blob: 0241c3841a664ebee1cb9671aed81e3876222f42 [file] [log] [blame]
//===-- ClangASTType.cpp ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/ClangASTType.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
using namespace lldb;
using namespace lldb_private;
ClangASTType::~ClangASTType()
{
}
std::string
ClangASTType::GetTypeNameForQualType (clang::ASTContext *ast, clang::QualType qual_type)
{
std::string type_name;
clang::PrintingPolicy printing_policy (ast->getPrintingPolicy());
printing_policy.SuppressTagKeyword = true;
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
type_name = typedef_decl->getQualifiedNameAsString(printing_policy);
}
else
{
type_name = qual_type.getAsString(printing_policy);
}
return type_name;
}
std::string
ClangASTType::GetTypeNameForOpaqueQualType (clang::ASTContext *ast, clang_type_t opaque_qual_type)
{
return GetTypeNameForQualType (ast, clang::QualType::getFromOpaquePtr(opaque_qual_type));
}
ConstString
ClangASTType::GetConstTypeName ()
{
// TODO: verify if we actually need to complete a type just to get its type name????
if (!ClangASTContext::GetCompleteType (this->m_ast, this->m_type))
return ConstString("<invalid>");
return GetConstTypeName (m_ast, m_type);
}
ConstString
ClangASTType::GetConstQualifiedTypeName ()
{
// TODO: verify if we actually need to complete a type just to get its fully qualified type name????
if (!ClangASTContext::GetCompleteType (this->m_ast, this->m_type))
return ConstString("<invalid>");
return GetConstQualifiedTypeName (m_ast, m_type);
}
ConstString
ClangASTType::GetConstQualifiedTypeName (clang::ASTContext *ast, clang_type_t clang_type)
{
if (ast == NULL || clang_type == NULL)
return ConstString("<invalid>");
return ConstString (GetTypeNameForQualType (ast, clang::QualType::getFromOpaquePtr(clang_type)).c_str());
}
ConstString
ClangASTType::GetConstTypeName (clang::ASTContext *ast, clang_type_t clang_type)
{
if (!clang_type)
return ConstString("<invalid>");
std::string type_name (GetTypeNameForOpaqueQualType(ast, clang_type));
ConstString const_type_name;
if (type_name.empty())
const_type_name.SetCString ("<invalid>");
else
const_type_name.SetCString(type_name.c_str());
return const_type_name;
}
clang_type_t
ClangASTType::GetPointeeType ()
{
return GetPointeeType (m_type);
}
clang_type_t
ClangASTType::GetPointeeType (clang_type_t clang_type)
{
if (clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
return qual_type.getTypePtr()->getPointeeType().getAsOpaquePtr();
}
return NULL;
}
lldb::clang_type_t
ClangASTType::GetArrayElementType (uint32_t& stride)
{
return GetArrayElementType(m_ast, m_type, stride);
}
lldb::clang_type_t
ClangASTType::GetArrayElementType (clang::ASTContext* ast,
lldb::clang_type_t opaque_clang_qual_type,
uint32_t& stride)
{
if (opaque_clang_qual_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(opaque_clang_qual_type));
lldb::clang_type_t ret_type = qual_type.getTypePtr()->getArrayElementTypeNoTypeQual()->getCanonicalTypeUnqualified().getAsOpaquePtr();
// TODO: the real stride will be >= this value.. find the real one!
stride = GetTypeByteSize(ast, ret_type);
return ret_type;
}
return NULL;
}
lldb::clang_type_t
ClangASTType::GetPointerType () const
{
return GetPointerType (m_ast, m_type);
}
lldb::clang_type_t
ClangASTType::GetPointerType (clang::ASTContext *ast_context,
lldb::clang_type_t opaque_clang_qual_type)
{
if (opaque_clang_qual_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(opaque_clang_qual_type));
return ast_context->getPointerType(qual_type).getAsOpaquePtr();
}
return NULL;
}
lldb::Encoding
ClangASTType::GetEncoding (uint32_t &count)
{
return GetEncoding(m_type, count);
}
lldb::LanguageType
ClangASTType::GetMinimumLanguage ()
{
return ClangASTType::GetMinimumLanguage (m_ast,
m_type);
}
lldb::TypeClass
ClangASTType::GetTypeClass (clang::ASTContext *ast_context, lldb::clang_type_t clang_type)
{
if (clang_type == NULL)
return lldb::eTypeClassInvalid;
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform: break;
case clang::Type::FunctionNoProto: return lldb::eTypeClassFunction;
case clang::Type::FunctionProto: return lldb::eTypeClassFunction;
case clang::Type::IncompleteArray: return lldb::eTypeClassArray;
case clang::Type::VariableArray: return lldb::eTypeClassArray;
case clang::Type::ConstantArray: return lldb::eTypeClassArray;
case clang::Type::DependentSizedArray: return lldb::eTypeClassArray;
case clang::Type::DependentSizedExtVector: return lldb::eTypeClassVector;
case clang::Type::ExtVector: return lldb::eTypeClassVector;
case clang::Type::Vector: return lldb::eTypeClassVector;
case clang::Type::Builtin: return lldb::eTypeClassBuiltin;
case clang::Type::ObjCObjectPointer: return lldb::eTypeClassObjCObjectPointer;
case clang::Type::BlockPointer: return lldb::eTypeClassBlockPointer;
case clang::Type::Pointer: return lldb::eTypeClassPointer;
case clang::Type::LValueReference: return lldb::eTypeClassReference;
case clang::Type::RValueReference: return lldb::eTypeClassReference;
case clang::Type::MemberPointer: return lldb::eTypeClassMemberPointer;
case clang::Type::Complex:
if (qual_type->isComplexType())
return lldb::eTypeClassComplexFloat;
else
return lldb::eTypeClassComplexInteger;
case clang::Type::ObjCObject: return lldb::eTypeClassObjCObject;
case clang::Type::ObjCInterface: return lldb::eTypeClassObjCInterface;
case clang::Type::Record:
if (ClangASTContext::GetCompleteType (ast_context, clang_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl->isUnion())
return lldb::eTypeClassUnion;
else if (record_decl->isStruct())
return lldb::eTypeClassStruct;
else
return lldb::eTypeClassClass;
}
break;
case clang::Type::Enum: return lldb::eTypeClassEnumeration;
case clang::Type::Typedef: return lldb::eTypeClassTypedef;
case clang::Type::UnresolvedUsing: break;
case clang::Type::Paren: break;
case clang::Type::Elaborated: break;
case clang::Type::Attributed: break;
case clang::Type::TemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParmPack:break;
case clang::Type::Auto: break;
case clang::Type::InjectedClassName: break;
case clang::Type::DependentName: break;
case clang::Type::DependentTemplateSpecialization: break;
case clang::Type::PackExpansion: break;
case clang::Type::TypeOfExpr: break;
case clang::Type::TypeOf: break;
case clang::Type::Decltype: break;
case clang::Type::TemplateSpecialization: break;
case clang::Type::Atomic: break;
}
// We don't know hot to display this type...
return lldb::eTypeClassOther;
}
lldb::LanguageType
ClangASTType::GetMinimumLanguage (clang::ASTContext *ctx,
lldb::clang_type_t clang_type)
{
if (clang_type == NULL)
return lldb::eLanguageTypeC;
// If the type is a reference, then resolve it to what it refers to first:
clang::QualType qual_type (clang::QualType::getFromOpaquePtr(clang_type).getNonReferenceType());
if (qual_type->isAnyPointerType())
{
if (qual_type->isObjCObjectPointerType())
return lldb::eLanguageTypeObjC;
clang::QualType pointee_type (qual_type->getPointeeType());
if (pointee_type->getCXXRecordDeclForPointerType() != NULL)
return lldb::eLanguageTypeC_plus_plus;
if (pointee_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (pointee_type->isObjCClassType())
return lldb::eLanguageTypeObjC;
if (pointee_type.getTypePtr() == ctx->ObjCBuiltinIdTy.getTypePtr())
return lldb::eLanguageTypeObjC;
}
else
{
if (qual_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (qual_type->getAsCXXRecordDecl())
return lldb::eLanguageTypeC_plus_plus;
switch (qual_type->getTypeClass())
{
default:
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
case clang::BuiltinType::Void:
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
break;
case clang::BuiltinType::NullPtr:
return eLanguageTypeC_plus_plus;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
return eLanguageTypeObjC;
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::UnknownAny:
break;
}
break;
case clang::Type::Typedef:
return GetMinimumLanguage(ctx,
llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
}
}
return lldb::eLanguageTypeC;
}
lldb::Encoding
ClangASTType::GetEncoding (clang_type_t clang_type, uint32_t &count)
{
count = 1;
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
break;
case clang::Type::ExtVector:
case clang::Type::Vector:
// TODO: Set this to more than one???
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default: assert(0 && "Unknown builtin type!");
case clang::BuiltinType::Void:
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128: return lldb::eEncodingSint;
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128: return lldb::eEncodingUint;
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble: return lldb::eEncodingIEEE754;
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCSel: return lldb::eEncodingUint;
case clang::BuiltinType::NullPtr: return lldb::eEncodingUint;
}
break;
// All pointer types are represented as unsigned integer encodings.
// We may nee to add a eEncodingPointer if we ever need to know the
// difference
case clang::Type::ObjCObjectPointer:
case clang::Type::BlockPointer:
case clang::Type::Pointer:
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::MemberPointer: return lldb::eEncodingUint;
case clang::Type::Complex:
{
lldb::Encoding encoding = lldb::eEncodingIEEE754;
if (qual_type->isComplexType())
encoding = lldb::eEncodingIEEE754;
else
{
const clang::ComplexType *complex_type = qual_type->getAsComplexIntegerType();
if (complex_type)
encoding = GetEncoding (complex_type->getElementType().getAsOpaquePtr(), count);
else
encoding = lldb::eEncodingSint;
}
count = 2;
return encoding;
}
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eEncodingSint;
case clang::Type::Typedef:
return GetEncoding(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), count);
break;
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Paren:
case clang::Type::Elaborated:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::Auto:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
case clang::Type::TemplateSpecialization:
case clang::Type::Atomic:
break;
}
count = 0;
return lldb::eEncodingInvalid;
}
lldb::Format
ClangASTType::GetFormat ()
{
return GetFormat (m_type);
}
lldb::Format
ClangASTType::GetFormat (clang_type_t clang_type)
{
if (clang_type == NULL)
return lldb::eFormatDefault;
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
break;
case clang::Type::ExtVector:
case clang::Type::Vector:
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
//default: assert(0 && "Unknown builtin type!");
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::BoundMember:
break;
case clang::BuiltinType::Bool: return lldb::eFormatBoolean;
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U: return lldb::eFormatChar;
case clang::BuiltinType::Char16: return lldb::eFormatUnicode16;
case clang::BuiltinType::Char32: return lldb::eFormatUnicode32;
case clang::BuiltinType::UShort: return lldb::eFormatUnsigned;
case clang::BuiltinType::Short: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt: return lldb::eFormatUnsigned;
case clang::BuiltinType::Int: return lldb::eFormatDecimal;
case clang::BuiltinType::ULong: return lldb::eFormatUnsigned;
case clang::BuiltinType::Long: return lldb::eFormatDecimal;
case clang::BuiltinType::ULongLong: return lldb::eFormatUnsigned;
case clang::BuiltinType::LongLong: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt128: return lldb::eFormatUnsigned;
case clang::BuiltinType::Int128: return lldb::eFormatDecimal;
case clang::BuiltinType::Float: return lldb::eFormatFloat;
case clang::BuiltinType::Double: return lldb::eFormatFloat;
case clang::BuiltinType::LongDouble: return lldb::eFormatFloat;
case clang::BuiltinType::NullPtr:
case clang::BuiltinType::Overload:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
return lldb::eFormatHex;
}
break;
case clang::Type::ObjCObjectPointer: return lldb::eFormatHex;
case clang::Type::BlockPointer: return lldb::eFormatHex;
case clang::Type::Pointer: return lldb::eFormatHex;
case clang::Type::LValueReference:
case clang::Type::RValueReference: return lldb::eFormatHex;
case clang::Type::MemberPointer: break;
case clang::Type::Complex:
{
if (qual_type->isComplexType())
return lldb::eFormatComplex;
else
return lldb::eFormatComplexInteger;
}
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eFormatEnum;
case clang::Type::Typedef:
return ClangASTType::GetFormat(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Paren:
case clang::Type::Elaborated:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::Auto:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
case clang::Type::TemplateSpecialization:
case clang::Type::Atomic:
break;
}
// We don't know hot to display this type...
return lldb::eFormatBytes;
}
void
ClangASTType::DumpValue
(
ExecutionContext *exe_ctx,
Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
bool show_types,
bool show_summary,
bool verbose,
uint32_t depth
)
{
return DumpValue (m_ast,
m_type,
exe_ctx,
s,
format,
data,
data_byte_offset,
data_byte_size,
bitfield_bit_size,
bitfield_bit_offset,
show_types,
show_summary,
verbose,
depth);
}
#define DEPTH_INCREMENT 2
void
ClangASTType::DumpValue
(
clang::ASTContext *ast_context,
clang_type_t clang_type,
ExecutionContext *exe_ctx,
Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
bool show_types,
bool show_summary,
bool verbose,
uint32_t depth
)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case clang::Type::Record:
if (ClangASTContext::GetCompleteType (ast_context, clang_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t field_bit_offset = 0;
uint32_t field_byte_offset = 0;
const clang::ASTRecordLayout &record_layout = ast_context->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
// Skip empty base classes
if (verbose == false && ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
if (base_class->isVirtual())
field_bit_offset = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
else
field_bit_offset = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
field_byte_offset = field_bit_offset / 8;
assert (field_bit_offset % 8 == 0);
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
clang::QualType base_class_qual_type = base_class->getType();
std::string base_class_type_name(base_class_qual_type.getAsString());
// Indent and print the base class type name
s->Printf("\n%*s%s ", depth + DEPTH_INCREMENT, "", base_class_type_name.c_str());
std::pair<uint64_t, unsigned> base_class_type_info = ast_context->getTypeInfo(base_class_qual_type);
// Dump the value of the member
DumpValue (ast_context, // The clang AST context for this type
base_class_qual_type.getAsOpaquePtr(),// The clang type we want to dump
exe_ctx,
s, // Stream to dump to
ClangASTType::GetFormat(base_class_qual_type.getAsOpaquePtr()), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
base_class_type_info.first / 8, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
++child_idx;
}
}
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comman (for member 2 and beyong) for
// the struct/union/class member.
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent
s->Printf("\n%*s", depth + DEPTH_INCREMENT, "");
clang::QualType field_type = field->getType();
// Print the member type if requested
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(field_type);
assert(field_idx < record_layout.getFieldCount());
// Figure out the field offset within the current struct/union/class type
field_bit_offset = record_layout.getFieldOffset (field_idx);
field_byte_offset = field_bit_offset / 8;
uint32_t field_bitfield_bit_size = 0;
uint32_t field_bitfield_bit_offset = 0;
if (ClangASTContext::FieldIsBitfield (ast_context, *field, field_bitfield_bit_size))
field_bitfield_bit_offset = field_bit_offset % 8;
if (show_types)
{
std::string field_type_name(field_type.getAsString());
if (field_bitfield_bit_size > 0)
s->Printf("(%s:%u) ", field_type_name.c_str(), field_bitfield_bit_size);
else
s->Printf("(%s) ", field_type_name.c_str());
}
// Print the member name and equal sign
s->Printf("%s = ", field->getNameAsString().c_str());
// Dump the value of the member
DumpValue (ast_context, // The clang AST context for this type
field_type.getAsOpaquePtr(), // The clang type we want to dump
exe_ctx,
s, // Stream to dump to
ClangASTType::GetFormat(field_type.getAsOpaquePtr()), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
field_type_info.first / 8, // Size of this type in bytes
field_bitfield_bit_size, // Bitfield bit size
field_bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (child_idx > 0)
s->Printf("\n%*s}", depth, "");
}
return;
case clang::Type::Enum:
if (ClangASTContext::GetCompleteType (ast_context, clang_type))
{
const clang::EnumType *enum_type = llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enum_type->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
uint32_t offset = data_byte_offset;
const int64_t enum_value = data.GetMaxU64Bitfield(&offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal() == enum_value)
{
s->Printf("%s", enum_pos->getNameAsString().c_str());
return;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%lli", enum_value);
}
return;
case clang::Type::ConstantArray:
{
const clang::ConstantArrayType *array = llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr());
bool is_array_of_characters = false;
clang::QualType element_qual_type = array->getElementType();
const clang::Type *canonical_type = element_qual_type->getCanonicalTypeInternal().getTypePtr();
if (canonical_type)
is_array_of_characters = canonical_type->isCharType();
const uint64_t element_count = array->getSize().getLimitedValue();
std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(element_qual_type);
uint32_t element_idx = 0;
uint32_t element_offset = 0;
uint64_t element_byte_size = field_type_info.first / 8;
uint32_t element_stride = element_byte_size;
if (is_array_of_characters)
{
s->PutChar('"');
data.Dump(s, data_byte_offset, lldb::eFormatChar, element_byte_size, element_count, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('"');
return;
}
else
{
lldb::Format element_format = ClangASTType::GetFormat(element_qual_type.getAsOpaquePtr());
for (element_idx = 0; element_idx < element_count; ++element_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comman (for member 2 and beyong) for
// the struct/union/class member.
if (element_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent and print the index
s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT, "", element_idx);
// Figure out the field offset within the current struct/union/class type
element_offset = element_idx * element_stride;
// Dump the value of the member
DumpValue (ast_context, // The clang AST context for this type
element_qual_type.getAsOpaquePtr(), // The clang type we want to dump
exe_ctx,
s, // Stream to dump to
element_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset + element_offset,// Offset into "data" where to grab value from
element_byte_size, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (element_idx > 0)
s->Printf("\n%*s}", depth, "");
}
}
return;
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType();
lldb::Format typedef_format = ClangASTType::GetFormat(typedef_qual_type.getAsOpaquePtr());
std::pair<uint64_t, unsigned> typedef_type_info = ast_context->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.first / 8;
return DumpValue (ast_context, // The clang AST context for this type
typedef_qual_type.getAsOpaquePtr(), // The clang type we want to dump
exe_ctx,
s, // Stream to dump to
typedef_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
default:
// We are down the a scalar type that we just need to display.
data.Dump(s, data_byte_offset, format, data_byte_size, 1, UINT32_MAX, LLDB_INVALID_ADDRESS, bitfield_bit_size, bitfield_bit_offset);
if (show_summary)
DumpSummary (ast_context, clang_type, exe_ctx, s, data, data_byte_offset, data_byte_size);
break;
}
}
bool
ClangASTType::DumpTypeValue (Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
uint32_t byte_offset,
size_t byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
ExecutionContextScope *exe_scope)
{
return DumpTypeValue (m_ast,
m_type,
s,
format,
data,
byte_offset,
byte_size,
bitfield_bit_size,
bitfield_bit_offset,
exe_scope);
}
bool
ClangASTType::DumpTypeValue (clang::ASTContext *ast_context,
clang_type_t clang_type,
Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
uint32_t byte_offset,
size_t byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
ExecutionContextScope *exe_scope)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
if (ClangASTContext::IsAggregateType (clang_type))
{
return 0;
}
else
{
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType();
if (format == eFormatDefault)
format = ClangASTType::GetFormat(typedef_qual_type.getAsOpaquePtr());
std::pair<uint64_t, unsigned> typedef_type_info = ast_context->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.first / 8;
return ClangASTType::DumpTypeValue (ast_context, // The clang AST context for this type
typedef_qual_type.getAsOpaquePtr(), // The clang type we want to dump
s,
format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Size in bits of a bitfield value, if zero don't treat as a bitfield
bitfield_bit_offset, // Offset in bits of a bitfield value if bitfield_bit_size != 0
exe_scope);
}
break;
case clang::Type::Enum:
// If our format is enum or default, show the enumeration value as
// its enumeration string value, else just display it as requested.
if ((format == eFormatEnum || format == eFormatDefault) && ClangASTContext::GetCompleteType (ast_context, clang_type))
{
const clang::EnumType *enum_type = llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enum_type->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
uint32_t offset = byte_offset;
const int64_t enum_value = data.GetMaxU64Bitfield (&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal() == enum_value)
{
s->PutCString (enum_pos->getNameAsString().c_str());
return true;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%lli", enum_value);
return true;
}
// format was not enum, just fall through and dump the value as requested....
default:
// We are down the a scalar type that we just need to display.
{
uint32_t item_count = 1;
// A few formats, we might need to modify our size and count for depending
// on how we are trying to display the value...
switch (format)
{
default:
case eFormatBoolean:
case eFormatBinary:
case eFormatComplex:
case eFormatCString: // NULL terminated C strings
case eFormatDecimal:
case eFormatEnum:
case eFormatHex:
case eFormatFloat:
case eFormatOctal:
case eFormatOSType:
case eFormatUnsigned:
case eFormatPointer:
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray:
case eFormatBytes:
case eFormatBytesWithASCII:
item_count = byte_size;
byte_size = 1;
break;
case eFormatUnicode16:
item_count = byte_size / 2;
byte_size = 2;
break;
case eFormatUnicode32:
item_count = byte_size / 4;
byte_size = 4;
break;
}
return data.Dump (s,
byte_offset,
format,
byte_size,
item_count,
UINT32_MAX,
LLDB_INVALID_ADDRESS,
bitfield_bit_size,
bitfield_bit_offset,
exe_scope);
}
break;
}
}
return 0;
}
void
ClangASTType::DumpSummary
(
ExecutionContext *exe_ctx,
Stream *s,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size
)
{
return DumpSummary (m_ast,
m_type,
exe_ctx,
s,
data,
data_byte_offset,
data_byte_size);
}
void
ClangASTType::DumpSummary
(
clang::ASTContext *ast_context,
clang_type_t clang_type,
ExecutionContext *exe_ctx,
Stream *s,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size
)
{
uint32_t length = 0;
if (ClangASTContext::IsCStringType (clang_type, length))
{
if (exe_ctx)
{
Process *process = exe_ctx->GetProcessPtr();
if (process)
{
uint32_t offset = data_byte_offset;
lldb::addr_t pointer_addresss = data.GetMaxU64(&offset, data_byte_size);
std::vector<uint8_t> buf;
if (length > 0)
buf.resize (length);
else
buf.resize (256);
lldb_private::DataExtractor cstr_data(&buf.front(), buf.size(), process->GetByteOrder(), 4);
buf.back() = '\0';
size_t bytes_read;
size_t total_cstr_len = 0;
Error error;
while ((bytes_read = process->ReadMemory (pointer_addresss, &buf.front(), buf.size(), error)) > 0)
{
const size_t len = strlen((const char *)&buf.front());
if (len == 0)
break;
if (total_cstr_len == 0)
s->PutCString (" \"");
cstr_data.Dump(s, 0, lldb::eFormatChar, 1, len, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
total_cstr_len += len;
if (len < buf.size())
break;
pointer_addresss += total_cstr_len;
}
if (total_cstr_len > 0)
s->PutChar ('"');
}
}
}
}
uint32_t
ClangASTType::GetClangTypeBitWidth ()
{
return GetClangTypeBitWidth (m_ast, m_type);
}
uint32_t
ClangASTType::GetClangTypeBitWidth (clang::ASTContext *ast_context, clang_type_t clang_type)
{
if (ClangASTContext::GetCompleteType (ast_context, clang_type))
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
return ast_context->getTypeSize (qual_type);
}
return 0;
}
size_t
ClangASTType::GetTypeBitAlign ()
{
return GetTypeBitAlign (m_ast, m_type);
}
size_t
ClangASTType::GetTypeBitAlign (clang::ASTContext *ast_context, clang_type_t clang_type)
{
if (ClangASTContext::GetCompleteType (ast_context, clang_type))
return ast_context->getTypeAlign(clang::QualType::getFromOpaquePtr(clang_type));
return 0;
}
bool
ClangASTType::IsDefined()
{
return ClangASTType::IsDefined (m_type);
}
bool
ClangASTType::IsDefined (clang_type_t clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
return tag_decl->isCompleteDefinition();
return false;
}
else
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
return class_interface_decl->getDefinition() != NULL;
return false;
}
}
return true;
}
bool
ClangASTType::IsConst()
{
return ClangASTType::IsConst (m_type);
}
bool
ClangASTType::IsConst (lldb::clang_type_t clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
return qual_type.isConstQualified();
}
void
ClangASTType::DumpTypeDescription (Stream *s)
{
return DumpTypeDescription (m_ast, m_type, s);
}
// Dump the full description of a type. For classes this means all of the
// ivars and member functions, for structs/unions all of the members.
void
ClangASTType::DumpTypeDescription (clang::ASTContext *ast_context, clang_type_t clang_type, Stream *s)
{
if (clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
llvm::SmallVector<char, 1024> buf;
llvm::raw_svector_ostream llvm_ostrm (buf);
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (ClangASTContext::GetCompleteType (ast_context, clang_type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::PrintingPolicy policy = ast_context->getPrintingPolicy();
policy.Dump = 1;
class_interface_decl->print(llvm_ostrm, policy, s->GetIndentLevel());
}
}
}
break;
case clang::Type::Typedef:
{
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
std::string clang_typedef_name (typedef_decl->getQualifiedNameAsString());
if (!clang_typedef_name.empty())
{
s->PutCString ("typedef ");
s->PutCString (clang_typedef_name.c_str());
}
}
}
break;
case clang::Type::Record:
if (ClangASTContext::GetCompleteType (ast_context, clang_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
cxx_record_decl->print(llvm_ostrm, ast_context->getPrintingPolicy(), s->GetIndentLevel());
else
record_decl->print(llvm_ostrm, ast_context->getPrintingPolicy(), s->GetIndentLevel());
}
break;
default:
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
tag_decl->print(llvm_ostrm, 0);
}
else
{
std::string clang_type_name(qual_type.getAsString());
if (!clang_type_name.empty())
s->PutCString (clang_type_name.c_str());
}
}
}
llvm_ostrm.flush();
if (buf.size() > 0)
{
s->Write (buf.data(), buf.size());
}
}
}
void
ClangASTType::DumpTypeCode (Stream *s)
{
DumpTypeCode(m_type, s);
}
void
ClangASTType::DumpTypeCode (void *type,
Stream *s)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(type));
s->PutCString(qual_type.getAsString().c_str());
}
bool
ClangASTType::GetValueAsScalar
(
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size,
Scalar &value
)
{
return GetValueAsScalar (m_ast,
m_type,
data,
data_byte_offset,
data_byte_size,
value);
}
bool
ClangASTType::GetValueAsScalar
(
clang::ASTContext *ast_context,
clang_type_t clang_type,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size,
Scalar &value
)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
if (ClangASTContext::IsAggregateType (clang_type))
{
return false; // Aggregate types don't have scalar values
}
else
{
uint32_t count = 0;
lldb::Encoding encoding = GetEncoding (clang_type, count);
if (encoding == lldb::eEncodingInvalid || count != 1)
return false;
uint64_t bit_width = ast_context->getTypeSize(qual_type);
uint32_t byte_size = (bit_width + 7 ) / 8;
uint32_t offset = data_byte_offset;
switch (encoding)
{
case lldb::eEncodingInvalid:
break;
case lldb::eEncodingVector:
break;
case lldb::eEncodingUint:
if (byte_size <= sizeof(unsigned long long))
{
uint64_t uval64 = data.GetMaxU64 (&offset, byte_size);
if (byte_size <= sizeof(unsigned int))
{
value = (unsigned int)uval64;
return true;
}
else if (byte_size <= sizeof(unsigned long))
{
value = (unsigned long)uval64;
return true;
}
else if (byte_size <= sizeof(unsigned long long))
{
value = (unsigned long long )uval64;
return true;
}
else
value.Clear();
}
break;
case lldb::eEncodingSint:
if (byte_size <= sizeof(long long))
{
int64_t sval64 = data.GetMaxS64 (&offset, byte_size);
if (byte_size <= sizeof(int))
{
value = (int)sval64;
return true;
}
else if (byte_size <= sizeof(long))
{
value = (long)sval64;
return true;
}
else if (byte_size <= sizeof(long long))
{
value = (long long )sval64;
return true;
}
else
value.Clear();
}
break;
case lldb::eEncodingIEEE754:
if (byte_size <= sizeof(long double))
{
uint32_t u32;
uint64_t u64;
if (byte_size == sizeof(float))
{
if (sizeof(float) == sizeof(uint32_t))
{
u32 = data.GetU32(&offset);
value = *((float *)&u32);
return true;
}
else if (sizeof(float) == sizeof(uint64_t))
{
u64 = data.GetU64(&offset);
value = *((float *)&u64);
return true;
}
}
else
if (byte_size == sizeof(double))
{
if (sizeof(double) == sizeof(uint32_t))
{
u32 = data.GetU32(&offset);
value = *((double *)&u32);
return true;
}
else if (sizeof(double) == sizeof(uint64_t))
{
u64 = data.GetU64(&offset);
value = *((double *)&u64);
return true;
}
}
else
if (byte_size == sizeof(long double))
{
if (sizeof(long double) == sizeof(uint32_t))
{
u32 = data.GetU32(&offset);
value = *((long double *)&u32);
return true;
}
else if (sizeof(long double) == sizeof(uint64_t))
{
u64 = data.GetU64(&offset);
value = *((long double *)&u64);
return true;
}
}
}
break;
}
}
return false;
}
bool
ClangASTType::SetValueFromScalar (const Scalar &value, Stream &strm)
{
return SetValueFromScalar (m_ast, m_type, value, strm);
}
bool
ClangASTType::SetValueFromScalar
(
clang::ASTContext *ast_context,
clang_type_t clang_type,
const Scalar &value,
Stream &strm
)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
// Aggregate types don't have scalar values
if (!ClangASTContext::IsAggregateType (clang_type))
{
strm.GetFlags().Set(Stream::eBinary);
uint32_t count = 0;
lldb::Encoding encoding = GetEncoding (clang_type, count);
if (encoding == lldb::eEncodingInvalid || count != 1)
return false;
uint64_t bit_width = ast_context->getTypeSize(qual_type);
// This function doesn't currently handle non-byte aligned assignments
if ((bit_width % 8) != 0)
return false;
uint32_t byte_size = (bit_width + 7 ) / 8;
switch (encoding)
{
case lldb::eEncodingInvalid:
break;
case lldb::eEncodingVector:
break;
case lldb::eEncodingUint:
switch (byte_size)
{
case 1: strm.PutHex8(value.UInt()); return true;
case 2: strm.PutHex16(value.UInt()); return true;
case 4: strm.PutHex32(value.UInt()); return true;
case 8: strm.PutHex64(value.ULongLong()); return true;
default:
break;
}
break;
case lldb::eEncodingSint:
switch (byte_size)
{
case 1: strm.PutHex8(value.SInt()); return true;
case 2: strm.PutHex16(value.SInt()); return true;
case 4: strm.PutHex32(value.SInt()); return true;
case 8: strm.PutHex64(value.SLongLong()); return true;
default:
break;
}
break;
case lldb::eEncodingIEEE754:
if (byte_size <= sizeof(long double))
{
if (byte_size == sizeof(float))
{
strm.PutFloat(value.Float());
return true;
}
else
if (byte_size == sizeof(double))
{
strm.PutDouble(value.Double());
return true;
}
else
if (byte_size == sizeof(long double))
{
strm.PutDouble(value.LongDouble());
return true;
}
}
break;
}
}
return false;
}
bool
ClangASTType::ReadFromMemory
(
lldb_private::ExecutionContext *exe_ctx,
lldb::addr_t addr,
AddressType address_type,
lldb_private::DataExtractor &data
)
{
return ReadFromMemory (m_ast,
m_type,
exe_ctx,
addr,
address_type,
data);
}
uint32_t
ClangASTType::GetTypeByteSize() const
{
return GetTypeByteSize(m_ast,
m_type);
}
uint32_t
ClangASTType::GetTypeByteSize(
clang::ASTContext *ast_context,
lldb::clang_type_t opaque_clang_qual_type)
{
if (ClangASTContext::GetCompleteType (ast_context, opaque_clang_qual_type))
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(opaque_clang_qual_type));
return (ast_context->getTypeSize (qual_type) + 7) / 8;
}
return 0;
}
bool
ClangASTType::ReadFromMemory
(
clang::ASTContext *ast_context,
clang_type_t clang_type,
lldb_private::ExecutionContext *exe_ctx,
lldb::addr_t addr,
AddressType address_type,
lldb_private::DataExtractor &data
)
{
if (address_type == eAddressTypeFile)
{
// Can't convert a file address to anything valid without more
// context (which Module it came from)
return false;
}
if (!ClangASTContext::GetCompleteType(ast_context, clang_type))
return false;
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
const uint32_t byte_size = (ast_context->getTypeSize (qual_type) + 7) / 8;
if (data.GetByteSize() < byte_size)
{
lldb::DataBufferSP data_sp(new DataBufferHeap (byte_size, '\0'));
data.SetData(data_sp);
}
uint8_t* dst = (uint8_t*)data.PeekData(0, byte_size);
if (dst != NULL)
{
if (address_type == eAddressTypeHost)
{
// The address is an address in this process, so just copy it
memcpy (dst, (uint8_t*)NULL + addr, byte_size);
return true;
}
else
{
Process *process = NULL;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process)
{
Error error;
return process->ReadMemory(addr, dst, byte_size, error) == byte_size;
}
}
}
return false;
}
bool
ClangASTType::WriteToMemory
(
lldb_private::ExecutionContext *exe_ctx,
lldb::addr_t addr,
AddressType address_type,
StreamString &new_value
)
{
return WriteToMemory (m_ast,
m_type,
exe_ctx,
addr,
address_type,
new_value);
}
bool
ClangASTType::WriteToMemory
(
clang::ASTContext *ast_context,
clang_type_t clang_type,
lldb_private::ExecutionContext *exe_ctx,
lldb::addr_t addr,
AddressType address_type,
StreamString &new_value
)
{
if (address_type == eAddressTypeFile)
{
// Can't convert a file address to anything valid without more
// context (which Module it came from)
return false;
}
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
const uint32_t byte_size = (ast_context->getTypeSize (qual_type) + 7) / 8;
if (byte_size > 0)
{
if (address_type == eAddressTypeHost)
{
// The address is an address in this process, so just copy it
memcpy ((void *)addr, new_value.GetData(), byte_size);
return true;
}
else
{
Process *process = NULL;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process)
{
Error error;
return process->WriteMemory(addr, new_value.GetData(), byte_size, error) == byte_size;
}
}
}
return false;
}
lldb::clang_type_t
ClangASTType::RemoveFastQualifiers (lldb::clang_type_t clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
qual_type.getQualifiers().removeFastQualifiers();
return qual_type.getAsOpaquePtr();
}
bool
lldb_private::operator == (const lldb_private::ClangASTType &lhs, const lldb_private::ClangASTType &rhs)
{
return lhs.GetASTContext() == rhs.GetASTContext() && lhs.GetOpaqueQualType() == rhs.GetOpaqueQualType();
}
bool
lldb_private::operator != (const lldb_private::ClangASTType &lhs, const lldb_private::ClangASTType &rhs)
{
return lhs.GetASTContext() != rhs.GetASTContext() || lhs.GetOpaqueQualType() != rhs.GetOpaqueQualType();
}