blob: 523acd8da73afad966a24becd665ff8bdfd87c68 [file] [log] [blame]
//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/MachO.h"
#include "ObjectFileMachO.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBuffer.h"
#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/Timer.h"
#include "lldb/Core/UUID.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/FileSpec.h"
#include "lldb/Symbol/ClangNamespaceDecl.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
using namespace lldb;
using namespace lldb_private;
using namespace llvm::MachO;
class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64
{
public:
RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) :
RegisterContextDarwin_x86_64 (thread, 0)
{
SetRegisterDataFrom_LC_THREAD (data);
}
virtual void
InvalidateAllRegisters ()
{
// Do nothing... registers are always valid...
}
void
SetRegisterDataFrom_LC_THREAD (const DataExtractor &data)
{
uint32_t offset = 0;
SetError (GPRRegSet, Read, -1);
SetError (FPURegSet, Read, -1);
SetError (EXCRegSet, Read, -1);
bool done = false;
while (!done)
{
int flavor = data.GetU32 (&offset);
if (flavor == 0)
done = true;
else
{
uint32_t i;
uint32_t count = data.GetU32 (&offset);
switch (flavor)
{
case GPRRegSet:
for (i=0; i<count; ++i)
(&gpr.rax)[i] = data.GetU64(&offset);
SetError (GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
//SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU64(&offset);
SetError (EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the the above
// falvors...
break;
default:
done = true;
break;
}
}
}
}
protected:
virtual int
DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr)
{
return 0;
}
virtual int
DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu)
{
return 0;
}
virtual int
DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc)
{
return 0;
}
virtual int
DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr)
{
return 0;
}
virtual int
DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu)
{
return 0;
}
virtual int
DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc)
{
return 0;
}
};
class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386
{
public:
RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) :
RegisterContextDarwin_i386 (thread, 0)
{
SetRegisterDataFrom_LC_THREAD (data);
}
virtual void
InvalidateAllRegisters ()
{
// Do nothing... registers are always valid...
}
void
SetRegisterDataFrom_LC_THREAD (const DataExtractor &data)
{
uint32_t offset = 0;
SetError (GPRRegSet, Read, -1);
SetError (FPURegSet, Read, -1);
SetError (EXCRegSet, Read, -1);
bool done = false;
while (!done)
{
int flavor = data.GetU32 (&offset);
if (flavor == 0)
done = true;
else
{
uint32_t i;
uint32_t count = data.GetU32 (&offset);
switch (flavor)
{
case GPRRegSet:
for (i=0; i<count; ++i)
(&gpr.eax)[i] = data.GetU32(&offset);
SetError (GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
//SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU32(&offset);
SetError (EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the the above
// falvors...
break;
default:
done = true;
break;
}
}
}
}
protected:
virtual int
DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr)
{
return 0;
}
virtual int
DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu)
{
return 0;
}
virtual int
DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc)
{
return 0;
}
virtual int
DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr)
{
return 0;
}
virtual int
DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu)
{
return 0;
}
virtual int
DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc)
{
return 0;
}
};
class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm
{
public:
RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) :
RegisterContextDarwin_arm (thread, 0)
{
SetRegisterDataFrom_LC_THREAD (data);
}
virtual void
InvalidateAllRegisters ()
{
// Do nothing... registers are always valid...
}
void
SetRegisterDataFrom_LC_THREAD (const DataExtractor &data)
{
uint32_t offset = 0;
SetError (GPRRegSet, Read, -1);
SetError (FPURegSet, Read, -1);
SetError (EXCRegSet, Read, -1);
int flavor = data.GetU32 (&offset);
uint32_t count = data.GetU32 (&offset);
switch (flavor)
{
case GPRRegSet:
for (uint32_t i=0; i<count; ++i)
gpr.r[i] = data.GetU32(&offset);
SetError (GPRRegSet, Read, 0);
break;
case FPURegSet:
// TODO: fill in FPU regs....
//SetError (FPURegSet, Read, -1);
break;
case EXCRegSet:
exc.exception = data.GetU32(&offset);
exc.fsr = data.GetU32(&offset);
exc.far = data.GetU32(&offset);
SetError (EXCRegSet, Read, 0);
break;
}
}
protected:
virtual int
DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr)
{
return 0;
}
virtual int
DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu)
{
return 0;
}
virtual int
DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc)
{
return 0;
}
virtual int
DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr)
{
return 0;
}
virtual int
DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu)
{
return 0;
}
virtual int
DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc)
{
return 0;
}
};
#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
void
ObjectFileMachO::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance,
CreateMemoryInstance);
}
void
ObjectFileMachO::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
const char *
ObjectFileMachO::GetPluginNameStatic()
{
return "object-file.mach-o";
}
const char *
ObjectFileMachO::GetPluginDescriptionStatic()
{
return "Mach-o object file reader (32 and 64 bit)";
}
ObjectFile *
ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length)
{
if (ObjectFileMachO::MagicBytesMatch(data_sp, offset, length))
{
std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, file, offset, length));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
ObjectFile *
ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
DataBufferSP& data_sp,
const ProcessSP &process_sp,
lldb::addr_t header_addr)
{
if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
{
std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
const ConstString &
ObjectFileMachO::GetSegmentNameTEXT()
{
static ConstString g_segment_name_TEXT ("__TEXT");
return g_segment_name_TEXT;
}
const ConstString &
ObjectFileMachO::GetSegmentNameDATA()
{
static ConstString g_segment_name_DATA ("__DATA");
return g_segment_name_DATA;
}
const ConstString &
ObjectFileMachO::GetSegmentNameOBJC()
{
static ConstString g_segment_name_OBJC ("__OBJC");
return g_segment_name_OBJC;
}
const ConstString &
ObjectFileMachO::GetSegmentNameLINKEDIT()
{
static ConstString g_section_name_LINKEDIT ("__LINKEDIT");
return g_section_name_LINKEDIT;
}
const ConstString &
ObjectFileMachO::GetSectionNameEHFrame()
{
static ConstString g_section_name_eh_frame ("__eh_frame");
return g_section_name_eh_frame;
}
static uint32_t
MachHeaderSizeFromMagic(uint32_t magic)
{
switch (magic)
{
case HeaderMagic32:
case HeaderMagic32Swapped:
return sizeof(struct mach_header);
case HeaderMagic64:
case HeaderMagic64Swapped:
return sizeof(struct mach_header_64);
break;
default:
break;
}
return 0;
}
bool
ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp,
lldb::addr_t data_offset,
lldb::addr_t data_length)
{
DataExtractor data;
data.SetData (data_sp, data_offset, data_length);
uint32_t offset = 0;
uint32_t magic = data.GetU32(&offset);
return MachHeaderSizeFromMagic(magic) != 0;
}
ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length) :
ObjectFile(module_sp, file, offset, length, data_sp),
m_sections_ap(),
m_symtab_ap(),
m_mach_segments(),
m_mach_sections(),
m_entry_point_address(),
m_thread_context_offsets(),
m_thread_context_offsets_valid(false)
{
::memset (&m_header, 0, sizeof(m_header));
::memset (&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp,
lldb::DataBufferSP& header_data_sp,
const lldb::ProcessSP &process_sp,
lldb::addr_t header_addr) :
ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
m_sections_ap(),
m_symtab_ap(),
m_mach_segments(),
m_mach_sections(),
m_entry_point_address(),
m_thread_context_offsets(),
m_thread_context_offsets_valid(false)
{
::memset (&m_header, 0, sizeof(m_header));
::memset (&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::~ObjectFileMachO()
{
}
bool
ObjectFileMachO::ParseHeader ()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
bool can_parse = false;
uint32_t offset = 0;
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
// Leave magic in the original byte order
m_header.magic = m_data.GetU32(&offset);
switch (m_header.magic)
{
case HeaderMagic32:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(8);
can_parse = true;
break;
case HeaderMagic32Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(8);
can_parse = true;
break;
default:
break;
}
if (can_parse)
{
m_data.GetU32(&offset, &m_header.cputype, 6);
ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
if (SetModulesArchitecture (mach_arch))
{
const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
if (m_data.GetByteSize() < header_and_lc_size)
{
DataBufferSP data_sp;
ProcessSP process_sp (m_process_wp.lock());
if (process_sp)
{
data_sp = ReadMemory (process_sp, m_offset, header_and_lc_size);
}
else
{
// Read in all only the load command data from the file on disk
data_sp = m_file.ReadFileContents(m_offset, header_and_lc_size);
if (data_sp->GetByteSize() != header_and_lc_size)
return false;
}
if (data_sp)
m_data.SetData (data_sp);
}
}
return true;
}
else
{
memset(&m_header, 0, sizeof(struct mach_header));
}
}
return false;
}
ByteOrder
ObjectFileMachO::GetByteOrder () const
{
return m_data.GetByteOrder ();
}
bool
ObjectFileMachO::IsExecutable() const
{
return m_header.filetype == HeaderFileTypeExecutable;
}
size_t
ObjectFileMachO::GetAddressByteSize () const
{
return m_data.GetAddressByteSize ();
}
AddressClass
ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr)
{
Symtab *symtab = GetSymtab();
if (symtab)
{
Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
if (symbol)
{
if (symbol->ValueIsAddress())
{
SectionSP section_sp (symbol->GetAddress().GetSection());
if (section_sp)
{
const SectionType section_type = section_sp->GetType();
switch (section_type)
{
case eSectionTypeInvalid: return eAddressClassUnknown;
case eSectionTypeCode:
if (m_header.cputype == llvm::MachO::CPUTypeARM)
{
// For ARM we have a bit in the n_desc field of the symbol
// that tells us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return eAddressClassCodeAlternateISA;
}
return eAddressClassCode;
case eSectionTypeContainer: return eAddressClassUnknown;
case eSectionTypeData:
case eSectionTypeDataCString:
case eSectionTypeDataCStringPointers:
case eSectionTypeDataSymbolAddress:
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
case eSectionTypeDataPointers:
case eSectionTypeZeroFill:
case eSectionTypeDataObjCMessageRefs:
case eSectionTypeDataObjCCFStrings:
return eAddressClassData;
case eSectionTypeDebug:
case eSectionTypeDWARFDebugAbbrev:
case eSectionTypeDWARFDebugAranges:
case eSectionTypeDWARFDebugFrame:
case eSectionTypeDWARFDebugInfo:
case eSectionTypeDWARFDebugLine:
case eSectionTypeDWARFDebugLoc:
case eSectionTypeDWARFDebugMacInfo:
case eSectionTypeDWARFDebugPubNames:
case eSectionTypeDWARFDebugPubTypes:
case eSectionTypeDWARFDebugRanges:
case eSectionTypeDWARFDebugStr:
case eSectionTypeDWARFAppleNames:
case eSectionTypeDWARFAppleTypes:
case eSectionTypeDWARFAppleNamespaces:
case eSectionTypeDWARFAppleObjC:
return eAddressClassDebug;
case eSectionTypeEHFrame: return eAddressClassRuntime;
case eSectionTypeOther: return eAddressClassUnknown;
}
}
}
const SymbolType symbol_type = symbol->GetType();
switch (symbol_type)
{
case eSymbolTypeAny: return eAddressClassUnknown;
case eSymbolTypeAbsolute: return eAddressClassUnknown;
case eSymbolTypeCode:
case eSymbolTypeTrampoline:
if (m_header.cputype == llvm::MachO::CPUTypeARM)
{
// For ARM we have a bit in the n_desc field of the symbol
// that tells us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return eAddressClassCodeAlternateISA;
}
return eAddressClassCode;
case eSymbolTypeData: return eAddressClassData;
case eSymbolTypeRuntime: return eAddressClassRuntime;
case eSymbolTypeException: return eAddressClassRuntime;
case eSymbolTypeSourceFile: return eAddressClassDebug;
case eSymbolTypeHeaderFile: return eAddressClassDebug;
case eSymbolTypeObjectFile: return eAddressClassDebug;
case eSymbolTypeCommonBlock: return eAddressClassDebug;
case eSymbolTypeBlock: return eAddressClassDebug;
case eSymbolTypeLocal: return eAddressClassData;
case eSymbolTypeParam: return eAddressClassData;
case eSymbolTypeVariable: return eAddressClassData;
case eSymbolTypeVariableType: return eAddressClassDebug;
case eSymbolTypeLineEntry: return eAddressClassDebug;
case eSymbolTypeLineHeader: return eAddressClassDebug;
case eSymbolTypeScopeBegin: return eAddressClassDebug;
case eSymbolTypeScopeEnd: return eAddressClassDebug;
case eSymbolTypeAdditional: return eAddressClassUnknown;
case eSymbolTypeCompiler: return eAddressClassDebug;
case eSymbolTypeInstrumentation:return eAddressClassDebug;
case eSymbolTypeUndefined: return eAddressClassUnknown;
case eSymbolTypeObjCClass: return eAddressClassRuntime;
case eSymbolTypeObjCMetaClass: return eAddressClassRuntime;
case eSymbolTypeObjCIVar: return eAddressClassRuntime;
}
}
}
return eAddressClassUnknown;
}
Symtab *
ObjectFileMachO::GetSymtab()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (m_symtab_ap.get() == NULL)
{
m_symtab_ap.reset(new Symtab(this));
Mutex::Locker symtab_locker (m_symtab_ap->GetMutex());
ParseSymtab (true);
m_symtab_ap->Finalize ();
}
}
return m_symtab_ap.get();
}
SectionList *
ObjectFileMachO::GetSectionList()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (m_sections_ap.get() == NULL)
{
m_sections_ap.reset(new SectionList());
ParseSections();
}
}
return m_sections_ap.get();
}
size_t
ObjectFileMachO::ParseSections ()
{
lldb::user_id_t segID = 0;
lldb::user_id_t sectID = 0;
struct segment_command_64 load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
const bool is_core = GetType() == eTypeCoreFile;
//bool dump_sections = false;
ModuleSP module_sp (GetModule());
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64)
{
if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16))
{
load_cmd.vmaddr = m_data.GetAddress(&offset);
load_cmd.vmsize = m_data.GetAddress(&offset);
load_cmd.fileoff = m_data.GetAddress(&offset);
load_cmd.filesize = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &load_cmd.maxprot, 4))
{
const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0;
// Keep a list of mach segments around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_segments.push_back (load_cmd);
ConstString segment_name (load_cmd.segname, std::min<int>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
// Use a segment ID of the segment index shifted left by 8 so they
// never conflict with any of the sections.
SectionSP segment_sp;
if (segment_name || is_core)
{
segment_sp.reset(new Section (module_sp, // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
load_cmd.vmaddr, // File VM address == addresses as they are found in the object file
load_cmd.vmsize, // VM size in bytes of this section
load_cmd.fileoff, // Offset to the data for this section in the file
load_cmd.filesize, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsEncrypted (segment_is_encrypted);
m_sections_ap->AddSection(segment_sp);
}
struct section_64 sect64;
::memset (&sect64, 0, sizeof(sect64));
// Push a section into our mach sections for the section at
// index zero (NListSectionNoSection) if we don't have any
// mach sections yet...
if (m_mach_sections.empty())
m_mach_sections.push_back(sect64);
uint32_t segment_sect_idx;
const lldb::user_id_t first_segment_sectID = sectID + 1;
const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8;
for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx)
{
if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL)
break;
if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL)
break;
sect64.addr = m_data.GetAddress(&offset);
sect64.size = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
break;
// Keep a list of mach sections around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_sections.push_back (sect64);
ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
if (!segment_name)
{
// We have a segment with no name so we need to conjure up
// segments that correspond to the section's segname if there
// isn't already such a section. If there is such a section,
// we resize the section so that it spans all sections.
// We also mark these sections as fake so address matches don't
// hit if they land in the gaps between the child sections.
segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname));
segment_sp = m_sections_ap->FindSectionByName (segment_name);
if (segment_sp.get())
{
Section *segment = segment_sp.get();
// Grow the section size as needed.
const lldb::addr_t sect64_min_addr = sect64.addr;
const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size;
if (sect64_min_addr >= curr_seg_min_addr)
{
const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr;
// Only grow the section size if needed
if (new_seg_byte_size > curr_seg_byte_size)
segment->SetByteSize (new_seg_byte_size);
}
else
{
// We need to change the base address of the segment and
// adjust the child section offsets for all existing children.
const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr;
segment->Slide(slide_amount, false);
segment->GetChildren().Slide (-slide_amount, false);
segment->SetByteSize (curr_seg_max_addr - sect64_min_addr);
}
// Grow the section size as needed.
if (sect64.offset)
{
const lldb::addr_t segment_min_file_offset = segment->GetFileOffset();
const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize();
const lldb::addr_t section_min_file_offset = sect64.offset;
const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size;
const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset);
const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset;
segment->SetFileOffset (new_file_offset);
segment->SetFileSize (new_file_size);
}
}
else
{
// Create a fake section for the section's named segment
segment_sp.reset(new Section (segment_sp, // Parent section
module_sp, // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
sect64.addr, // File VM address == addresses as they are found in the object file
sect64.size, // VM size in bytes of this section
sect64.offset, // Offset to the data for this section in the file
sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsFake(true);
m_sections_ap->AddSection(segment_sp);
segment_sp->SetIsEncrypted (segment_is_encrypted);
}
}
assert (segment_sp.get());
uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType;
static ConstString g_sect_name_objc_data ("__objc_data");
static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs");
static ConstString g_sect_name_objc_selrefs ("__objc_selrefs");
static ConstString g_sect_name_objc_classrefs ("__objc_classrefs");
static ConstString g_sect_name_objc_superrefs ("__objc_superrefs");
static ConstString g_sect_name_objc_const ("__objc_const");
static ConstString g_sect_name_objc_classlist ("__objc_classlist");
static ConstString g_sect_name_cfstring ("__cfstring");
static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev");
static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges");
static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame");
static ConstString g_sect_name_dwarf_debug_info ("__debug_info");
static ConstString g_sect_name_dwarf_debug_line ("__debug_line");
static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc");
static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo");
static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames");
static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes");
static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges");
static ConstString g_sect_name_dwarf_debug_str ("__debug_str");
static ConstString g_sect_name_dwarf_apple_names ("__apple_names");
static ConstString g_sect_name_dwarf_apple_types ("__apple_types");
static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac");
static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc");
static ConstString g_sect_name_eh_frame ("__eh_frame");
static ConstString g_sect_name_DATA ("__DATA");
static ConstString g_sect_name_TEXT ("__TEXT");
SectionType sect_type = eSectionTypeOther;
if (section_name == g_sect_name_dwarf_debug_abbrev)
sect_type = eSectionTypeDWARFDebugAbbrev;
else if (section_name == g_sect_name_dwarf_debug_aranges)
sect_type = eSectionTypeDWARFDebugAranges;
else if (section_name == g_sect_name_dwarf_debug_frame)
sect_type = eSectionTypeDWARFDebugFrame;
else if (section_name == g_sect_name_dwarf_debug_info)
sect_type = eSectionTypeDWARFDebugInfo;
else if (section_name == g_sect_name_dwarf_debug_line)
sect_type = eSectionTypeDWARFDebugLine;
else if (section_name == g_sect_name_dwarf_debug_loc)
sect_type = eSectionTypeDWARFDebugLoc;
else if (section_name == g_sect_name_dwarf_debug_macinfo)
sect_type = eSectionTypeDWARFDebugMacInfo;
else if (section_name == g_sect_name_dwarf_debug_pubnames)
sect_type = eSectionTypeDWARFDebugPubNames;
else if (section_name == g_sect_name_dwarf_debug_pubtypes)
sect_type = eSectionTypeDWARFDebugPubTypes;
else if (section_name == g_sect_name_dwarf_debug_ranges)
sect_type = eSectionTypeDWARFDebugRanges;
else if (section_name == g_sect_name_dwarf_debug_str)
sect_type = eSectionTypeDWARFDebugStr;
else if (section_name == g_sect_name_dwarf_apple_names)
sect_type = eSectionTypeDWARFAppleNames;
else if (section_name == g_sect_name_dwarf_apple_types)
sect_type = eSectionTypeDWARFAppleTypes;
else if (section_name == g_sect_name_dwarf_apple_namespaces)
sect_type = eSectionTypeDWARFAppleNamespaces;
else if (section_name == g_sect_name_dwarf_apple_objc)
sect_type = eSectionTypeDWARFAppleObjC;
else if (section_name == g_sect_name_objc_selrefs)
sect_type = eSectionTypeDataCStringPointers;
else if (section_name == g_sect_name_objc_msgrefs)
sect_type = eSectionTypeDataObjCMessageRefs;
else if (section_name == g_sect_name_eh_frame)
sect_type = eSectionTypeEHFrame;
else if (section_name == g_sect_name_cfstring)
sect_type = eSectionTypeDataObjCCFStrings;
else if (section_name == g_sect_name_objc_data ||
section_name == g_sect_name_objc_classrefs ||
section_name == g_sect_name_objc_superrefs ||
section_name == g_sect_name_objc_const ||
section_name == g_sect_name_objc_classlist)
{
sect_type = eSectionTypeDataPointers;
}
if (sect_type == eSectionTypeOther)
{
switch (mach_sect_type)
{
// TODO: categorize sections by other flags for regular sections
case SectionTypeRegular:
if (segment_sp->GetName() == g_sect_name_TEXT)
sect_type = eSectionTypeCode;
else if (segment_sp->GetName() == g_sect_name_DATA)
sect_type = eSectionTypeData;
else
sect_type = eSectionTypeOther;
break;
case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break;
case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings
case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals
case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination
case SectionTypeCoalesced: sect_type = eSectionTypeOther; break;
case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break;
case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break;
case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break;
default: break;
}
}
SectionSP section_sp(new Section (segment_sp,
module_sp,
++sectID,
section_name,
sect_type,
sect64.addr - segment_sp->GetFileAddress(),
sect64.size,
sect64.offset,
sect64.offset == 0 ? 0 : sect64.size,
sect64.flags));
// Set the section to be encrypted to match the segment
section_sp->SetIsEncrypted (segment_is_encrypted);
segment_sp->GetChildren().AddSection(section_sp);
if (segment_sp->IsFake())
{
segment_sp.reset();
segment_name.Clear();
}
}
if (segment_sp && m_header.filetype == HeaderFileTypeDSYM)
{
if (first_segment_sectID <= sectID)
{
lldb::user_id_t sect_uid;
for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid)
{
SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid));
SectionSP next_section_sp;
if (sect_uid + 1 <= sectID)
next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1);
if (curr_section_sp.get())
{
if (curr_section_sp->GetByteSize() == 0)
{
if (next_section_sp.get() != NULL)
curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() );
else
curr_section_sp->SetByteSize ( load_cmd.vmsize );
}
}
}
}
}
}
}
}
else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo)
{
m_dysymtab.cmd = load_cmd.cmd;
m_dysymtab.cmdsize = load_cmd.cmdsize;
m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
}
offset = load_cmd_offset + load_cmd.cmdsize;
}
// if (dump_sections)
// {
// StreamFile s(stdout);
// m_sections_ap->Dump(&s, true);
// }
return sectID; // Return the number of sections we registered with the module
}
class MachSymtabSectionInfo
{
public:
MachSymtabSectionInfo (SectionList *section_list) :
m_section_list (section_list),
m_section_infos()
{
// Get the number of sections down to a depth of 1 to include
// all segments and their sections, but no other sections that
// may be added for debug map or
m_section_infos.resize(section_list->GetNumSections(1));
}
SectionSP
GetSection (uint8_t n_sect, addr_t file_addr)
{
if (n_sect == 0)
return SectionSP();
if (n_sect < m_section_infos.size())
{
if (!m_section_infos[n_sect].section_sp)
{
SectionSP section_sp (m_section_list->FindSectionByID (n_sect));
m_section_infos[n_sect].section_sp = section_sp;
if (section_sp != NULL)
{
m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress());
m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize());
}
else
{
Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect);
}
}
if (m_section_infos[n_sect].vm_range.Contains(file_addr))
{
// Symbol is in section.
return m_section_infos[n_sect].section_sp;
}
else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 &&
m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr)
{
// Symbol is in section with zero size, but has the same start
// address as the section. This can happen with linker symbols
// (symbols that start with the letter 'l' or 'L'.
return m_section_infos[n_sect].section_sp;
}
}
return m_section_list->FindSectionContainingFileAddress(file_addr);
}
protected:
struct SectionInfo
{
SectionInfo () :
vm_range(),
section_sp ()
{
}
VMRange vm_range;
SectionSP section_sp;
};
SectionList *m_section_list;
std::vector<SectionInfo> m_section_infos;
};
size_t
ObjectFileMachO::ParseSymtab (bool minimize)
{
Timer scoped_timer(__PRETTY_FUNCTION__,
"ObjectFileMachO::ParseSymtab () module = %s",
m_file.GetFilename().AsCString(""));
ModuleSP module_sp (GetModule());
if (!module_sp)
return 0;
struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 };
struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 };
typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
FunctionStarts function_starts;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
// Read in the load command and load command size
struct load_command lc;
if (m_data.GetU32(&offset, &lc, 2) == NULL)
break;
// Watch for the symbol table load command
switch (lc.cmd)
{
case LoadCommandSymtab:
symtab_load_command.cmd = lc.cmd;
symtab_load_command.cmdsize = lc.cmdsize;
// Read in the rest of the symtab load command
if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields
return 0;
if (symtab_load_command.symoff == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.symoff == 0");
return 0;
}
if (symtab_load_command.stroff == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.stroff == 0");
return 0;
}
if (symtab_load_command.nsyms == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.nsyms == 0");
return 0;
}
if (symtab_load_command.strsize == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.strsize == 0");
return 0;
}
break;
case LoadCommandFunctionStarts:
function_starts_load_command.cmd = lc.cmd;
function_starts_load_command.cmdsize = lc.cmdsize;
if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields
bzero (&function_starts_load_command, sizeof(function_starts_load_command));
break;
default:
break;
}
offset = cmd_offset + lc.cmdsize;
}
if (symtab_load_command.cmd)
{
Symtab *symtab = m_symtab_ap.get();
SectionList *section_list = GetSectionList();
if (section_list == NULL)
return 0;
ProcessSP process_sp (m_process_wp.lock());
const size_t addr_byte_size = m_data.GetAddressByteSize();
bool bit_width_32 = addr_byte_size == 4;
const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
DataExtractor nlist_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize());
DataExtractor strtab_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize());
DataExtractor function_starts_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize());
const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size;
const addr_t strtab_data_byte_size = symtab_load_command.strsize;
if (process_sp)
{
Target &target = process_sp->GetTarget();
SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
// Reading mach file from memory in a process or core file...
if (linkedit_section_sp)
{
const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target);
const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset;
const addr_t stroff_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset;
bool data_was_read = false;
#if defined (__APPLE__) && defined (__arm__)
if (m_header.flags & 0x80000000u)
{
// This mach-o memory file is in the dyld shared cache. If this
// program is not remote and this is iOS, then this process will
// share the same shared cache as the process we are debugging and
// we can read the entire __LINKEDIT from the address space in this
// process. This is a needed optimization that is used for local iOS
// debugging only since all shared libraries in the shared cache do
// not have corresponding files that exist in the file system of the
// device. They have been combined into a single file. This means we
// always have to load these files from memory. All of the symbol and
// string tables from all of the __LINKEDIT sections from the shared
// libraries in the shared cache have been merged into a single large
// symbol and string table. Reading all of this symbol and string table
// data across can slow down debug launch times, so we optimize this by
// reading the memory for the __LINKEDIT section from this process.
PlatformSP platform_sp (target.GetPlatform());
if (platform_sp && platform_sp->IsHost())
{
data_was_read = true;
nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle);
strtab_data.SetData((void *)stroff_addr, strtab_data_byte_size, eByteOrderLittle);
if (function_starts_load_command.cmd)
{
const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset;
function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle);
}
}
}
#endif
if (!data_was_read)
{
DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size));
if (nlist_data_sp)
nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize());
DataBufferSP strtab_data_sp (ReadMemory (process_sp, stroff_addr, strtab_data_byte_size));
if (strtab_data_sp)
strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize());
if (function_starts_load_command.cmd)
{
const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset;
DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize));
if (func_start_data_sp)
function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize());
}
}
}
}
else
{
nlist_data.SetData (m_data,
symtab_load_command.symoff,
nlist_data_byte_size);
strtab_data.SetData (m_data,
symtab_load_command.stroff,
strtab_data_byte_size);
if (function_starts_load_command.cmd)
{
function_starts_data.SetData (m_data,
function_starts_load_command.dataoff,
function_starts_load_command.datasize);
}
}
if (nlist_data.GetByteSize() == 0)
{
if (log)
module_sp->LogMessage(log.get(), "failed to read nlist data");
return 0;
}
if (strtab_data.GetByteSize() == 0)
{
if (log)
module_sp->LogMessage(log.get(), "failed to read strtab data");
return 0;
}
const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT));
SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA));
SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC));
SectionSP eh_frame_section_sp;
if (text_section_sp.get())
eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame);
else
eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame);
const bool is_arm = (m_header.cputype == llvm::MachO::CPUTypeARM);
if (text_section_sp && function_starts_data.GetByteSize())
{
FunctionStarts::Entry function_start_entry;
function_start_entry.data = false;
uint32_t function_start_offset = 0;
function_start_entry.addr = text_section_sp->GetFileAddress();
uint64_t delta;
while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0)
{
// Now append the current entry
function_start_entry.addr += delta;
function_starts.Append(function_start_entry);
}
}
const uint32_t function_starts_count = function_starts.GetSize();
uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection;
uint32_t nlist_data_offset = 0;
uint32_t N_SO_index = UINT32_MAX;
MachSymtabSectionInfo section_info (section_list);
std::vector<uint32_t> N_FUN_indexes;
std::vector<uint32_t> N_NSYM_indexes;
std::vector<uint32_t> N_INCL_indexes;
std::vector<uint32_t> N_BRAC_indexes;
std::vector<uint32_t> N_COMM_indexes;
typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap;
typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap;
ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
// Any symbols that get merged into another will get an entry
// in this map so we know
NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
uint32_t nlist_idx = 0;
Symbol *symbol_ptr = NULL;
uint32_t sym_idx = 0;
Symbol *sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
uint32_t num_syms = symtab->GetNumSymbols();
//symtab->Reserve (symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms; ++nlist_idx)
{
struct nlist_64 nlist;
if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
break;
nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset);
nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset);
nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset);
nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset);
SymbolType type = eSymbolTypeInvalid;
const char *symbol_name = strtab_data.PeekCStr(nlist.n_strx);
if (symbol_name == NULL)
{
// No symbol should be NULL, even the symbols with no
// string values should have an offset zero which points
// to an empty C-string
Host::SystemLog (Host::eSystemLogError,
"error: symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n",
nlist_idx,
nlist.n_strx,
module_sp->GetFileSpec().GetDirectory().GetCString(),
module_sp->GetFileSpec().GetFilename().GetCString());
continue;
}
const char *symbol_name_non_abi_mangled = NULL;
if (symbol_name[0] == '\0')
symbol_name = NULL;
SectionSP symbol_section;
uint32_t symbol_byte_size = 0;
bool add_nlist = true;
bool is_debug = ((nlist.n_type & NlistMaskStab) != 0);
assert (sym_idx < num_syms);
sym[sym_idx].SetDebug (is_debug);
if (is_debug)
{
switch (nlist.n_type)
{
case StabGlobalSymbol:
// N_GSYM -- global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
// FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They
// have the same address, but we want to ensure that we always find only the real symbol,
// 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass
// symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated
// correctly. To do this right, we should coalesce all the GSYM & global symbols that have the
// same address.
if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O'
&& (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0
|| strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0
|| strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0))
add_nlist = false;
else
{
sym[sym_idx].SetExternal(true);
if (nlist.n_value != 0)
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
}
break;
case StabFunctionName:
// N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabFunction:
// N_FUN -- procedure: name,,n_sect,linenumber,address
if (symbol_name)
{
type = eSymbolTypeCode;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx;
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_FUN_indexes.push_back(sym_idx);
}
else
{
type = eSymbolTypeCompiler;
if ( !N_FUN_indexes.empty() )
{
// Copy the size of the function into the original STAB entry so we don't have
// to hunt for it later
symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as it contains the size which
// we already placed with the original symbol, so don't add it if we want a
// minimal symbol table
if (minimize)
add_nlist = false;
}
}
break;
case StabStaticSymbol:
// N_STSYM -- static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
break;
case StabLocalCommon:
// N_LCSYM -- .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case StabBeginSymbol:
// N_BNSYM
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_NSYM_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
}
break;
case StabEndSymbol:
// N_ENSYM
// Set the size of the N_BNSYM to the terminating index of this N_ENSYM
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
if ( !N_NSYM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_NSYM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
}
break;
case StabSourceFileOptions:
// N_OPT - emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case StabRegisterSymbol:
// N_RSYM - register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case StabSourceLine:
// N_SLINE - src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case StabStructureType:
// N_SSYM - structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case StabSourceFileName:
// N_SO - source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL)
{
if (minimize)
add_nlist = false;
if (N_SO_index != UINT32_MAX)
{
// Set the size of the N_SO to the terminating index of this N_SO
// so that we can always skip the entire N_SO if we need to navigate
// more quickly at the source level when parsing STABS
symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1));
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
}
else
{
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (symbol_name[0] == '/')
N_SO_index = sym_idx;
else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms))
{
const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
if (so_path && so_path[0])
{
std::string full_so_path (so_path);
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(full_so_path.c_str(), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
}
}
break;
case StabObjectFileName:
// N_OSO - object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case StabLocalSymbol:
// N_LSYM - local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
//----------------------------------------------------------------------
// INCL scopes
//----------------------------------------------------------------------
case StabBeginIncludeFileName:
// N_BINCL - include file beginning: name,,NO_SECT,0,sum
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabEndIncludeFile:
// N_EINCL - include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating index of this N_EINCL
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_INCL_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabIncludeFileName:
// N_SOL - #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
if (minimize)
add_nlist = false;
break;
case StabCompilerParameters:
// N_PARAMS - compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerVersion:
// N_VERSION - compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerOptLevel:
// N_OLEVEL - compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabParameter:
// N_PSYM - parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case StabAlternateEntry:
// N_ENTRY - alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
//----------------------------------------------------------------------
// Left and Right Braces
//----------------------------------------------------------------------
case StabLeftBracket:
// N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabRightBracket:
// N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address
// Set the size of the N_LBRAC to the terminating index of this N_RBRAC
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if ( !N_BRAC_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabDeletedIncludeFile:
// N_EXCL - deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
//----------------------------------------------------------------------
// COMM scopes
//----------------------------------------------------------------------
case StabBeginCommon:
// N_BCOMM - begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case StabEndCommonLocal:
// N_ECOML - end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
// Fall through
case StabEndCommon:
// N_ECOMM - end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_COMM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabLength:
// N_LENG - second stab entry with length information
type = eSymbolTypeAdditional;
break;
default: break;
}
}
else
{
//uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type;
uint8_t n_type = NlistMaskType & nlist.n_type;
sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0);
switch (n_type)
{
case NListTypeIndirect: // N_INDR - Fall through
case NListTypePreboundUndefined:// N_PBUD - Fall through
case NListTypeUndefined: // N_UNDF
type = eSymbolTypeUndefined;
break;
case NListTypeAbsolute: // N_ABS
type = eSymbolTypeAbsolute;
break;
case NListTypeSection: // N_SECT
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if (symbol_section == NULL)
{
// TODO: warn about this?
add_nlist = false;
break;
}
if (TEXT_eh_frame_sectID == nlist.n_sect)
{
type = eSymbolTypeException;
}
else
{
uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType;
switch (section_type)
{
case SectionTypeRegular: break; // regular section
//case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section
case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings
case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals
case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination
//case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced
//case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes)
case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break;
case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break;
default: break;
}
if (type == eSymbolTypeInvalid)
{
const char *symbol_sect_name = symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant (text_section_sp.get()))
{
if (symbol_section->IsClear(SectionAttrUserPureInstructions |
SectionAttrUserSelfModifyingCode |
SectionAttrSytemSomeInstructions))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
}
else
if (symbol_section->IsDescendant(data_section_sp.get()))
{
if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name)
{
type = eSymbolTypeRuntime;
if (symbol_name &&
symbol_name[0] == '_' &&
symbol_name[1] == 'O' &&
symbol_name[2] == 'B')
{
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_");
if (symbol_name_ref.startswith(g_objc_v2_prefix_class))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
}
else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
}
else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
}
}
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name)
{
type = eSymbolTypeException;
}
else
{
type = eSymbolTypeData;
}
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name)
{
type = eSymbolTypeTrampoline;
}
else
if (symbol_section->IsDescendant(objc_section_sp.get()))
{
type = eSymbolTypeRuntime;
if (symbol_name && symbol_name[0] == '.')
{
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_");
if (symbol_name_ref.startswith(g_objc_v1_prefix_class))
{
symbol_name_non_abi_mangled = symbol_name;
symbol_name = symbol_name + g_objc_v1_prefix_class.size();
type = eSymbolTypeObjCClass;
}
}
}
}
}
}
break;
}
}
if (add_nlist)
{
uint64_t symbol_value = nlist.n_value;
bool symbol_name_is_mangled = false;
if (symbol_name_non_abi_mangled)
{
sym[sym_idx].GetMangled().SetMangledName (symbol_name_non_abi_mangled);
sym[sym_idx].GetMangled().SetDemangledName (symbol_name);
}
else
{
if (symbol_name && symbol_name[0] == '_')
{
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
if (symbol_name)
{
sym[sym_idx].GetMangled().SetValue(symbol_name, symbol_name_is_mangled);
}
}
if (is_debug == false)
{
if (type == eSymbolTypeCode)
{
// See if we can find a N_FUN entry for any code symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the function symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_FUN_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_FUN flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
else if (type == eSymbolTypeData)
{
// See if we can find a N_STSYM entry for any data symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the Static symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_STSYM_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_STSYM flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
if (symbol_section)
{
const addr_t section_file_addr = symbol_section->GetFileAddress();
if (symbol_byte_size == 0 && function_starts_count > 0)
{
addr_t symbol_lookup_file_addr = nlist.n_value;
// Do an exact address match for non-ARM addresses, else get the closest since
// the symbol might be a thumb symbol which has an address with bit zero set
FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm);
if (is_arm && func_start_entry)
{
// Verify that the function start address is the symbol address (ARM)
// or the symbol address + 1 (thumb)
if (func_start_entry->addr != symbol_lookup_file_addr &&
func_start_entry->addr != (symbol_lookup_file_addr + 1))
{
// Not the right entry, NULL it out...
func_start_entry = NULL;
}
}
if (func_start_entry)
{
func_start_entry->data = true;
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (is_arm)
{
if (symbol_file_addr & 1)
symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
symbol_file_addr &= 0xfffffffffffffffeull;
}
const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry);
const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry)
{
addr_t next_symbol_file_addr = next_func_start_entry->addr;
// Be sure the clear the Thumb address bit when we calculate the size
// from the current and next address
if (is_arm)
next_symbol_file_addr &= 0xfffffffffffffffeull;
symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr);
}
else
{
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
}
}
symbol_value -= section_file_addr;
}
sym[sym_idx].SetID (nlist_idx);
sym[sym_idx].SetType (type);
sym[sym_idx].GetAddress().SetSection (symbol_section);
sym[sym_idx].GetAddress().SetOffset (symbol_value);
sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc);
if (symbol_byte_size > 0)
sym[sym_idx].SetByteSize(symbol_byte_size);
++sym_idx;
}
else
{
sym[sym_idx].Clear();
}
}
// STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value
// is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all
// such entries by figuring out what the address for the global is by looking up this non-STAB
// entry and copying the value into the debug symbol's value to save us the hassle in the
// debug symbol parser.
Symbol *global_symbol = NULL;
for (nlist_idx = 0;
nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL;
nlist_idx++)
{
if (global_symbol->GetAddress().GetFileAddress() == 0)
{
std::vector<uint32_t> indexes;
if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0)
{
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
for (pos = indexes.begin(); pos != end; ++pos)
{
symbol_ptr = symtab->SymbolAtIndex(*pos);
if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false)
{
global_symbol->GetAddress() = symbol_ptr->GetAddress();
break;
}
}
}
}
}
uint32_t synthetic_sym_id = symtab_load_command.nsyms;
if (function_starts_count > 0)
{
char synthetic_function_symbol[PATH_MAX];
uint32_t num_synthetic_function_symbols = 0;
for (i=0; i<function_starts_count; ++i)
{
if (function_starts.GetEntryRef (i).data == false)
++num_synthetic_function_symbols;
}
if (num_synthetic_function_symbols > 0)
{
if (num_syms < sym_idx + num_synthetic_function_symbols)
{
num_syms = sym_idx + num_synthetic_function_symbols;
sym = symtab->Resize (num_syms);
}
uint32_t synthetic_function_symbol_idx = 0;
for (i=0; i<function_starts_count; ++i)
{
const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i);
if (func_start_entry->data == false)
{
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (is_arm)
{
if (symbol_file_addr & 1)
symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
symbol_file_addr &= 0xfffffffffffffffeull;
}
Address symbol_addr;
if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr))
{
SectionSP symbol_section (symbol_addr.GetSection());
uint32_t symbol_byte_size = 0;
if (symbol_section)
{
const addr_t section_file_addr = symbol_section->GetFileAddress();
const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry);
const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry)
{
addr_t next_symbol_file_addr = next_func_start_entry->addr;
if (is_arm)
next_symbol_file_addr &= 0xfffffffffffffffeull;
symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr);
}
else
{
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
snprintf (synthetic_function_symbol,
sizeof(synthetic_function_symbol),
"___lldb_unnamed_function%u$$%s",
++synthetic_function_symbol_idx,
module_sp->GetFileSpec().GetFilename().GetCString());
sym[sym_idx].SetID (synthetic_sym_id++);
sym[sym_idx].GetMangled().SetDemangledName(synthetic_function_symbol);
sym[sym_idx].SetType (eSymbolTypeCode);
sym[sym_idx].SetIsSynthetic (true);
sym[sym_idx].GetAddress() = symbol_addr;
if (symbol_flags)
sym[sym_idx].SetFlags (symbol_flags);
if (symbol_byte_size)
sym[sym_idx].SetByteSize (symbol_byte_size);
++sym_idx;
}
}
}
}
}
}
// Trim our symbols down to just what we ended up with after
// removing any symbols.
if (sym_idx < num_syms)
{
num_syms = sym_idx;
sym = symtab->Resize (num_syms);
}
// Now synthesize indirect symbols
if (m_dysymtab.nindirectsyms != 0)
{
DataExtractor indirect_symbol_index_data (m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4);
if (indirect_symbol_index_data.GetByteSize())
{
NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end();
for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx)
{
if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs)
{
uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
if (symbol_stub_byte_size == 0)
continue;
const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size;
if (num_symbol_stubs == 0)
continue;
const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1;
for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx)
{
const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx;
const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size);
uint32_t symbol_stub_offset = symbol_stub_index * 4;
if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4))
{
const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset);
if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal))
continue;
NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id);
Symbol *stub_symbol = NULL;
if (index_pos != end_index_pos)
{
// We have a remapping from the original nlist index to
// a current symbol index, so just look this up by index
stub_symbol = symtab->SymbolAtIndex (index_pos->second);
}
else
{
// We need to lookup a symbol using the original nlist
// symbol index since this index is coming from the
// S_SYMBOL_STUBS
stub_symbol = symtab->FindSymbolByID (stub_sym_id);
}
assert (stub_symbol);
if (stub_symbol)
{
Address so_addr(symbol_stub_addr, section_list);
if (stub_symbol->GetType() == eSymbolTypeUndefined)
{
// Change the external symbol into a trampoline that makes sense
// These symbols were N_UNDF N_EXT, and are useless to us, so we
// can re-use them so we don't have to make up a synthetic symbol
// for no good reason.
stub_symbol->SetType (eSymbolTypeTrampoline);
stub_symbol->SetExternal (false);
stub_symbol->GetAddress() = so_addr;
stub_symbol->SetByteSize (symbol_stub_byte_size);
}
else
{
// Make a synthetic symbol to describe the trampoline stub
if (sym_idx >= num_syms)
sym = symtab->Resize (++num_syms);
sym[sym_idx].SetID (synthetic_sym_id++);
sym[sym_idx].GetMangled() = stub_symbol->GetMangled();
sym[sym_idx].SetType (eSymbolTypeTrampoline);
sym[sym_idx].SetIsSynthetic (true);
sym[sym_idx].GetAddress() = so_addr;
sym[sym_idx].SetByteSize (symbol_stub_byte_size);
++sym_idx;
}
}
}
}
}
}
}
}
return symtab->GetNumSymbols();
}
return 0;
}
void
ObjectFileMachO::Dump (Stream *s)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
s->Printf("%p: ", this);
s->Indent();
if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped)
s->PutCString("ObjectFileMachO64");
else
s->PutCString("ObjectFileMachO32");
ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
*s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n";
if (m_sections_ap.get())
m_sections_ap->Dump(s, NULL, true, UINT32_MAX);
if (m_symtab_ap.get())
m_symtab_ap->Dump(s, NULL, eSortOrderNone);
}
}
bool
ObjectFileMachO::GetUUID (lldb_private::UUID* uuid)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct uuid_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandUUID)
{
const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
if (uuid_bytes)
{
uuid->SetBytes (uuid_bytes);
return true;
}
return false;
}
offset = cmd_offset + load_cmd.cmdsize;
}
}
return false;
}
uint32_t
ObjectFileMachO::GetDependentModules (FileSpecList& files)
{
uint32_t count = 0;
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandDylibLoad:
case LoadCommandDylibLoadWeak:
case LoadCommandDylibReexport:
case LoadCommandDynamicLinkerLoad:
case LoadCommandFixedVMShlibLoad:
case LoadCommandDylibLoadUpward:
{
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
// Skip any path that starts with '@' since these are usually:
// @executable_path/.../file
// @rpath/.../file
if (path && path[0] != '@')
{
FileSpec file_spec(path, resolve_path);
if (files.AppendIfUnique(file_spec))
count++;
}
}
break;
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
}
return count;
}
lldb_private::Address
ObjectFileMachO::GetEntryPointAddress ()
{
// If the object file is not an executable it can't hold the entry point. m_entry_point_address
// is initialized to an invalid address, so we can just return that.
// If m_entry_point_address is valid it means we've found it already, so return the cached value.
if (!IsExecutable() || m_entry_point_address.IsValid())
return m_entry_point_address;
// Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in
// /usr/include/mach-o.h, but it is basically:
//
// uint32_t flavor - this is the flavor argument you would pass to thread_get_state
// uint32_t count - this is the count of longs in the thread state data
// struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor.
// <repeat this trio>
//
// So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there.
// FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers
// out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin,
// and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here.
//
// For now we hard-code the offsets and flavors we need:
//
//
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
bool done = false;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandUnixThread:
case LoadCommandThread:
{
while (offset < cmd_offset + load_cmd.cmdsize)
{
uint32_t flavor = m_data.GetU32(&offset);
uint32_t count = m_data.GetU32(&offset);
if (count == 0)
{
// We've gotten off somehow, log and exit;
return m_entry_point_address;
}
switch (m_header.cputype)
{
case llvm::MachO::CPUTypeARM:
if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h
{
offset += 60; // This is the offset of pc in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeI386:
if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
{
offset += 40; // This is the offset of eip in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeX86_64:
if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
{
offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
default:
return m_entry_point_address;
}
// Haven't found the GPR flavor yet, skip over the data for this flavor:
if (done)
break;
offset += count * 4;
}
}
break;
case LoadCommandMain:
{
ConstString text_segment_name ("__TEXT");
uint64_t entryoffset = m_data.GetU64(&offset);
SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name);
if (text_segment_sp)
{
done = true;
start_address = text_segment_sp->GetFileAddress() + entryoffset;
}
}
default:
break;
}
if (done)
break;
// Go to the next load command:
offset = cmd_offset + load_cmd.cmdsize;
}
if (start_address != LLDB_INVALID_ADDRESS)
{
// We got the start address from the load commands, so now resolve that address in the sections
// of this ObjectFile:
if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList()))
{
m_entry_point_address.Clear();
}
}
else
{
// We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the
// "start" symbol in the main executable.
ModuleSP module_sp (GetModule());
if (module_sp)
{
SymbolContextList contexts;
SymbolContext context;
if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts))
{
if (contexts.GetContextAtIndex(0, context))
m_entry_point_address = context.symbol->GetAddress();
}
}
}
}
return m_entry_point_address;
}
lldb_private::Address
ObjectFileMachO::GetHeaderAddress ()
{
lldb_private::Address header_addr;
SectionList *section_list = GetSectionList();
if (section_list)
{
SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT()));
if (text_segment_sp)
{
header_addr.SetSection (text_segment_sp);
header_addr.SetOffset (0);
}
}
return header_addr;
}
uint32_t
ObjectFileMachO::GetNumThreadContexts ()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (!m_thread_context_offsets_valid)
{
m_thread_context_offsets_valid = true;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
FileRangeArray::Entry file_range;
thread_command thread_cmd;
for (uint32_t i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
break;
if (thread_cmd.cmd == LoadCommandThread)
{
file_range.SetRangeBase (offset);
file_range.SetByteSize (thread_cmd.cmdsize - 8);
m_thread_context_offsets.Append (file_range);
}
offset = cmd_offset + thread_cmd.cmdsize;
}
}
}
return m_thread_context_offsets.GetSize();
}
lldb::RegisterContextSP
ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread)
{
lldb::RegisterContextSP reg_ctx_sp;
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (!m_thread_context_offsets_valid)
GetNumThreadContexts ();
const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx);
DataExtractor data (m_data,
thread_context_file_range->GetRangeBase(),
thread_context_file_range->GetByteSize());
switch (m_header.cputype)
{
case llvm::MachO::CPUTypeARM:
reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data));
break;
case llvm::MachO::CPUTypeI386:
reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data));
break;
case llvm::MachO::CPUTypeX86_64:
reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data));
break;
}
}
return reg_ctx_sp;
}
ObjectFile::Type
ObjectFileMachO::CalculateType()
{
switch (m_header.filetype)
{
case HeaderFileTypeObject: // 0x1u MH_OBJECT
if (GetAddressByteSize () == 4)
{
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
UUID uuid;
if (GetUUID(&uuid))
{
// this checking for the UUID load command is not enough
// we could eventually look for the symbol named
// "OSKextGetCurrentIdentifier" as this is required of kexts
if (m_strata == eStrataInvalid)
m_strata = eStrataKernel;
return eTypeSharedLibrary;
}
}
return eTypeObjectFile;
case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE
case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB
case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE
case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD
case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB
case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER
case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE
case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB
case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM
case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE
default:
break;
}
return eTypeUnknown;
}
ObjectFile::Strata
ObjectFileMachO::CalculateStrata()
{
switch (m_header.filetype)
{
case HeaderFileTypeObject: // 0x1u MH_OBJECT
{
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
UUID uuid;
if (GetUUID(&uuid))
{
// this checking for the UUID load command is not enough
// we could eventually look for the symbol named
// "OSKextGetCurrentIdentifier" as this is required of kexts
if (m_type == eTypeInvalid)
m_type = eTypeSharedLibrary;
return eStrataKernel;
}
}
return eStrataUnknown;
case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE
// Check for the MH_DYLDLINK bit in the flags
if (m_header.flags & HeaderFlagBitIsDynamicLinkObject)
{
return eStrataUser;
}
else
{
SectionList *section_list = GetSectionList();
if (section_list)
{
static ConstString g_kld_section_name ("__KLD");
if (section_list->FindSectionByName(g_kld_section_name))
return eStrataKernel;
}
}
return eStrataRawImage;
case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB
case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE
case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD
case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB
case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER
case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE
case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB
case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM
case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE
default:
break;
}
return eStrataUnknown;
}
uint32_t
ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct dylib_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t version_cmd = 0;
uint64_t version = 0;
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandDylibIdent)
{
if (version_cmd == 0)
{
version_cmd = load_cmd.cmd;
if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
break;
version = load_cmd.dylib.current_version;
}
break; // Break for now unless there is another more complete version
// number load command in the future.
}
offset = cmd_offset + load_cmd.cmdsize;
}
if (version_cmd == LoadCommandDylibIdent)
{
if (versions != NULL && num_versions > 0)
{
if (num_versions > 0)
versions[0] = (version & 0xFFFF0000ull) >> 16;
if (num_versions > 1)
versions[1] = (version & 0x0000FF00ull) >> 8;
if (num_versions > 2)
versions[2] = (version & 0x000000FFull);
// Fill in an remaining version numbers with invalid values
for (i=3; i<num_versions; ++i)
versions[i] = UINT32_MAX;
}
// The LC_ID_DYLIB load command has a version with 3 version numbers
// in it, so always return 3
return 3;
}
}
return false;
}
bool
ObjectFileMachO::GetArchitecture (ArchSpec &arch)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
// Files with type MH_PRELOAD are currently used in cases where the image
// debugs at the addresses in the file itself. Below we set the OS to
// unknown to make sure we use the DynamicLoaderStatic()...
if (m_header.filetype == HeaderFileTypePreloadedExecutable)
{
arch.GetTriple().setOS (llvm::Triple::UnknownOS);
}
return true;
}
return false;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ObjectFileMachO::GetPluginName()
{
return "ObjectFileMachO";
}
const char *
ObjectFileMachO::GetShortPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ObjectFileMachO::GetPluginVersion()
{
return 1;
}