blob: 93bd7e91dba7c4af0dcff1416525678905c26993 [file] [log] [blame]
//===--- Transformer.cpp - Transformer library implementation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Transformer/RewriteRule.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Stmt.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Tooling/Transformer/SourceCode.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include <map>
#include <string>
#include <utility>
#include <vector>
using namespace clang;
using namespace transformer;
using ast_matchers::MatchFinder;
using ast_matchers::internal::DynTypedMatcher;
using MatchResult = MatchFinder::MatchResult;
const char transformer::RootID[] = "___root___";
static Expected<SmallVector<transformer::Edit, 1>>
translateEdits(const MatchResult &Result, ArrayRef<ASTEdit> ASTEdits) {
SmallVector<transformer::Edit, 1> Edits;
for (const auto &E : ASTEdits) {
Expected<CharSourceRange> Range = E.TargetRange(Result);
if (!Range)
return Range.takeError();
llvm::Optional<CharSourceRange> EditRange =
tooling::getRangeForEdit(*Range, *Result.Context);
// FIXME: let user specify whether to treat this case as an error or ignore
// it as is currently done. This behavior is problematic in that it hides
// failures from bad ranges. Also, the behavior here differs from
// `flatten`. Here, we abort (without error), whereas flatten, if it hits an
// empty list, does not abort. As a result, `editList({A,B})` is not
// equivalent to `flatten(edit(A), edit(B))`. The former will abort if `A`
// produces a bad range, whereas the latter will simply ignore A.
if (!EditRange)
return SmallVector<Edit, 0>();
auto Replacement = E.Replacement->eval(Result);
if (!Replacement)
return Replacement.takeError();
auto Metadata = E.Metadata(Result);
if (!Metadata)
return Metadata.takeError();
transformer::Edit T;
T.Kind = E.Kind;
T.Range = *EditRange;
T.Replacement = std::move(*Replacement);
T.Metadata = std::move(*Metadata);
Edits.push_back(std::move(T));
}
return Edits;
}
EditGenerator transformer::editList(SmallVector<ASTEdit, 1> Edits) {
return [Edits = std::move(Edits)](const MatchResult &Result) {
return translateEdits(Result, Edits);
};
}
EditGenerator transformer::edit(ASTEdit Edit) {
return [Edit = std::move(Edit)](const MatchResult &Result) {
return translateEdits(Result, {Edit});
};
}
EditGenerator transformer::noopEdit(RangeSelector Anchor) {
return [Anchor = std::move(Anchor)](const MatchResult &Result)
-> Expected<SmallVector<transformer::Edit, 1>> {
Expected<CharSourceRange> Range = Anchor(Result);
if (!Range)
return Range.takeError();
// In case the range is inside a macro expansion, map the location back to a
// "real" source location.
SourceLocation Begin =
Result.SourceManager->getSpellingLoc(Range->getBegin());
Edit E;
// Implicitly, leave `E.Replacement` as the empty string.
E.Kind = EditKind::Range;
E.Range = CharSourceRange::getCharRange(Begin, Begin);
return SmallVector<Edit, 1>{E};
};
}
EditGenerator
transformer::flattenVector(SmallVector<EditGenerator, 2> Generators) {
if (Generators.size() == 1)
return std::move(Generators[0]);
return
[Gs = std::move(Generators)](
const MatchResult &Result) -> llvm::Expected<SmallVector<Edit, 1>> {
SmallVector<Edit, 1> AllEdits;
for (const auto &G : Gs) {
llvm::Expected<SmallVector<Edit, 1>> Edits = G(Result);
if (!Edits)
return Edits.takeError();
AllEdits.append(Edits->begin(), Edits->end());
}
return AllEdits;
};
}
ASTEdit transformer::changeTo(RangeSelector Target, TextGenerator Replacement) {
ASTEdit E;
E.TargetRange = std::move(Target);
E.Replacement = std::move(Replacement);
return E;
}
namespace {
/// A \c TextGenerator that always returns a fixed string.
class SimpleTextGenerator : public MatchComputation<std::string> {
std::string S;
public:
SimpleTextGenerator(std::string S) : S(std::move(S)) {}
llvm::Error eval(const ast_matchers::MatchFinder::MatchResult &,
std::string *Result) const override {
Result->append(S);
return llvm::Error::success();
}
std::string toString() const override {
return (llvm::Twine("text(\"") + S + "\")").str();
}
};
} // namespace
static TextGenerator makeText(std::string S) {
return std::make_shared<SimpleTextGenerator>(std::move(S));
}
ASTEdit transformer::remove(RangeSelector S) {
return change(std::move(S), makeText(""));
}
static std::string formatHeaderPath(StringRef Header, IncludeFormat Format) {
switch (Format) {
case transformer::IncludeFormat::Quoted:
return Header.str();
case transformer::IncludeFormat::Angled:
return ("<" + Header + ">").str();
}
llvm_unreachable("Unknown transformer::IncludeFormat enum");
}
ASTEdit transformer::addInclude(RangeSelector Target, StringRef Header,
IncludeFormat Format) {
ASTEdit E;
E.Kind = EditKind::AddInclude;
E.TargetRange = Target;
E.Replacement = makeText(formatHeaderPath(Header, Format));
return E;
}
RewriteRule transformer::makeRule(DynTypedMatcher M, EditGenerator Edits,
TextGenerator Explanation) {
return RewriteRule{{RewriteRule::Case{std::move(M), std::move(Edits),
std::move(Explanation)}}};
}
namespace {
/// Unconditionally binds the given node set before trying `InnerMatcher` and
/// keeps the bound nodes on a successful match.
template <typename T>
class BindingsMatcher : public ast_matchers::internal::MatcherInterface<T> {
ast_matchers::BoundNodes Nodes;
const ast_matchers::internal::Matcher<T> InnerMatcher;
public:
explicit BindingsMatcher(ast_matchers::BoundNodes Nodes,
ast_matchers::internal::Matcher<T> InnerMatcher)
: Nodes(std::move(Nodes)), InnerMatcher(std::move(InnerMatcher)) {}
bool matches(
const T &Node, ast_matchers::internal::ASTMatchFinder *Finder,
ast_matchers::internal::BoundNodesTreeBuilder *Builder) const override {
ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
for (const auto &N : Nodes.getMap())
Result.setBinding(N.first, N.second);
if (InnerMatcher.matches(Node, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
return false;
}
};
/// Matches nodes of type T that have at least one descendant node for which the
/// given inner matcher matches. Will match for each descendant node that
/// matches. Based on ForEachDescendantMatcher, but takes a dynamic matcher,
/// instead of a static one, because it is used by RewriteRule, which carries
/// (only top-level) dynamic matchers.
template <typename T>
class DynamicForEachDescendantMatcher
: public ast_matchers::internal::MatcherInterface<T> {
const DynTypedMatcher DescendantMatcher;
public:
explicit DynamicForEachDescendantMatcher(DynTypedMatcher DescendantMatcher)
: DescendantMatcher(std::move(DescendantMatcher)) {}
bool matches(
const T &Node, ast_matchers::internal::ASTMatchFinder *Finder,
ast_matchers::internal::BoundNodesTreeBuilder *Builder) const override {
return Finder->matchesDescendantOf(
Node, this->DescendantMatcher, Builder,
ast_matchers::internal::ASTMatchFinder::BK_All);
}
};
template <typename T>
ast_matchers::internal::Matcher<T>
forEachDescendantDynamically(ast_matchers::BoundNodes Nodes,
DynTypedMatcher M) {
return ast_matchers::internal::makeMatcher(new BindingsMatcher<T>(
std::move(Nodes),
ast_matchers::internal::makeMatcher(
new DynamicForEachDescendantMatcher<T>(std::move(M)))));
}
class ApplyRuleCallback : public MatchFinder::MatchCallback {
public:
ApplyRuleCallback(RewriteRule Rule) : Rule(std::move(Rule)) {}
template <typename T>
void registerMatchers(const ast_matchers::BoundNodes &Nodes,
MatchFinder *MF) {
for (auto &Matcher : transformer::detail::buildMatchers(Rule))
MF->addMatcher(forEachDescendantDynamically<T>(Nodes, Matcher), this);
}
void run(const MatchFinder::MatchResult &Result) override {
if (!Edits)
return;
transformer::RewriteRule::Case Case =
transformer::detail::findSelectedCase(Result, Rule);
auto Transformations = Case.Edits(Result);
if (!Transformations) {
Edits = Transformations.takeError();
return;
}
Edits->append(Transformations->begin(), Transformations->end());
}
RewriteRule Rule;
// Initialize to a non-error state.
Expected<SmallVector<Edit, 1>> Edits = SmallVector<Edit, 1>();
};
} // namespace
template <typename T>
llvm::Expected<SmallVector<clang::transformer::Edit, 1>>
rewriteDescendantsImpl(const T &Node, RewriteRule Rule,
const MatchResult &Result) {
ApplyRuleCallback Callback(std::move(Rule));
MatchFinder Finder;
Callback.registerMatchers<T>(Result.Nodes, &Finder);
Finder.match(Node, *Result.Context);
return std::move(Callback.Edits);
}
llvm::Expected<SmallVector<clang::transformer::Edit, 1>>
transformer::detail::rewriteDescendants(const Decl &Node, RewriteRule Rule,
const MatchResult &Result) {
return rewriteDescendantsImpl(Node, std::move(Rule), Result);
}
llvm::Expected<SmallVector<clang::transformer::Edit, 1>>
transformer::detail::rewriteDescendants(const Stmt &Node, RewriteRule Rule,
const MatchResult &Result) {
return rewriteDescendantsImpl(Node, std::move(Rule), Result);
}
llvm::Expected<SmallVector<clang::transformer::Edit, 1>>
transformer::detail::rewriteDescendants(const TypeLoc &Node, RewriteRule Rule,
const MatchResult &Result) {
return rewriteDescendantsImpl(Node, std::move(Rule), Result);
}
llvm::Expected<SmallVector<clang::transformer::Edit, 1>>
transformer::detail::rewriteDescendants(const DynTypedNode &DNode,
RewriteRule Rule,
const MatchResult &Result) {
if (const auto *Node = DNode.get<Decl>())
return rewriteDescendantsImpl(*Node, std::move(Rule), Result);
if (const auto *Node = DNode.get<Stmt>())
return rewriteDescendantsImpl(*Node, std::move(Rule), Result);
if (const auto *Node = DNode.get<TypeLoc>())
return rewriteDescendantsImpl(*Node, std::move(Rule), Result);
return llvm::make_error<llvm::StringError>(
llvm::errc::invalid_argument,
"type unsupported for recursive rewriting, Kind=" +
DNode.getNodeKind().asStringRef());
}
EditGenerator transformer::rewriteDescendants(std::string NodeId,
RewriteRule Rule) {
return [NodeId = std::move(NodeId),
Rule = std::move(Rule)](const MatchResult &Result)
-> llvm::Expected<SmallVector<clang::transformer::Edit, 1>> {
const ast_matchers::BoundNodes::IDToNodeMap &NodesMap =
Result.Nodes.getMap();
auto It = NodesMap.find(NodeId);
if (It == NodesMap.end())
return llvm::make_error<llvm::StringError>(llvm::errc::invalid_argument,
"ID not bound: " + NodeId);
return detail::rewriteDescendants(It->second, std::move(Rule), Result);
};
}
void transformer::addInclude(RewriteRule &Rule, StringRef Header,
IncludeFormat Format) {
for (auto &Case : Rule.Cases)
Case.Edits = flatten(std::move(Case.Edits), addInclude(Header, Format));
}
#ifndef NDEBUG
// Filters for supported matcher kinds. FIXME: Explicitly list the allowed kinds
// (all node matcher types except for `QualType` and `Type`), rather than just
// banning `QualType` and `Type`.
static bool hasValidKind(const DynTypedMatcher &M) {
return !M.canConvertTo<QualType>();
}
#endif
// Binds each rule's matcher to a unique (and deterministic) tag based on
// `TagBase` and the id paired with the case. All of the returned matchers have
// their traversal kind explicitly set, either based on a pre-set kind or to the
// provided `DefaultTraversalKind`.
static std::vector<DynTypedMatcher> taggedMatchers(
StringRef TagBase,
const SmallVectorImpl<std::pair<size_t, RewriteRule::Case>> &Cases,
TraversalKind DefaultTraversalKind) {
std::vector<DynTypedMatcher> Matchers;
Matchers.reserve(Cases.size());
for (const auto &Case : Cases) {
std::string Tag = (TagBase + Twine(Case.first)).str();
// HACK: Many matchers are not bindable, so ensure that tryBind will work.
DynTypedMatcher BoundMatcher(Case.second.Matcher);
BoundMatcher.setAllowBind(true);
auto M = *BoundMatcher.tryBind(Tag);
Matchers.push_back(!M.getTraversalKind()
? M.withTraversalKind(DefaultTraversalKind)
: std::move(M));
}
return Matchers;
}
// Simply gathers the contents of the various rules into a single rule. The
// actual work to combine these into an ordered choice is deferred to matcher
// registration.
RewriteRule transformer::applyFirst(ArrayRef<RewriteRule> Rules) {
RewriteRule R;
for (auto &Rule : Rules)
R.Cases.append(Rule.Cases.begin(), Rule.Cases.end());
return R;
}
std::vector<DynTypedMatcher>
transformer::detail::buildMatchers(const RewriteRule &Rule) {
// Map the cases into buckets of matchers -- one for each "root" AST kind,
// which guarantees that they can be combined in a single anyOf matcher. Each
// case is paired with an identifying number that is converted to a string id
// in `taggedMatchers`.
std::map<ASTNodeKind, SmallVector<std::pair<size_t, RewriteRule::Case>, 1>>
Buckets;
const SmallVectorImpl<RewriteRule::Case> &Cases = Rule.Cases;
for (int I = 0, N = Cases.size(); I < N; ++I) {
assert(hasValidKind(Cases[I].Matcher) &&
"Matcher must be non-(Qual)Type node matcher");
Buckets[Cases[I].Matcher.getSupportedKind()].emplace_back(I, Cases[I]);
}
// Each anyOf explicitly controls the traversal kind. The anyOf itself is set
// to `TK_AsIs` to ensure no nodes are skipped, thereby deferring to the kind
// of the branches. Then, each branch is either left as is, if the kind is
// already set, or explicitly set to `TK_AsIs`. We choose this setting because
// it is the default interpretation of matchers.
std::vector<DynTypedMatcher> Matchers;
for (const auto &Bucket : Buckets) {
DynTypedMatcher M = DynTypedMatcher::constructVariadic(
DynTypedMatcher::VO_AnyOf, Bucket.first,
taggedMatchers("Tag", Bucket.second, TK_AsIs));
M.setAllowBind(true);
// `tryBind` is guaranteed to succeed, because `AllowBind` was set to true.
Matchers.push_back(M.tryBind(RootID)->withTraversalKind(TK_AsIs));
}
return Matchers;
}
DynTypedMatcher transformer::detail::buildMatcher(const RewriteRule &Rule) {
std::vector<DynTypedMatcher> Ms = buildMatchers(Rule);
assert(Ms.size() == 1 && "Cases must have compatible matchers.");
return Ms[0];
}
SourceLocation transformer::detail::getRuleMatchLoc(const MatchResult &Result) {
auto &NodesMap = Result.Nodes.getMap();
auto Root = NodesMap.find(RootID);
assert(Root != NodesMap.end() && "Transformation failed: missing root node.");
llvm::Optional<CharSourceRange> RootRange = tooling::getRangeForEdit(
CharSourceRange::getTokenRange(Root->second.getSourceRange()),
*Result.Context);
if (RootRange)
return RootRange->getBegin();
// The match doesn't have a coherent range, so fall back to the expansion
// location as the "beginning" of the match.
return Result.SourceManager->getExpansionLoc(
Root->second.getSourceRange().getBegin());
}
// Finds the case that was "selected" -- that is, whose matcher triggered the
// `MatchResult`.
const RewriteRule::Case &
transformer::detail::findSelectedCase(const MatchResult &Result,
const RewriteRule &Rule) {
if (Rule.Cases.size() == 1)
return Rule.Cases[0];
auto &NodesMap = Result.Nodes.getMap();
for (size_t i = 0, N = Rule.Cases.size(); i < N; ++i) {
std::string Tag = ("Tag" + Twine(i)).str();
if (NodesMap.find(Tag) != NodesMap.end())
return Rule.Cases[i];
}
llvm_unreachable("No tag found for this rule.");
}
const llvm::StringRef RewriteRule::RootID = ::clang::transformer::RootID;