blob: 9a36bc7575f460b6705e7dddb07f73ba5e541d6c [file] [log] [blame]
//===-- MachThread.cpp ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include "MachThread.h"
#include "MachProcess.h"
#include "DNBLog.h"
#include "DNB.h"
static uint32_t
GetSequenceID()
{
static uint32_t g_nextID = 0;
return ++g_nextID;
}
MachThread::MachThread (MachProcess *process, thread_t tid) :
m_process (process),
m_tid (tid),
m_seq_id (GetSequenceID()),
m_state (eStateUnloaded),
m_state_mutex (PTHREAD_MUTEX_RECURSIVE),
m_break_id (INVALID_NUB_BREAK_ID),
m_suspend_count (0),
m_stop_exception (),
m_arch_ap (DNBArchProtocol::Create (this)),
m_reg_sets (NULL),
m_num_reg_sets (0)
#ifdef THREAD_IDENTIFIER_INFO_COUNT
, m_ident_info(),
m_proc_threadinfo(),
m_dispatch_queue_name()
#endif
{
nub_size_t num_reg_sets = 0;
m_reg_sets = m_arch_ap->GetRegisterSetInfo (&num_reg_sets);
m_num_reg_sets = num_reg_sets;
// Get the thread state so we know if a thread is in a state where we can't
// muck with it and also so we get the suspend count correct in case it was
// already suspended
GetBasicInfo();
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::MachThread ( process = %p, tid = 0x%4.4x, seq_id = %u )", &m_process, m_tid, m_seq_id);
}
MachThread::~MachThread()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::~MachThread() for tid = 0x%4.4x (%u)", m_tid, m_seq_id);
}
void
MachThread::Suspend()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
if (ThreadIDIsValid(m_tid))
{
DNBError err(::thread_suspend (m_tid), DNBError::MachKernel);
if (err.Success())
m_suspend_count++;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_suspend (%4.4x)", m_tid);
}
}
void
MachThread::Resume(bool others_stopped)
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
if (ThreadIDIsValid(m_tid))
{
SetSuspendCountBeforeResume(others_stopped);
}
}
bool
MachThread::SetSuspendCountBeforeResume(bool others_stopped)
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
DNBError err;
if (ThreadIDIsValid(m_tid) == false)
return false;
size_t times_to_resume;
if (others_stopped)
{
if (GetBasicInfo())
{
times_to_resume = m_basic_info.suspend_count;
m_suspend_count = - (times_to_resume - m_suspend_count);
}
else
times_to_resume = 0;
}
else
{
times_to_resume = m_suspend_count;
m_suspend_count = 0;
}
if (times_to_resume > 0)
{
while (times_to_resume > 0)
{
err = ::thread_resume (m_tid);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4x)", m_tid);
if (err.Success())
--times_to_resume;
else
{
if (GetBasicInfo())
times_to_resume = m_basic_info.suspend_count;
else
times_to_resume = 0;
}
}
}
return true;
}
bool
MachThread::RestoreSuspendCountAfterStop ()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
DNBError err;
if (ThreadIDIsValid(m_tid) == false)
return false;
if (m_suspend_count > 0)
{
while (m_suspend_count > 0)
{
err = ::thread_resume (m_tid);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4x)", m_tid);
if (err.Success())
--m_suspend_count;
else
{
if (GetBasicInfo())
m_suspend_count = m_basic_info.suspend_count;
else
m_suspend_count = 0;
return false; // ???
}
}
}
else if (m_suspend_count < 0)
{
while (m_suspend_count < 0)
{
err = ::thread_suspend (m_tid);
if (err.Success())
++m_suspend_count;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
{
err.LogThreaded("::thread_suspend (%4.4x)", m_tid);
return false;
}
}
}
return true;
}
const char *
MachThread::GetBasicInfoAsString () const
{
static char g_basic_info_string[1024];
struct thread_basic_info basicInfo;
if (GetBasicInfo(m_tid, &basicInfo))
{
// char run_state_str[32];
// size_t run_state_str_size = sizeof(run_state_str);
// switch (basicInfo.run_state)
// {
// case TH_STATE_RUNNING: strncpy(run_state_str, "running", run_state_str_size); break;
// case TH_STATE_STOPPED: strncpy(run_state_str, "stopped", run_state_str_size); break;
// case TH_STATE_WAITING: strncpy(run_state_str, "waiting", run_state_str_size); break;
// case TH_STATE_UNINTERRUPTIBLE: strncpy(run_state_str, "uninterruptible", run_state_str_size); break;
// case TH_STATE_HALTED: strncpy(run_state_str, "halted", run_state_str_size); break;
// default: snprintf(run_state_str, run_state_str_size, "%d", basicInfo.run_state); break; // ???
// }
float user = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f;
float system = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f;
snprintf(g_basic_info_string, sizeof(g_basic_info_string), "Thread 0x%4.4x: user=%f system=%f cpu=%d sleep_time=%d",
InferiorThreadID(),
user,
system,
basicInfo.cpu_usage,
basicInfo.sleep_time);
return g_basic_info_string;
}
return NULL;
}
thread_t
MachThread::InferiorThreadID() const
{
mach_msg_type_number_t i;
mach_port_name_array_t names;
mach_port_type_array_t types;
mach_msg_type_number_t ncount, tcount;
thread_t inferior_tid = INVALID_NUB_THREAD;
task_t my_task = ::mach_task_self();
task_t task = m_process->Task().TaskPort();
kern_return_t kret = ::mach_port_names (task, &names, &ncount, &types, &tcount);
if (kret == KERN_SUCCESS)
{
for (i = 0; i < ncount; i++)
{
mach_port_t my_name;
mach_msg_type_name_t my_type;
kret = ::mach_port_extract_right (task, names[i], MACH_MSG_TYPE_COPY_SEND, &my_name, &my_type);
if (kret == KERN_SUCCESS)
{
::mach_port_deallocate (my_task, my_name);
if (my_name == m_tid)
{
inferior_tid = names[i];
break;
}
}
}
// Free up the names and types
::vm_deallocate (my_task, (vm_address_t) names, ncount * sizeof (mach_port_name_t));
::vm_deallocate (my_task, (vm_address_t) types, tcount * sizeof (mach_port_type_t));
}
return inferior_tid;
}
bool
MachThread::IsUserReady()
{
if (m_basic_info.run_state == 0)
GetBasicInfo ();
switch (m_basic_info.run_state)
{
default:
case TH_STATE_UNINTERRUPTIBLE:
break;
case TH_STATE_RUNNING:
case TH_STATE_STOPPED:
case TH_STATE_WAITING:
case TH_STATE_HALTED:
return true;
}
return false;
}
struct thread_basic_info *
MachThread::GetBasicInfo ()
{
if (MachThread::GetBasicInfo(m_tid, &m_basic_info))
return &m_basic_info;
return NULL;
}
bool
MachThread::GetBasicInfo(thread_t thread, struct thread_basic_info *basicInfoPtr)
{
if (ThreadIDIsValid(thread))
{
unsigned int info_count = THREAD_BASIC_INFO_COUNT;
kern_return_t err = ::thread_info (thread, THREAD_BASIC_INFO, (thread_info_t) basicInfoPtr, &info_count);
if (err == KERN_SUCCESS)
return true;
}
::memset (basicInfoPtr, 0, sizeof (struct thread_basic_info));
return false;
}
bool
MachThread::ThreadIDIsValid(thread_t thread)
{
return thread != THREAD_NULL;
}
bool
MachThread::GetRegisterState(int flavor, bool force)
{
return m_arch_ap->GetRegisterState(flavor, force) == KERN_SUCCESS;
}
bool
MachThread::SetRegisterState(int flavor)
{
return m_arch_ap->SetRegisterState(flavor) == KERN_SUCCESS;
}
uint64_t
MachThread::GetPC(uint64_t failValue)
{
// Get program counter
return m_arch_ap->GetPC(failValue);
}
bool
MachThread::SetPC(uint64_t value)
{
// Set program counter
return m_arch_ap->SetPC(value);
}
uint64_t
MachThread::GetSP(uint64_t failValue)
{
// Get stack pointer
return m_arch_ap->GetSP(failValue);
}
nub_process_t
MachThread::ProcessID() const
{
if (m_process)
return m_process->ProcessID();
return INVALID_NUB_PROCESS;
}
void
MachThread::Dump(uint32_t index)
{
const char * thread_run_state = NULL;
switch (m_basic_info.run_state)
{
case TH_STATE_RUNNING: thread_run_state = "running"; break; // 1 thread is running normally
case TH_STATE_STOPPED: thread_run_state = "stopped"; break; // 2 thread is stopped
case TH_STATE_WAITING: thread_run_state = "waiting"; break; // 3 thread is waiting normally
case TH_STATE_UNINTERRUPTIBLE: thread_run_state = "uninter"; break; // 4 thread is in an uninterruptible wait
case TH_STATE_HALTED: thread_run_state = "halted "; break; // 5 thread is halted at a
default: thread_run_state = "???"; break;
}
DNBLogThreaded("[%3u] #%3u tid: 0x%4.4x, pc: 0x%16.16llx, sp: 0x%16.16llx, breakID: %3d, user: %d.%6.6d, system: %d.%6.6d, cpu: %2d, policy: %2d, run_state: %2d (%s), flags: %2d, suspend_count: %2d (current %2d), sleep_time: %d",
index,
m_seq_id,
m_tid,
GetPC(INVALID_NUB_ADDRESS),
GetSP(INVALID_NUB_ADDRESS),
m_break_id,
m_basic_info.user_time.seconds, m_basic_info.user_time.microseconds,
m_basic_info.system_time.seconds, m_basic_info.system_time.microseconds,
m_basic_info.cpu_usage,
m_basic_info.policy,
m_basic_info.run_state,
thread_run_state,
m_basic_info.flags,
m_basic_info.suspend_count, m_suspend_count,
m_basic_info.sleep_time);
//DumpRegisterState(0);
}
void
MachThread::ThreadWillResume(const DNBThreadResumeAction *thread_action, bool others_stopped)
{
if (thread_action->addr != INVALID_NUB_ADDRESS)
SetPC (thread_action->addr);
SetState (thread_action->state);
switch (thread_action->state)
{
case eStateStopped:
case eStateSuspended:
assert (others_stopped == false);
Suspend();
break;
case eStateRunning:
case eStateStepping:
Resume(others_stopped);
break;
default:
break;
}
m_arch_ap->ThreadWillResume();
m_stop_exception.Clear();
}
nub_break_t
MachThread::CurrentBreakpoint()
{
return m_process->Breakpoints().FindIDByAddress(GetPC());
}
bool
MachThread::ShouldStop(bool &step_more)
{
// See if this thread is at a breakpoint?
nub_break_t breakID = CurrentBreakpoint();
if (NUB_BREAK_ID_IS_VALID(breakID))
{
// This thread is sitting at a breakpoint, ask the breakpoint
// if we should be stopping here.
if (Process()->Breakpoints().ShouldStop(ProcessID(), ThreadID(), breakID))
return true;
else
{
// The breakpoint said we shouldn't stop, but we may have gotten
// a signal or the user may have requested to stop in some other
// way. Stop if we have a valid exception (this thread won't if
// another thread was the reason this process stopped) and that
// exception, is NOT a breakpoint exception (a common case would
// be a SIGINT signal).
if (GetStopException().IsValid() && !GetStopException().IsBreakpoint())
return true;
}
}
else
{
if (m_arch_ap->StepNotComplete())
{
step_more = true;
return false;
}
// The thread state is used to let us know what the thread was
// trying to do. MachThread::ThreadWillResume() will set the
// thread state to various values depending if the thread was
// the current thread and if it was to be single stepped, or
// resumed.
if (GetState() == eStateRunning)
{
// If our state is running, then we should continue as we are in
// the process of stepping over a breakpoint.
return false;
}
else
{
// Stop if we have any kind of valid exception for this
// thread.
if (GetStopException().IsValid())
return true;
}
}
return false;
}
bool
MachThread::IsStepping()
{
#if ENABLE_AUTO_STEPPING_OVER_BP
// Return true if this thread is currently being stepped.
// MachThread::ThreadWillResume currently determines this by looking if we
// have been asked to single step, or if we are at a breakpoint instruction
// and have been asked to resume. In the latter case we need to disable the
// breakpoint we are at, single step, re-enable and continue.
nub_state_t state = GetState();
return ((state == eStateStepping) ||
(state == eStateRunning && NUB_BREAK_ID_IS_VALID(CurrentBreakpoint())));
#else
return GetState() == eStateStepping;
#endif
}
bool
MachThread::ThreadDidStop()
{
// This thread has existed prior to resuming under debug nub control,
// and has just been stopped. Do any cleanup that needs to be done
// after running.
// The thread state and breakpoint will still have the same values
// as they had prior to resuming the thread, so it makes it easy to check
// if we were trying to step a thread, or we tried to resume while being
// at a breakpoint.
// When this method gets called, the process state is still in the
// state it was in while running so we can act accordingly.
m_arch_ap->ThreadDidStop();
// We may have suspended this thread so the primary thread could step
// without worrying about race conditions, so lets restore our suspend
// count.
RestoreSuspendCountAfterStop();
// Update the basic information for a thread
MachThread::GetBasicInfo(m_tid, &m_basic_info);
#if ENABLE_AUTO_STEPPING_OVER_BP
// See if we were at a breakpoint when we last resumed that we disabled,
// re-enable it.
nub_break_t breakID = CurrentBreakpoint();
if (NUB_BREAK_ID_IS_VALID(breakID))
{
m_process->EnableBreakpoint(breakID);
if (m_basic_info.suspend_count > 0)
{
SetState(eStateSuspended);
}
else
{
// If we last were at a breakpoint and we single stepped, our state
// will be "running" to indicate we need to continue after stepping
// over the breakpoint instruction. If we step over a breakpoint
// instruction, we need to stop.
if (GetState() == eStateRunning)
{
// Leave state set to running so we will continue automatically
// from this breakpoint
}
else
{
SetState(eStateStopped);
}
}
}
else
{
if (m_basic_info.suspend_count > 0)
{
SetState(eStateSuspended);
}
else
{
SetState(eStateStopped);
}
}
#else
if (m_basic_info.suspend_count > 0)
SetState(eStateSuspended);
else
SetState(eStateStopped);
#endif
return true;
}
bool
MachThread::NotifyException(MachException::Data& exc)
{
// Allow the arch specific protocol to process (MachException::Data &)exc
// first before possible reassignment of m_stop_exception with exc.
// See also MachThread::GetStopException().
bool handled = m_arch_ap->NotifyException(exc);
if (m_stop_exception.IsValid())
{
// We may have more than one exception for a thread, but we need to
// only remember the one that we will say is the reason we stopped.
// We may have been single stepping and also gotten a signal exception,
// so just remember the most pertinent one.
if (m_stop_exception.IsBreakpoint())
m_stop_exception = exc;
}
else
{
m_stop_exception = exc;
}
return handled;
}
nub_state_t
MachThread::GetState()
{
// If any other threads access this we will need a mutex for it
PTHREAD_MUTEX_LOCKER (locker, m_state_mutex);
return m_state;
}
void
MachThread::SetState(nub_state_t state)
{
PTHREAD_MUTEX_LOCKER (locker, m_state_mutex);
m_state = state;
DNBLogThreadedIf(LOG_THREAD, "MachThread::SetState ( %s ) for tid = 0x%4.4x", DNBStateAsString(state), m_tid);
}
uint32_t
MachThread::GetNumRegistersInSet(int regSet) const
{
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].num_registers;
return 0;
}
const char *
MachThread::GetRegisterSetName(int regSet) const
{
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].name;
return NULL;
}
const DNBRegisterInfo *
MachThread::GetRegisterInfo(int regSet, int regIndex) const
{
if (regSet < m_num_reg_sets)
if (regIndex < m_reg_sets[regSet].num_registers)
return &m_reg_sets[regSet].registers[regIndex];
return NULL;
}
void
MachThread::DumpRegisterState(int regSet)
{
if (regSet == REGISTER_SET_ALL)
{
for (regSet = 1; regSet < m_num_reg_sets; regSet++)
DumpRegisterState(regSet);
}
else
{
if (m_arch_ap->RegisterSetStateIsValid(regSet))
{
const size_t numRegisters = GetNumRegistersInSet(regSet);
size_t regIndex = 0;
DNBRegisterValueClass reg;
for (regIndex = 0; regIndex < numRegisters; ++regIndex)
{
if (m_arch_ap->GetRegisterValue(regSet, regIndex, &reg))
{
reg.Dump(NULL, NULL);
}
}
}
else
{
DNBLog("%s: registers are not currently valid.", GetRegisterSetName(regSet));
}
}
}
const DNBRegisterSetInfo *
MachThread::GetRegisterSetInfo(nub_size_t *num_reg_sets ) const
{
*num_reg_sets = m_num_reg_sets;
return &m_reg_sets[0];
}
bool
MachThread::GetRegisterValue ( uint32_t set, uint32_t reg, DNBRegisterValue *value )
{
return m_arch_ap->GetRegisterValue(set, reg, value);
}
bool
MachThread::SetRegisterValue ( uint32_t set, uint32_t reg, const DNBRegisterValue *value )
{
return m_arch_ap->SetRegisterValue(set, reg, value);
}
nub_size_t
MachThread::GetRegisterContext (void *buf, nub_size_t buf_len)
{
return m_arch_ap->GetRegisterContext(buf, buf_len);
}
nub_size_t
MachThread::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
return m_arch_ap->SetRegisterContext(buf, buf_len);
}
uint32_t
MachThread::EnableHardwareBreakpoint (const DNBBreakpoint *bp)
{
if (bp != NULL && bp->IsBreakpoint())
return m_arch_ap->EnableHardwareBreakpoint(bp->Address(), bp->ByteSize());
return INVALID_NUB_HW_INDEX;
}
uint32_t
MachThread::EnableHardwareWatchpoint (const DNBBreakpoint *wp)
{
if (wp != NULL && wp->IsWatchpoint())
return m_arch_ap->EnableHardwareWatchpoint(wp->Address(), wp->ByteSize(), wp->WatchpointRead(), wp->WatchpointWrite());
return INVALID_NUB_HW_INDEX;
}
// Provide a chance to update the global view of the hardware watchpoint state.
void
MachThread::HardwareWatchpointStateChanged ()
{
m_arch_ap->HardwareWatchpointStateChanged();
}
bool
MachThread::DisableHardwareBreakpoint (const DNBBreakpoint *bp)
{
if (bp != NULL && bp->IsHardware())
return m_arch_ap->DisableHardwareBreakpoint(bp->GetHardwareIndex());
return false;
}
bool
MachThread::DisableHardwareWatchpoint (const DNBBreakpoint *wp)
{
if (wp != NULL && wp->IsHardware())
return m_arch_ap->DisableHardwareWatchpoint(wp->GetHardwareIndex());
return false;
}
bool
MachThread::GetIdentifierInfo ()
{
#ifdef THREAD_IDENTIFIER_INFO_COUNT
// Don't try to get the thread info once and cache it for the life of the thread. It changes over time, for instance
// if the thread name changes, then the thread_handle also changes... So you have to refetch it every time.
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
kern_return_t kret = ::thread_info (ThreadID(), THREAD_IDENTIFIER_INFO, (thread_info_t) &m_ident_info, &count);
return kret == KERN_SUCCESS;
#endif
return false;
}
const char *
MachThread::GetName ()
{
if (GetIdentifierInfo ())
{
int len = ::proc_pidinfo (m_process->ProcessID(), PROC_PIDTHREADINFO, m_ident_info.thread_handle, &m_proc_threadinfo, sizeof (m_proc_threadinfo));
if (len && m_proc_threadinfo.pth_name[0])
return m_proc_threadinfo.pth_name;
}
return NULL;
}