);
if (wp_val == wp_addr) {
uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
// Sanity check the byte_mask, first.
if (LowestBitSet(byte_mask) < 0)
continue;
// Compute the starting address (from the point of view of the debugger).
addr = wp_addr + LowestBitSet(byte_mask);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
// ThreadWillResume() calls this to clear bits[5:2] (Method of entry bits) of
// the Debug Status and Control Register (DSCR).
//
// b0010 = a watchpoint occurred
// b0000 is the reset value
void
DNBArchMachARM::ClearWatchpointOccurred()
{
uint32_t register_DBGDSCR;
asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
if (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED)
{
uint32_t mask = ~(0xF << 2);
register_DBGDSCR &= mask;
asm("mcr p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
}
return;
}
// NotifyException() calls this to double check that a watchpoint has occurred
// by inspecting the bits[5:2] field of the Debug Status and Control Register
// (DSCR).
//
// b0010 = a watchpoint occurred
bool
DNBArchMachARM::HasWatchpointOccurred()
{
uint32_t register_DBGDSCR;
asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
return (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED);
}
bool
DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Control Registers, bitfield definitions
// ...
// Bits Value Description
// [0] 0 Watchpoint disabled
// 1 Watchpoint enabled.
return (debug_state.__wcr[hw_index] & 1u);
}
nub_addr_t
DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Value Registers, bitfield definitions
// Bits Description
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
// [1:0] RAZ/SBZP
return bits(debug_state.__wvr[hw_index], 31, 0);
}
//----------------------------------------------------------------------
// Register information defintions for 32 bit ARMV6.
//----------------------------------------------------------------------
enum gpr_regnums
{
gpr_r0 = 0,
gpr_r1,
gpr_r2,
gpr_r3,
gpr_r4,
gpr_r5,
gpr_r6,
gpr_r7,
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_sp,
gpr_lr,
gpr_pc,
gpr_cpsr
};
enum
{
vfp_s0 = 0,
vfp_s1,
vfp_s2,
vfp_s3,
vfp_s4,
vfp_s5,
vfp_s6,
vfp_s7,
vfp_s8,
vfp_s9,
vfp_s10,
vfp_s11,
vfp_s12,
vfp_s13,
vfp_s14,
vfp_s15,
vfp_s16,
vfp_s17,
vfp_s18,
vfp_s19,
vfp_s20,
vfp_s21,
vfp_s22,
vfp_s23,
vfp_s24,
vfp_s25,
vfp_s26,
vfp_s27,
vfp_s28,
vfp_s29,
vfp_s30,
vfp_s31,
vfp_d0,
vfp_d1,
vfp_d2,
vfp_d3,
vfp_d4,
vfp_d5,
vfp_d6,
vfp_d7,
vfp_d8,
vfp_d9,
vfp_d10,
vfp_d11,
vfp_d12,
vfp_d13,
vfp_d14,
vfp_d15,
vfp_d16,
vfp_d17,
vfp_d18,
vfp_d19,
vfp_d20,
vfp_d21,
vfp_d22,
vfp_d23,
vfp_d24,
vfp_d25,
vfp_d26,
vfp_d27,
vfp_d28,
vfp_d29,
vfp_d30,
vfp_d31,
vfp_fpscr
};
enum
{
exc_exception,
exc_fsr,
exc_far,
};
enum
{
gdb_r0 = 0,
gdb_r1,
gdb_r2,
gdb_r3,
gdb_r4,
gdb_r5,
gdb_r6,
gdb_r7,
gdb_r8,
gdb_r9,
gdb_r10,
gdb_r11,
gdb_r12,
gdb_sp,
gdb_lr,
gdb_pc,
gdb_f0,
gdb_f1,
gdb_f2,
gdb_f3,
gdb_f4,
gdb_f5,
gdb_f6,
gdb_f7,
gdb_f8,
gdb_cpsr,
gdb_s0,
gdb_s1,
gdb_s2,
gdb_s3,
gdb_s4,
gdb_s5,
gdb_s6,
gdb_s7,
gdb_s8,
gdb_s9,
gdb_s10,
gdb_s11,
gdb_s12,
gdb_s13,
gdb_s14,
gdb_s15,
gdb_s16,
gdb_s17,
gdb_s18,
gdb_s19,
gdb_s20,
gdb_s21,
gdb_s22,
gdb_s23,
gdb_s24,
gdb_s25,
gdb_s26,
gdb_s27,
gdb_s28,
gdb_s29,
gdb_s30,
gdb_s31,
gdb_fpscr,
gdb_d0,
gdb_d1,
gdb_d2,
gdb_d3,
gdb_d4,
gdb_d5,
gdb_d6,
gdb_d7,
gdb_d8,
gdb_d9,
gdb_d10,
gdb_d11,
gdb_d12,
gdb_d13,
gdb_d14,
gdb_d15
};
#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
#define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[(idx)]) + offsetof (DNBArchMachARM::Context, vfp))
#define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 2))
#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
#define EXC_OFFSET(reg) (offsetof (DNBArchMachARM::EXC, __##reg) + offsetof (DNBArchMachARM::Context, exc))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, gdb_##reg }
#define DEFINE_GPR_NAME(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, gdb_##reg }
//#define FLOAT_FORMAT Float
#define FLOAT_FORMAT Hex
#define DEFINE_VFP_S_IDX(idx) { e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, gdb_s##idx }
//#define DEFINE_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, gdb_d##idx }
#define DEFINE_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
// General purpose registers
const DNBRegisterInfo
DNBArchMachARM::g_gpr_registers[] =
{
DEFINE_GPR_IDX ( 0, r0,"arg1", GENERIC_REGNUM_ARG1 ),
DEFINE_GPR_IDX ( 1, r1,"arg2", GENERIC_REGNUM_ARG2 ),
DEFINE_GPR_IDX ( 2, r2,"arg3", GENERIC_REGNUM_ARG3 ),
DEFINE_GPR_IDX ( 3, r3,"arg4", GENERIC_REGNUM_ARG4 ),
DEFINE_GPR_IDX ( 4, r4, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 5, r5, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 6, r6, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 7, r7, "fp", GENERIC_REGNUM_FP ),
DEFINE_GPR_IDX ( 8, r8, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 9, r9, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (10, r10, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (11, r11, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (12, r12, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP ),
DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA ),
DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC ),
DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS )
};
// Floating point registers
const DNBRegisterInfo
DNBArchMachARM::g_vfp_registers[] =
{
DEFINE_VFP_S_IDX ( 0),
DEFINE_VFP_S_IDX ( 1),
DEFINE_VFP_S_IDX ( 2),
DEFINE_VFP_S_IDX ( 3),
DEFINE_VFP_S_IDX ( 4),
DEFINE_VFP_S_IDX ( 5),
DEFINE_VFP_S_IDX ( 6),
DEFINE_VFP_S_IDX ( 7),
DEFINE_VFP_S_IDX ( 8),
DEFINE_VFP_S_IDX ( 9),
DEFINE_VFP_S_IDX (10),
DEFINE_VFP_S_IDX (11),
DEFINE_VFP_S_IDX (12),
DEFINE_VFP_S_IDX (13),
DEFINE_VFP_S_IDX (14),
DEFINE_VFP_S_IDX (15),
DEFINE_VFP_S_IDX (16),
DEFINE_VFP_S_IDX (17),
DEFINE_VFP_S_IDX (18),
DEFINE_VFP_S_IDX (19),
DEFINE_VFP_S_IDX (20),
DEFINE_VFP_S_IDX (21),
DEFINE_VFP_S_IDX (22),
DEFINE_VFP_S_IDX (23),
DEFINE_VFP_S_IDX (24),
DEFINE_VFP_S_IDX (25),
DEFINE_VFP_S_IDX (26),
DEFINE_VFP_S_IDX (27),
DEFINE_VFP_S_IDX (28),
DEFINE_VFP_S_IDX (29),
DEFINE_VFP_S_IDX (30),
DEFINE_VFP_S_IDX (31),
DEFINE_VFP_D_IDX (0),
DEFINE_VFP_D_IDX (1),
DEFINE_VFP_D_IDX (2),
DEFINE_VFP_D_IDX (3),
DEFINE_VFP_D_IDX (4),
DEFINE_VFP_D_IDX (5),
DEFINE_VFP_D_IDX (6),
DEFINE_VFP_D_IDX (7),
DEFINE_VFP_D_IDX (8),
DEFINE_VFP_D_IDX (9),
DEFINE_VFP_D_IDX (10),
DEFINE_VFP_D_IDX (11),
DEFINE_VFP_D_IDX (12),
DEFINE_VFP_D_IDX (13),
DEFINE_VFP_D_IDX (14),
DEFINE_VFP_D_IDX (15),
DEFINE_VFP_D_IDX (16),
DEFINE_VFP_D_IDX (17),
DEFINE_VFP_D_IDX (18),
DEFINE_VFP_D_IDX (19),
DEFINE_VFP_D_IDX (20),
DEFINE_VFP_D_IDX (21),
DEFINE_VFP_D_IDX (22),
DEFINE_VFP_D_IDX (23),
DEFINE_VFP_D_IDX (24),
DEFINE_VFP_D_IDX (25),
DEFINE_VFP_D_IDX (26),
DEFINE_VFP_D_IDX (27),
DEFINE_VFP_D_IDX (28),
DEFINE_VFP_D_IDX (29),
DEFINE_VFP_D_IDX (30),
DEFINE_VFP_D_IDX (31),
{ e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gdb_fpscr }
};
// Exception registers
const DNBRegisterInfo
DNBArchMachARM::g_exc_registers[] =
{
{ e_regSetVFP, exc_exception , "exception" , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
{ e_regSetVFP, exc_fsr , "fsr" , NULL, Uint, Hex, 4, EXC_OFFSET(fsr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
{ e_regSetVFP, exc_far , "far" , NULL, Uint, Hex, 4, EXC_OFFSET(far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
};
// Number of registers in each register set
const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchMachARM::g_reg_sets[] =
{
{ "ARM Registers", NULL, k_num_all_registers },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_vfp_registers, k_num_vfp_registers },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool
DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7; // is this the right reg?
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint32 = m_state.context.gpr.__r[reg];
return true;
}
break;
case e_regSetVFP:
if (reg <= vfp_s31)
{
value->value.uint32 = m_state.context.vfp.__r[reg];
return true;
}
else if (reg <= vfp_d31)
{
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
return true;
}
else if (reg == vfp_fpscr)
{
value->value.uint32 = m_state.context.vfp.__fpscr;
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
value->value.uint32 = (&m_state.context.exc.__exception)[reg];
return true;
}
break;
}
}
return false;
}
bool
DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7;
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
m_state.context.gpr.__r[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetVFP:
if (reg <= vfp_s31)
{
m_state.context.vfp.__r[reg] = value->value.uint32;
success = true;
}
else if (reg <= vfp_d31)
{
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
success = true;
}
else if (reg == vfp_fpscr)
{
m_state.context.vfp.__fpscr = value->value.uint32;
success = true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
(&m_state.context.exc.__exception)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
kern_return_t
DNBArchMachARM::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) |
GetVFPState(force) |
GetEXCState(force) |
GetDBGState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetVFP: return GetVFPState(force);
case e_regSetEXC: return GetEXCState(force);
case e_regSetDBG: return GetDBGState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchMachARM::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set)
{
case e_regSetALL: return SetGPRState() |
SetVFPState() |
SetEXCState() |
SetDBGState();
case e_regSetGPR: return SetGPRState();
case e_regSetVFP: return SetVFPState();
case e_regSetEXC: return SetEXCState();
case e_regSetDBG: return SetDBGState();
default: break;
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchMachARM::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
nub_size_t
DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf && buf_len)
{
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
return 0;
::memcpy (buf, &m_state.context, size);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
::memcpy (&m_state.context, buf, size);
SetGPRState();
SetVFPState();
SetEXCState();
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
return size;
}
#endif // #if defined (__arm__)