blob: 93254982aa4c6c1932b92afeb365fa5e80eee14c [file] [log] [blame]
//===-- ABISysV_x86_64.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ABISysV_x86_64.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Thread.h"
#include "llvm/ADT/Triple.h"
using namespace lldb;
using namespace lldb_private;
static const char *pluginName = "ABISysV_x86_64";
static const char *pluginDesc = "System V ABI for x86_64 targets";
static const char *pluginShort = "abi.sysv-x86_64";
enum gcc_dwarf_regnums
{
gcc_dwarf_rax = 0,
gcc_dwarf_rdx,
gcc_dwarf_rcx,
gcc_dwarf_rbx,
gcc_dwarf_rsi,
gcc_dwarf_rdi,
gcc_dwarf_rbp,
gcc_dwarf_rsp,
gcc_dwarf_r8,
gcc_dwarf_r9,
gcc_dwarf_r10,
gcc_dwarf_r11,
gcc_dwarf_r12,
gcc_dwarf_r13,
gcc_dwarf_r14,
gcc_dwarf_r15,
gcc_dwarf_rip,
gcc_dwarf_xmm0,
gcc_dwarf_xmm1,
gcc_dwarf_xmm2,
gcc_dwarf_xmm3,
gcc_dwarf_xmm4,
gcc_dwarf_xmm5,
gcc_dwarf_xmm6,
gcc_dwarf_xmm7,
gcc_dwarf_xmm8,
gcc_dwarf_xmm9,
gcc_dwarf_xmm10,
gcc_dwarf_xmm11,
gcc_dwarf_xmm12,
gcc_dwarf_xmm13,
gcc_dwarf_xmm14,
gcc_dwarf_xmm15,
gcc_dwarf_stmm0,
gcc_dwarf_stmm1,
gcc_dwarf_stmm2,
gcc_dwarf_stmm3,
gcc_dwarf_stmm4,
gcc_dwarf_stmm5,
gcc_dwarf_stmm6,
gcc_dwarf_stmm7,
gcc_dwarf_ymm0 = gcc_dwarf_xmm0,
gcc_dwarf_ymm1 = gcc_dwarf_xmm1,
gcc_dwarf_ymm2 = gcc_dwarf_xmm2,
gcc_dwarf_ymm3 = gcc_dwarf_xmm3,
gcc_dwarf_ymm4 = gcc_dwarf_xmm4,
gcc_dwarf_ymm5 = gcc_dwarf_xmm5,
gcc_dwarf_ymm6 = gcc_dwarf_xmm6,
gcc_dwarf_ymm7 = gcc_dwarf_xmm7,
gcc_dwarf_ymm8 = gcc_dwarf_xmm8,
gcc_dwarf_ymm9 = gcc_dwarf_xmm9,
gcc_dwarf_ymm10 = gcc_dwarf_xmm10,
gcc_dwarf_ymm11 = gcc_dwarf_xmm11,
gcc_dwarf_ymm12 = gcc_dwarf_xmm12,
gcc_dwarf_ymm13 = gcc_dwarf_xmm13,
gcc_dwarf_ymm14 = gcc_dwarf_xmm14,
gcc_dwarf_ymm15 = gcc_dwarf_xmm15
};
enum gdb_regnums
{
gdb_rax = 0,
gdb_rbx = 1,
gdb_rcx = 2,
gdb_rdx = 3,
gdb_rsi = 4,
gdb_rdi = 5,
gdb_rbp = 6,
gdb_rsp = 7,
gdb_r8 = 8,
gdb_r9 = 9,
gdb_r10 = 10,
gdb_r11 = 11,
gdb_r12 = 12,
gdb_r13 = 13,
gdb_r14 = 14,
gdb_r15 = 15,
gdb_rip = 16,
gdb_rflags = 17,
gdb_cs = 18,
gdb_ss = 19,
gdb_ds = 20,
gdb_es = 21,
gdb_fs = 22,
gdb_gs = 23,
gdb_stmm0 = 24,
gdb_stmm1 = 25,
gdb_stmm2 = 26,
gdb_stmm3 = 27,
gdb_stmm4 = 28,
gdb_stmm5 = 29,
gdb_stmm6 = 30,
gdb_stmm7 = 31,
gdb_fctrl = 32, gdb_fcw = gdb_fctrl,
gdb_fstat = 33, gdb_fsw = gdb_fstat,
gdb_ftag = 34, gdb_ftw = gdb_ftag,
gdb_fiseg = 35, gdb_fpu_cs = gdb_fiseg,
gdb_fioff = 36, gdb_ip = gdb_fioff,
gdb_foseg = 37, gdb_fpu_ds = gdb_foseg,
gdb_fooff = 38, gdb_dp = gdb_fooff,
gdb_fop = 39,
gdb_xmm0 = 40,
gdb_xmm1 = 41,
gdb_xmm2 = 42,
gdb_xmm3 = 43,
gdb_xmm4 = 44,
gdb_xmm5 = 45,
gdb_xmm6 = 46,
gdb_xmm7 = 47,
gdb_xmm8 = 48,
gdb_xmm9 = 49,
gdb_xmm10 = 50,
gdb_xmm11 = 51,
gdb_xmm12 = 52,
gdb_xmm13 = 53,
gdb_xmm14 = 54,
gdb_xmm15 = 55,
gdb_mxcsr = 56,
gdb_ymm0 = gdb_xmm0,
gdb_ymm1 = gdb_xmm1,
gdb_ymm2 = gdb_xmm2,
gdb_ymm3 = gdb_xmm3,
gdb_ymm4 = gdb_xmm4,
gdb_ymm5 = gdb_xmm5,
gdb_ymm6 = gdb_xmm6,
gdb_ymm7 = gdb_xmm7,
gdb_ymm8 = gdb_xmm8,
gdb_ymm9 = gdb_xmm9,
gdb_ymm10 = gdb_xmm10,
gdb_ymm11 = gdb_xmm11,
gdb_ymm12 = gdb_xmm12,
gdb_ymm13 = gdb_xmm13,
gdb_ymm14 = gdb_xmm14,
gdb_ymm15 = gdb_xmm15
};
static RegisterInfo g_register_infos[] =
{
// NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB NATIVE VALUE REGS INVALIDATE REGS
// ======== ======= == === ============= =================== ======================= ===================== =========================== ===================== ====================== ========== ===============
{ "rax" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rax , gcc_dwarf_rax , LLDB_INVALID_REGNUM , gdb_rax , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rbx" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rbx , gcc_dwarf_rbx , LLDB_INVALID_REGNUM , gdb_rbx , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rcx" , "arg4", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rcx , gcc_dwarf_rcx , LLDB_REGNUM_GENERIC_ARG4 , gdb_rcx , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rdx" , "arg3", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rdx , gcc_dwarf_rdx , LLDB_REGNUM_GENERIC_ARG3 , gdb_rdx , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rsi" , "arg2", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rsi , gcc_dwarf_rsi , LLDB_REGNUM_GENERIC_ARG2 , gdb_rsi , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rdi" , "arg1", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rdi , gcc_dwarf_rdi , LLDB_REGNUM_GENERIC_ARG1 , gdb_rdi , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rbp" , "fp", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rbp , gcc_dwarf_rbp , LLDB_REGNUM_GENERIC_FP , gdb_rbp , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rsp" , "sp", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rsp , gcc_dwarf_rsp , LLDB_REGNUM_GENERIC_SP , gdb_rsp , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r8" , "arg5", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r8 , gcc_dwarf_r8 , LLDB_REGNUM_GENERIC_ARG5 , gdb_r8 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r9" , "arg6", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r9 , gcc_dwarf_r9 , LLDB_REGNUM_GENERIC_ARG6 , gdb_r9 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r10" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r10 , gcc_dwarf_r10 , LLDB_INVALID_REGNUM , gdb_r10 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r11" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r11 , gcc_dwarf_r11 , LLDB_INVALID_REGNUM , gdb_r11 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r12" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r12 , gcc_dwarf_r12 , LLDB_INVALID_REGNUM , gdb_r12 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r13" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r13 , gcc_dwarf_r13 , LLDB_INVALID_REGNUM , gdb_r13 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r14" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r14 , gcc_dwarf_r14 , LLDB_INVALID_REGNUM , gdb_r14 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r15" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r15 , gcc_dwarf_r15 , LLDB_INVALID_REGNUM , gdb_r15 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rip" , "pc", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rip , gcc_dwarf_rip , LLDB_REGNUM_GENERIC_PC , gdb_rip , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "rflags", NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_REGNUM_GENERIC_FLAGS , gdb_rflags , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "cs" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_cs , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ss" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_ss , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ds" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_ds , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "es" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_es , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fs" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fs , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "gs" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_gs , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm0" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm0 , gcc_dwarf_stmm0 , LLDB_INVALID_REGNUM , gdb_stmm0 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm1" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm1 , gcc_dwarf_stmm1 , LLDB_INVALID_REGNUM , gdb_stmm1 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm2" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm2 , gcc_dwarf_stmm2 , LLDB_INVALID_REGNUM , gdb_stmm2 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm3" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm3 , gcc_dwarf_stmm3 , LLDB_INVALID_REGNUM , gdb_stmm3 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm4" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm4 , gcc_dwarf_stmm4 , LLDB_INVALID_REGNUM , gdb_stmm4 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm5" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm5 , gcc_dwarf_stmm5 , LLDB_INVALID_REGNUM , gdb_stmm5 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm6" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm6 , gcc_dwarf_stmm6 , LLDB_INVALID_REGNUM , gdb_stmm6 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "stmm7" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm7 , gcc_dwarf_stmm7 , LLDB_INVALID_REGNUM , gdb_stmm7 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fctrl" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fctrl , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fstat" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fstat , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ftag" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_ftag , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fiseg" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fiseg , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fioff" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fioff , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "foseg" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_foseg , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fooff" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fooff , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fop" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fop , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm0" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm0 , gcc_dwarf_xmm0 , LLDB_INVALID_REGNUM , gdb_xmm0 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm1" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm1 , gcc_dwarf_xmm1 , LLDB_INVALID_REGNUM , gdb_xmm1 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm2" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm2 , gcc_dwarf_xmm2 , LLDB_INVALID_REGNUM , gdb_xmm2 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm3" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm3 , gcc_dwarf_xmm3 , LLDB_INVALID_REGNUM , gdb_xmm3 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm4" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm4 , gcc_dwarf_xmm4 , LLDB_INVALID_REGNUM , gdb_xmm4 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm5" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm5 , gcc_dwarf_xmm5 , LLDB_INVALID_REGNUM , gdb_xmm5 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm6" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm6 , gcc_dwarf_xmm6 , LLDB_INVALID_REGNUM , gdb_xmm6 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm7" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm7 , gcc_dwarf_xmm7 , LLDB_INVALID_REGNUM , gdb_xmm7 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm8" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm8 , gcc_dwarf_xmm8 , LLDB_INVALID_REGNUM , gdb_xmm8 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm9" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm9 , gcc_dwarf_xmm9 , LLDB_INVALID_REGNUM , gdb_xmm9 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm10" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm10 , gcc_dwarf_xmm10 , LLDB_INVALID_REGNUM , gdb_xmm10 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm11" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm11 , gcc_dwarf_xmm11 , LLDB_INVALID_REGNUM , gdb_xmm11 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm12" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm12 , gcc_dwarf_xmm12 , LLDB_INVALID_REGNUM , gdb_xmm12 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm13" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm13 , gcc_dwarf_xmm13 , LLDB_INVALID_REGNUM , gdb_xmm13 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm14" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm14 , gcc_dwarf_xmm14 , LLDB_INVALID_REGNUM , gdb_xmm14 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "xmm15" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm15 , gcc_dwarf_xmm15 , LLDB_INVALID_REGNUM , gdb_xmm15 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "mxcsr" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_mxcsr , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm0" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm0 , gcc_dwarf_ymm0 , LLDB_INVALID_REGNUM , gdb_ymm0 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm1" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm1 , gcc_dwarf_ymm1 , LLDB_INVALID_REGNUM , gdb_ymm1 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm2" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm2 , gcc_dwarf_ymm2 , LLDB_INVALID_REGNUM , gdb_ymm2 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm3" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm3 , gcc_dwarf_ymm3 , LLDB_INVALID_REGNUM , gdb_ymm3 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm4" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm4 , gcc_dwarf_ymm4 , LLDB_INVALID_REGNUM , gdb_ymm4 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm5" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm5 , gcc_dwarf_ymm5 , LLDB_INVALID_REGNUM , gdb_ymm5 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm6" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm6 , gcc_dwarf_ymm6 , LLDB_INVALID_REGNUM , gdb_ymm6 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm7" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm7 , gcc_dwarf_ymm7 , LLDB_INVALID_REGNUM , gdb_ymm7 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm8" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm8 , gcc_dwarf_ymm8 , LLDB_INVALID_REGNUM , gdb_ymm8 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm9" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm9 , gcc_dwarf_ymm9 , LLDB_INVALID_REGNUM , gdb_ymm9 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm10" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm10 , gcc_dwarf_ymm10 , LLDB_INVALID_REGNUM , gdb_ymm10 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm11" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm11 , gcc_dwarf_ymm11 , LLDB_INVALID_REGNUM , gdb_ymm11 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm12" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm12 , gcc_dwarf_ymm12 , LLDB_INVALID_REGNUM , gdb_ymm12 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm13" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm13 , gcc_dwarf_ymm13 , LLDB_INVALID_REGNUM , gdb_ymm13 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm14" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm14 , gcc_dwarf_ymm14 , LLDB_INVALID_REGNUM , gdb_ymm14 , LLDB_INVALID_REGNUM }, NULL, NULL},
{ "ymm15" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm15 , gcc_dwarf_ymm15 , LLDB_INVALID_REGNUM , gdb_ymm15 , LLDB_INVALID_REGNUM }, NULL, NULL}
};
static const uint32_t k_num_register_infos = sizeof(g_register_infos)/sizeof(RegisterInfo);
static bool g_register_info_names_constified = false;
const lldb_private::RegisterInfo *
ABISysV_x86_64::GetRegisterInfoArray (uint32_t &count)
{
// Make the C-string names and alt_names for the register infos into const
// C-string values by having the ConstString unique the names in the global
// constant C-string pool.
if (!g_register_info_names_constified)
{
g_register_info_names_constified = true;
for (uint32_t i=0; i<k_num_register_infos; ++i)
{
if (g_register_infos[i].name)
g_register_infos[i].name = ConstString(g_register_infos[i].name).GetCString();
if (g_register_infos[i].alt_name)
g_register_infos[i].alt_name = ConstString(g_register_infos[i].alt_name).GetCString();
}
}
count = k_num_register_infos;
return g_register_infos;
}
size_t
ABISysV_x86_64::GetRedZoneSize () const
{
return 128;
}
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABISysV_x86_64::CreateInstance (const ArchSpec &arch)
{
static ABISP g_abi_sp;
if (arch.GetTriple().getArch() == llvm::Triple::x86_64)
{
if (!g_abi_sp)
g_abi_sp.reset (new ABISysV_x86_64);
return g_abi_sp;
}
return ABISP();
}
bool
ABISysV_x86_64::PrepareTrivialCall (Thread &thread,
addr_t sp,
addr_t func_addr,
addr_t return_addr,
addr_t *arg1_ptr,
addr_t *arg2_ptr,
addr_t *arg3_ptr,
addr_t *arg4_ptr,
addr_t *arg5_ptr,
addr_t *arg6_ptr) const
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
log->Printf("ABISysV_x86_64::PrepareTrivialCall\n(\n thread = %p\n sp = 0x%llx\n func_addr = 0x%llx\n return_addr = 0x%llx\n arg1_ptr = %p (0x%llx)\n arg2_ptr = %p (0x%llx)\n arg3_ptr = %p (0x%llx)\n)",
(void*)&thread,
(uint64_t)sp,
(uint64_t)func_addr,
(uint64_t)return_addr,
arg1_ptr, arg1_ptr ? (uint64_t)*arg1_ptr : (uint64_t) 0,
arg2_ptr, arg2_ptr ? (uint64_t)*arg2_ptr : (uint64_t) 0,
arg3_ptr, arg3_ptr ? (uint64_t)*arg3_ptr : (uint64_t) 0);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = NULL;
if (arg1_ptr)
{
reg_info = reg_ctx->GetRegisterInfoByName("rdi", 0);
if (log)
log->Printf("About to write arg1 (0x%llx) into %s", (uint64_t)*arg1_ptr, reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg1_ptr))
return false;
if (arg2_ptr)
{
reg_info = reg_ctx->GetRegisterInfoByName("rsi", 0);
if (log)
log->Printf("About to write arg2 (0x%llx) into %s", (uint64_t)*arg2_ptr, reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg2_ptr))
return false;
if (arg3_ptr)
{
reg_info = reg_ctx->GetRegisterInfoByName("rdx", 0);
if (log)
log->Printf("About to write arg3 (0x%llx) into %s", (uint64_t)*arg3_ptr, reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg3_ptr))
return false;
if (arg4_ptr)
{
reg_info = reg_ctx->GetRegisterInfoByName("rcx", 0);
if (log)
log->Printf("About to write arg4 (0x%llx) into %s", (uint64_t)*arg4_ptr, reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg4_ptr))
return false;
if (arg5_ptr)
{
reg_info = reg_ctx->GetRegisterInfoByName("r8", 0);
if (log)
log->Printf("About to write arg5 (0x%llx) into %s", (uint64_t)*arg5_ptr, reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg5_ptr))
return false;
if (arg6_ptr)
{
reg_info = reg_ctx->GetRegisterInfoByName("r9", 0);
if (log)
log->Printf("About to write arg6 (0x%llx) into %s", (uint64_t)*arg6_ptr, reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg6_ptr))
return false;
}
}
}
}
}
}
// First, align the SP
if (log)
log->Printf("16-byte aligning SP: 0x%llx to 0x%llx", (uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
// The return address is pushed onto the stack (yes after the alignment...)
sp -= 8;
RegisterValue reg_value;
reg_value.SetUInt64 (return_addr);
if (log)
log->Printf("Pushing the return address onto the stack: new SP 0x%llx, return address 0x%llx", (uint64_t)sp, (uint64_t)return_addr);
const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfoByName("rip");
Error error (reg_ctx->WriteRegisterValueToMemory(pc_reg_info, sp, pc_reg_info->byte_size, reg_value));
if (error.Fail())
return false;
// %rsp is set to the actual stack value.
if (log)
log->Printf("Writing SP (0x%llx) down", (uint64_t)sp);
if (!reg_ctx->WriteRegisterFromUnsigned (reg_ctx->GetRegisterInfoByName("rsp"), sp))
return false;
// %rip is set to the address of the called function.
if (log)
log->Printf("Writing new IP (0x%llx) down", (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar,
unsigned int bit_width,
bool is_signed,
Thread &thread,
uint32_t *argument_register_ids,
unsigned int &current_argument_register,
addr_t &current_stack_argument)
{
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
if (current_argument_register < 6)
{
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(argument_register_ids[current_argument_register], 0);
current_argument_register++;
if (is_signed)
scalar.SignExtend (bit_width);
}
else
{
uint32_t byte_size = (bit_width + (8-1))/8;
Error error;
if (thread.GetProcess()->ReadScalarIntegerFromMemory(current_stack_argument, byte_size, is_signed, scalar, error))
{
current_stack_argument += byte_size;
return true;
}
return false;
}
return true;
}
bool
ABISysV_x86_64::GetArgumentValues (Thread &thread,
ValueList &values) const
{
unsigned int num_values = values.GetSize();
unsigned int value_index;
// For now, assume that the types in the AST values come from the Target's
// scratch AST.
clang::ASTContext *ast_context = thread.CalculateTarget()->GetScratchClangASTContext()->getASTContext();
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 8; // jump over return address
uint32_t argument_register_ids[6];
argument_register_ids[0] = reg_ctx->GetRegisterInfoByName("rdi", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[1] = reg_ctx->GetRegisterInfoByName("rsi", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[2] = reg_ctx->GetRegisterInfoByName("rdx", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[3] = reg_ctx->GetRegisterInfoByName("rcx", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[4] = reg_ctx->GetRegisterInfoByName("r8", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[5] = reg_ctx->GetRegisterInfoByName("r9", 0)->kinds[eRegisterKindLLDB];
unsigned int current_argument_register = 0;
for (value_index = 0;
value_index < num_values;
++value_index)
{
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
// We currently only support extracting values with Clang QualTypes.
// Do we care about others?
switch (value->GetContextType())
{
default:
return false;
case Value::eContextTypeClangType:
{
void *value_type = value->GetClangType();
bool is_signed;
if (ClangASTContext::IsIntegerType (value_type, is_signed))
{
size_t bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
ReadIntegerArgument(value->GetScalar(),
bit_width,
is_signed,
thread,
argument_register_ids,
current_argument_register,
current_stack_argument);
}
else if (ClangASTContext::IsPointerType (value_type))
{
ReadIntegerArgument(value->GetScalar(),
64,
false,
thread,
argument_register_ids,
current_argument_register,
current_stack_argument);
}
}
break;
}
}
return true;
}
ValueObjectSP
ABISysV_x86_64::GetReturnValueObjectSimple (Thread &thread,
ClangASTType &ast_type) const
{
ValueObjectSP return_valobj_sp;
Value value;
clang_type_t value_type = ast_type.GetOpaqueQualType();
if (!value_type)
return return_valobj_sp;
clang::ASTContext *ast_context = ast_type.GetASTContext();
if (!ast_context)
return return_valobj_sp;
value.SetContext (Value::eContextTypeClangType, value_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
bool is_signed;
bool is_complex;
uint32_t count;
if (ClangASTContext::IsIntegerType (value_type, is_signed))
{
// For now, assume that the types in the AST values come from the Target's
// scratch AST.
// Extract the register context so we can read arguments from registers
size_t bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
unsigned rax_id = reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
switch (bit_width)
{
default:
case 128:
// Scalar can't hold 128-bit literals, so we don't handle this
return return_valobj_sp;
case 64:
if (is_signed)
value.GetScalar() = (int64_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0));
else
value.GetScalar() = (uint64_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0));
break;
case 32:
if (is_signed)
value.GetScalar() = (int32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffffffff);
else
value.GetScalar() = (uint32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffffffff);
break;
case 16:
if (is_signed)
value.GetScalar() = (int16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffff);
else
value.GetScalar() = (uint16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffff);
break;
case 8:
if (is_signed)
value.GetScalar() = (int8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xff);
else
value.GetScalar() = (uint8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xff);
break;
}
}
else if (ClangASTContext::IsFloatingPointType(value_type, count, is_complex))
{
// Don't handle complex yet.
if (is_complex)
return return_valobj_sp;
size_t bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
if (bit_width <= 64)
{
const RegisterInfo *xmm0_info = reg_ctx->GetRegisterInfoByName("xmm0", 0);
RegisterValue xmm0_value;
if (reg_ctx->ReadRegister (xmm0_info, xmm0_value))
{
DataExtractor data;
if (xmm0_value.GetData(data))
{
uint32_t offset = 0;
switch (bit_width)
{
default:
return return_valobj_sp;
case 32:
value.GetScalar() = (float) data.GetFloat(&offset);
break;
case 64:
value.GetScalar() = (double) data.GetDouble(&offset);
break;
}
}
}
}
else if (bit_width == 128)
{
// FIXME: x86_64 returns long doubles in stmm0, which is in some 80 bit long double
// format, and so we'll have to write some code to convert that into 128 bit long doubles.
// const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("stmm0", 0);
// RegisterValue st0_value;
// if (reg_ctx->ReadRegister (st0_info, st0_value))
// {
// DataExtractor data;
// if (st0_value.GetData(data))
// {
// uint32_t offset = 0;
// value.GetScalar() = (long double) data.GetLongDouble (&offset);
// return true;
// }
// }
return return_valobj_sp;
}
}
else if (ClangASTContext::IsPointerType (value_type))
{
unsigned rax_id = reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0);
}
else
{
return return_valobj_sp;
}
// If we get here, we have a valid Value, so make our ValueObject out of it:
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(),
ast_type.GetASTContext(),
value,
ConstString(""));
return return_valobj_sp;
}
ValueObjectSP
ABISysV_x86_64::GetReturnValueObjectImpl (Thread &thread, ClangASTType &ast_type) const
{
ValueObjectSP return_valobj_sp;
ExecutionContext exe_ctx (thread.shared_from_this());
return_valobj_sp = GetReturnValueObjectSimple(thread, ast_type);
if (return_valobj_sp)
return return_valobj_sp;
clang_type_t ret_value_type = ast_type.GetOpaqueQualType();
if (!ret_value_type)
return return_valobj_sp;
clang::ASTContext *ast_context = ast_type.GetASTContext();
if (!ast_context)
return return_valobj_sp;
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp)
return return_valobj_sp;
size_t bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, ret_value_type);
if (ClangASTContext::IsAggregateType(ret_value_type))
{
Target *target = exe_ctx.GetTargetPtr();
bool is_memory = true;
if (bit_width <= 128)
{
ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
DataBufferSP data_sp (new DataBufferHeap(16, 0));
DataExtractor return_ext (data_sp,
target_byte_order,
target->GetArchitecture().GetAddressByteSize());
const RegisterInfo *rax_info = reg_ctx_sp->GetRegisterInfoByName("rax", 0);
const RegisterInfo *rdx_info = reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
const RegisterInfo *xmm0_info = reg_ctx_sp->GetRegisterInfoByName("xmm0", 0);
const RegisterInfo *xmm1_info = reg_ctx_sp->GetRegisterInfoByName("xmm1", 0);
RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value;
reg_ctx_sp->ReadRegister (rax_info, rax_value);
reg_ctx_sp->ReadRegister (rdx_info, rdx_value);
reg_ctx_sp->ReadRegister (xmm0_info, xmm0_value);
reg_ctx_sp->ReadRegister (xmm1_info, xmm1_value);
DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data;
rax_value.GetData(rax_data);
rdx_value.GetData(rdx_data);
xmm0_value.GetData(xmm0_data);
xmm1_value.GetData(xmm1_data);
uint32_t fp_bytes = 0; // Tracks how much of the xmm registers we've consumed so far
uint32_t integer_bytes = 0; // Tracks how much of the rax/rds registers we've consumed so far
uint32_t num_children = ClangASTContext::GetNumFields (ast_context, ret_value_type);
// Since we are in the small struct regime, assume we are not in memory.
is_memory = false;
for (uint32_t idx = 0; idx < num_children; idx++)
{
std::string name;
uint32_t field_bit_offset;
bool is_signed;
bool is_complex;
uint32_t count;
clang_type_t field_clang_type = ClangASTContext::GetFieldAtIndex (ast_context, ret_value_type, idx, name, &field_bit_offset);
size_t field_bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, field_clang_type);
// If there are any unaligned fields, this is stored in memory.
if (field_bit_offset % field_bit_width != 0)
{
is_memory = true;
break;
}
uint32_t field_byte_width = field_bit_width/8;
uint32_t field_byte_offset = field_bit_offset/8;
DataExtractor *copy_from_extractor = NULL;
uint32_t copy_from_offset = 0;
if (ClangASTContext::IsIntegerType (field_clang_type, is_signed) || ClangASTContext::IsPointerType (field_clang_type))
{
if (integer_bytes < 8)
{
if (integer_bytes + field_byte_width <= 8)
{
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &rax_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
}
else
{
// The next field wouldn't fit in the remaining space, so we pushed it to rdx.
copy_from_extractor = &rdx_data;
copy_from_offset = 0;
integer_bytes = 8 + field_byte_width;
}
}
else if (integer_bytes + field_byte_width <= 16)
{
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
}
else
{
// The last field didn't fit. I can't see how that would happen w/o the overall size being
// greater than 16 bytes. For now, return a NULL return value object.
return return_valobj_sp;
}
}
else if (ClangASTContext::IsFloatingPointType (field_clang_type, count, is_complex))
{
// Structs with long doubles are always passed in memory.
if (field_bit_width == 128)
{
is_memory = true;
break;
}
else if (field_bit_width == 64)
{
// These have to be in a single xmm register.
if (fp_bytes == 0)
copy_from_extractor = &xmm0_data;
else
copy_from_extractor = &xmm1_data;
copy_from_offset = 0;
fp_bytes += field_byte_width;
}
else if (field_bit_width == 32)
{
// This one is kind of complicated. If we are in an "eightbyte" with another float, we'll
// be stuffed into an xmm register with it. If we are in an "eightbyte" with one or more ints,
// then we will be stuffed into the appropriate GPR with them.
bool in_gpr;
if (field_byte_offset % 8 == 0)
{
// We are at the beginning of one of the eightbytes, so check the next element (if any)
if (idx == num_children - 1)
in_gpr = false;
else
{
uint32_t next_field_bit_offset;
clang_type_t next_field_clang_type = ClangASTContext::GetFieldAtIndex (ast_context,
ret_value_type,
idx + 1,
name,
&next_field_bit_offset);
if (ClangASTContext::IsIntegerType (next_field_clang_type, is_signed))
in_gpr = true;
else
{
copy_from_offset = 0;
in_gpr = false;
}
}
}
else if (field_byte_offset % 4 == 0)
{
// We are inside of an eightbyte, so see if the field before us is floating point:
// This could happen if somebody put padding in the structure.
if (idx == 0)
in_gpr = false;
else
{
uint32_t prev_field_bit_offset;
clang_type_t prev_field_clang_type = ClangASTContext::GetFieldAtIndex (ast_context,
ret_value_type,
idx - 1,
name,
&prev_field_bit_offset);
if (ClangASTContext::IsIntegerType (prev_field_clang_type, is_signed))
in_gpr = true;
else
{
copy_from_offset = 4;
in_gpr = false;
}
}
}
else
{
is_memory = true;
continue;
}
// Okay, we've figured out whether we are in GPR or XMM, now figure out which one.
if (in_gpr)
{
if (integer_bytes < 8)
{
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &rax_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
}
else
{
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
}
}
else
{
if (fp_bytes < 8)
copy_from_extractor = &xmm0_data;
else
copy_from_extractor = &xmm1_data;
fp_bytes += field_byte_width;
}
}
}
// These two tests are just sanity checks. If I somehow get the
// type calculation wrong above it is better to just return nothing
// than to assert or crash.
if (!copy_from_extractor)
return return_valobj_sp;
if (copy_from_offset + field_byte_width > copy_from_extractor->GetByteSize())
return return_valobj_sp;
copy_from_extractor->CopyByteOrderedData (copy_from_offset,
field_byte_width,
data_sp->GetBytes() + field_byte_offset,
field_byte_width,
target_byte_order);
}
if (!is_memory)
{
// The result is in our data buffer. Let's make a variable object out of it:
return_valobj_sp = ValueObjectConstResult::Create (&thread,
ast_context,
ret_value_type,
ConstString(""),
return_ext);
}
}
if (is_memory)
{
unsigned rax_id = reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
lldb::addr_t storage_addr = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0);
return_valobj_sp = ValueObjectMemory::Create (&thread,
"",
Address (storage_addr, NULL),
ast_type);
}
}
return return_valobj_sp;
}
bool
ABISysV_x86_64::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
uint32_t reg_kind = unwind_plan.GetRegisterKind();
uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
switch (reg_kind)
{
case eRegisterKindDWARF:
case eRegisterKindGCC:
sp_reg_num = gcc_dwarf_rsp;
pc_reg_num = gcc_dwarf_rip;
break;
case eRegisterKindGDB:
sp_reg_num = gdb_rsp;
pc_reg_num = gdb_rip;
break;
case eRegisterKindGeneric:
sp_reg_num = LLDB_REGNUM_GENERIC_SP;
pc_reg_num = LLDB_REGNUM_GENERIC_PC;
break;
}
if (sp_reg_num == LLDB_INVALID_REGNUM ||
pc_reg_num == LLDB_INVALID_REGNUM)
return false;
UnwindPlan::Row row;
row.SetCFARegister (sp_reg_num);
row.SetCFAOffset (8);
row.SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName ("x86_64 at-func-entry default");
return true;
}
bool
ABISysV_x86_64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
uint32_t reg_kind = unwind_plan.GetRegisterKind();
uint32_t fp_reg_num = LLDB_INVALID_REGNUM;
uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
switch (reg_kind)
{
case eRegisterKindDWARF:
case eRegisterKindGCC:
fp_reg_num = gcc_dwarf_rbp;
sp_reg_num = gcc_dwarf_rsp;
pc_reg_num = gcc_dwarf_rip;
break;
case eRegisterKindGDB:
fp_reg_num = gdb_rbp;
sp_reg_num = gdb_rsp;
pc_reg_num = gdb_rip;
break;
case eRegisterKindGeneric:
fp_reg_num = LLDB_REGNUM_GENERIC_FP;
sp_reg_num = LLDB_REGNUM_GENERIC_SP;
pc_reg_num = LLDB_REGNUM_GENERIC_PC;
break;
}
if (fp_reg_num == LLDB_INVALID_REGNUM ||
sp_reg_num == LLDB_INVALID_REGNUM ||
pc_reg_num == LLDB_INVALID_REGNUM)
return false;
UnwindPlan::Row row;
const int32_t ptr_size = 8;
row.SetCFARegister (LLDB_REGNUM_GENERIC_FP);
row.SetCFAOffset (2 * ptr_size);
row.SetOffset (0);
row.SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row.SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
row.SetRegisterLocationToAtCFAPlusOffset(sp_reg_num, ptr_size * 0, true);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName ("x86_64 default unwind plan");
return true;
}
bool
ABISysV_x86_64::RegisterIsVolatile (const RegisterInfo *reg_info)
{
return !RegisterIsCalleeSaved (reg_info);
}
bool
ABISysV_x86_64::RegisterIsCalleeSaved (const RegisterInfo *reg_info)
{
if (reg_info)
{
// Volatile registers include: rbx, rbp, rsp, r12, r13, r14, r15, rip
const char *name = reg_info->name;
if (name[0] == 'r')
{
switch (name[1])
{
case '1': // r12, r13, r14, r15
if (name[2] >= '2' && name[2] <= '5')
return name[3] == '\0';
break;
case 'b': // rbp, rbx
if (name[2] == 'p' || name[2] == 'x')
return name[3] == '\0';
break;
case 'i': // rip
if (name[2] == 'p')
return name[3] == '\0';
break;
case 's': // rsp
if (name[2] == 'p')
return name[3] == '\0';
break;
default:
break;
}
}
}
return false;
}
void
ABISysV_x86_64::Initialize()
{
PluginManager::RegisterPlugin (pluginName,
pluginDesc,
CreateInstance);
}
void
ABISysV_x86_64::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ABISysV_x86_64::GetPluginName()
{
return pluginName;
}
const char *
ABISysV_x86_64::GetShortPluginName()
{
return pluginShort;
}
uint32_t
ABISysV_x86_64::GetPluginVersion()
{
return 1;
}