blob: 43ca644ed21edfd84a9f16cbff82efcb25fbe9a4 [file] [log] [blame]
//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetBuiltins.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Assumptions.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace sema;
namespace AttributeLangSupport {
enum LANG {
C,
Cpp,
ObjC
};
} // end namespace AttributeLangSupport
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(const Decl *D) {
return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
}
/// Return true if the given decl has function type (function or
/// function-typed variable) or an Objective-C method or a block.
static bool isFunctionOrMethodOrBlock(const Decl *D) {
return isFunctionOrMethod(D) || isa<BlockDecl>(D);
}
/// Return true if the given decl has a declarator that should have
/// been processed by Sema::GetTypeForDeclarator.
static bool hasDeclarator(const Decl *D) {
// In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
isa<ObjCPropertyDecl>(D);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
static bool hasFunctionProto(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return isa<FunctionProtoType>(FnTy);
return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
}
/// getFunctionOrMethodNumParams - Return number of function or method
/// parameters. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumParams(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getNumParams();
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->getNumParams();
return cast<ObjCMethodDecl>(D)->param_size();
}
static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
unsigned Idx) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getParamDecl(Idx);
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getParamDecl(Idx);
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx);
return nullptr;
}
static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx)->getType();
return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
}
static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
if (auto *PVD = getFunctionOrMethodParam(D, Idx))
return PVD->getSourceRange();
return SourceRange();
}
static QualType getFunctionOrMethodResultType(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return FnTy->getReturnType();
return cast<ObjCMethodDecl>(D)->getReturnType();
}
static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getReturnTypeSourceRange();
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getReturnTypeSourceRange();
return SourceRange();
}
static bool isFunctionOrMethodVariadic(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->isVariadic();
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
return cast<ObjCMethodDecl>(D)->isVariadic();
}
static bool isInstanceMethod(const Decl *D) {
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
return MethodDecl->isInstance();
return false;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx,
bool AllowNSAttributedString = false) {
const auto *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
if (!Cls)
return false;
IdentifierInfo* ClsName = Cls->getIdentifier();
if (AllowNSAttributedString &&
ClsName == &Ctx.Idents.get("NSAttributedString"))
return true;
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const auto *PT = T->getAs<PointerType>();
if (!PT)
return false;
const auto *RT = PT->getPointeeType()->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TTK_Struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
// FIXME: Include the type in the argument list.
return AL.getNumArgs() + AL.hasParsedType();
}
/// A helper function to provide Attribute Location for the Attr types
/// AND the ParsedAttr.
template <typename AttrInfo>
static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
getAttrLoc(const AttrInfo &AL) {
return AL.getLocation();
}
static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
/// If Expr is a valid integer constant, get the value of the integer
/// expression and return success or failure. May output an error.
///
/// Negative argument is implicitly converted to unsigned, unless
/// \p StrictlyUnsigned is true.
template <typename AttrInfo>
static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
uint32_t &Val, unsigned Idx = UINT_MAX,
bool StrictlyUnsigned = false) {
Optional<llvm::APSInt> I = llvm::APSInt(32);
if (Expr->isTypeDependent() || Expr->isValueDependent() ||
!(I = Expr->getIntegerConstantExpr(S.Context))) {
if (Idx != UINT_MAX)
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
<< &AI << Idx << AANT_ArgumentIntegerConstant
<< Expr->getSourceRange();
else
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
<< &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
return false;
}
if (!I->isIntN(32)) {
S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
<< I->toString(10, false) << 32 << /* Unsigned */ 1;
return false;
}
if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
<< &AI << /*non-negative*/ 1;
return false;
}
Val = (uint32_t)I->getZExtValue();
return true;
}
/// Wrapper around checkUInt32Argument, with an extra check to be sure
/// that the result will fit into a regular (signed) int. All args have the same
/// purpose as they do in checkUInt32Argument.
template <typename AttrInfo>
static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
int &Val, unsigned Idx = UINT_MAX) {
uint32_t UVal;
if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
return false;
if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
llvm::APSInt I(32); // for toString
I = UVal;
S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
<< I.toString(10, false) << 32 << /* Unsigned */ 0;
return false;
}
Val = UVal;
return true;
}
/// Diagnose mutually exclusive attributes when present on a given
/// declaration. Returns true if diagnosed.
template <typename AttrTy>
static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
if (const auto *A = D->getAttr<AttrTy>()) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
S.Diag(A->getLocation(), diag::note_conflicting_attribute);
return true;
}
return false;
}
template <typename AttrTy>
static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
if (const auto *A = D->getAttr<AttrTy>()) {
S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
<< A;
S.Diag(A->getLocation(), diag::note_conflicting_attribute);
return true;
}
return false;
}
/// Check if IdxExpr is a valid parameter index for a function or
/// instance method D. May output an error.
///
/// \returns true if IdxExpr is a valid index.
template <typename AttrInfo>
static bool checkFunctionOrMethodParameterIndex(
Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
assert(isFunctionOrMethodOrBlock(D));
// In C++ the implicit 'this' function parameter also counts.
// Parameters are counted from one.
bool HP = hasFunctionProto(D);
bool HasImplicitThisParam = isInstanceMethod(D);
bool IV = HP && isFunctionOrMethodVariadic(D);
unsigned NumParams =
(HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
Optional<llvm::APSInt> IdxInt;
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
<< &AI << AttrArgNum << AANT_ArgumentIntegerConstant
<< IdxExpr->getSourceRange();
return false;
}
unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
<< &AI << AttrArgNum << IdxExpr->getSourceRange();
return false;
}
if (HasImplicitThisParam && !CanIndexImplicitThis) {
if (IdxSource == 1) {
S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
<< &AI << IdxExpr->getSourceRange();
return false;
}
}
Idx = ParamIdx(IdxSource, D);
return true;
}
/// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
/// If not emit an error and return false. If the argument is an identifier it
/// will emit an error with a fixit hint and treat it as if it was a string
/// literal.
bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
StringRef &Str,
SourceLocation *ArgLocation) {
// Look for identifiers. If we have one emit a hint to fix it to a literal.
if (AL.isArgIdent(ArgNum)) {
IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
Diag(Loc->Loc, diag::err_attribute_argument_type)
<< AL << AANT_ArgumentString
<< FixItHint::CreateInsertion(Loc->Loc, "\"")
<< FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
Str = Loc->Ident->getName();
if (ArgLocation)
*ArgLocation = Loc->Loc;
return true;
}
// Now check for an actual string literal.
Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
if (ArgLocation)
*ArgLocation = ArgExpr->getBeginLoc();
if (!Literal || !Literal->isAscii()) {
Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentString;
return false;
}
Str = Literal->getString();
return true;
}
/// Applies the given attribute to the Decl without performing any
/// additional semantic checking.
template <typename AttrType>
static void handleSimpleAttribute(Sema &S, Decl *D,
const AttributeCommonInfo &CI) {
D->addAttr(::new (S.Context) AttrType(S.Context, CI));
}
template <typename... DiagnosticArgs>
static const Sema::SemaDiagnosticBuilder&
appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
return Bldr;
}
template <typename T, typename... DiagnosticArgs>
static const Sema::SemaDiagnosticBuilder&
appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
DiagnosticArgs &&... ExtraArgs) {
return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
std::forward<DiagnosticArgs>(ExtraArgs)...);
}
/// Add an attribute @c AttrType to declaration @c D, provided that
/// @c PassesCheck is true.
/// Otherwise, emit diagnostic @c DiagID, passing in all parameters
/// specified in @c ExtraArgs.
template <typename AttrType, typename... DiagnosticArgs>
static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
const AttributeCommonInfo &CI,
bool PassesCheck, unsigned DiagID,
DiagnosticArgs &&... ExtraArgs) {
if (!PassesCheck) {
Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
return;
}
handleSimpleAttribute<AttrType>(S, D, CI);
}
/// Check if the passed-in expression is of type int or bool.
static bool isIntOrBool(Expr *Exp) {
QualType QT = Exp->getType();
return QT->isBooleanType() || QT->isIntegerType();
}
// Check to see if the type is a smart pointer of some kind. We assume
// it's a smart pointer if it defines both operator-> and operator*.
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
OverloadedOperatorKind Op) {
DeclContextLookupResult Result =
Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
return !Result.empty();
};
const RecordDecl *Record = RT->getDecl();
bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
if (foundStarOperator && foundArrowOperator)
return true;
const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
if (!CXXRecord)
return false;
for (auto BaseSpecifier : CXXRecord->bases()) {
if (!foundStarOperator)
foundStarOperator = IsOverloadedOperatorPresent(
BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
if (!foundArrowOperator)
foundArrowOperator = IsOverloadedOperatorPresent(
BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
}
if (foundStarOperator && foundArrowOperator)
return true;
return false;
}
/// Check if passed in Decl is a pointer type.
/// Note that this function may produce an error message.
/// \return true if the Decl is a pointer type; false otherwise
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
const ParsedAttr &AL) {
const auto *VD = cast<ValueDecl>(D);
QualType QT = VD->getType();
if (QT->isAnyPointerType())
return true;
if (const auto *RT = QT->getAs<RecordType>()) {
// If it's an incomplete type, it could be a smart pointer; skip it.
// (We don't want to force template instantiation if we can avoid it,
// since that would alter the order in which templates are instantiated.)
if (RT->isIncompleteType())
return true;
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
}
S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
return false;
}
/// Checks that the passed in QualType either is of RecordType or points
/// to RecordType. Returns the relevant RecordType, null if it does not exit.
static const RecordType *getRecordType(QualType QT) {
if (const auto *RT = QT->getAs<RecordType>())
return RT;
// Now check if we point to record type.
if (const auto *PT = QT->getAs<PointerType>())
return PT->getPointeeType()->getAs<RecordType>();
return nullptr;
}
template <typename AttrType>
static bool checkRecordDeclForAttr(const RecordDecl *RD) {
// Check if the record itself has the attribute.
if (RD->hasAttr<AttrType>())
return true;
// Else check if any base classes have the attribute.
if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
if (!CRD->forallBases([](const CXXRecordDecl *Base) {
return !Base->hasAttr<AttrType>();
}))
return true;
}
return false;
}
static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
const RecordType *RT = getRecordType(Ty);
if (!RT)
return false;
// Don't check for the capability if the class hasn't been defined yet.
if (RT->isIncompleteType())
return true;
// Allow smart pointers to be used as capability objects.
// FIXME -- Check the type that the smart pointer points to.
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
}
static bool checkTypedefTypeForCapability(QualType Ty) {
const auto *TD = Ty->getAs<TypedefType>();
if (!TD)
return false;
TypedefNameDecl *TN = TD->getDecl();
if (!TN)
return false;
return TN->hasAttr<CapabilityAttr>();
}
static bool typeHasCapability(Sema &S, QualType Ty) {
if (checkTypedefTypeForCapability(Ty))
return true;
if (checkRecordTypeForCapability(S, Ty))
return true;
return false;
}
static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
// Capability expressions are simple expressions involving the boolean logic
// operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
// a DeclRefExpr is found, its type should be checked to determine whether it
// is a capability or not.
if (const auto *E = dyn_cast<CastExpr>(Ex))
return isCapabilityExpr(S, E->getSubExpr());
else if (const auto *E = dyn_cast<ParenExpr>(Ex))
return isCapabilityExpr(S, E->getSubExpr());
else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
E->getOpcode() == UO_Deref)
return isCapabilityExpr(S, E->getSubExpr());
return false;
} else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
return isCapabilityExpr(S, E->getLHS()) &&
isCapabilityExpr(S, E->getRHS());
return false;
}
return typeHasCapability(S, Ex->getType());
}
/// Checks that all attribute arguments, starting from Sidx, resolve to
/// a capability object.
/// \param Sidx The attribute argument index to start checking with.
/// \param ParamIdxOk Whether an argument can be indexing into a function
/// parameter list.
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args,
unsigned Sidx = 0,
bool ParamIdxOk = false) {
if (Sidx == AL.getNumArgs()) {
// If we don't have any capability arguments, the attribute implicitly
// refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
// a non-static method, and that the class is a (scoped) capability.
const auto *MD = dyn_cast<const CXXMethodDecl>(D);
if (MD && !MD->isStatic()) {
const CXXRecordDecl *RD = MD->getParent();
// FIXME -- need to check this again on template instantiation
if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
!checkRecordDeclForAttr<ScopedLockableAttr>(RD))
S.Diag(AL.getLoc(),
diag::warn_thread_attribute_not_on_capability_member)
<< AL << MD->getParent();
} else {
S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
<< AL;
}
}
for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
Expr *ArgExp = AL.getArgAsExpr(Idx);
if (ArgExp->isTypeDependent()) {
// FIXME -- need to check this again on template instantiation
Args.push_back(ArgExp);
continue;
}
if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
if (StrLit->getLength() == 0 ||
(StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
// Pass empty strings to the analyzer without warnings.
// Treat "*" as the universal lock.
Args.push_back(ArgExp);
continue;
}
// We allow constant strings to be used as a placeholder for expressions
// that are not valid C++ syntax, but warn that they are ignored.
S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
Args.push_back(ArgExp);
continue;
}
QualType ArgTy = ArgExp->getType();
// A pointer to member expression of the form &MyClass::mu is treated
// specially -- we need to look at the type of the member.
if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
if (UOp->getOpcode() == UO_AddrOf)
if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
if (DRE->getDecl()->isCXXInstanceMember())
ArgTy = DRE->getDecl()->getType();
// First see if we can just cast to record type, or pointer to record type.
const RecordType *RT = getRecordType(ArgTy);
// Now check if we index into a record type function param.
if(!RT && ParamIdxOk) {
const auto *FD = dyn_cast<FunctionDecl>(D);
const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
if(FD && IL) {
unsigned int NumParams = FD->getNumParams();
llvm::APInt ArgValue = IL->getValue();
uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
S.Diag(AL.getLoc(),
diag::err_attribute_argument_out_of_bounds_extra_info)
<< AL << Idx + 1 << NumParams;
continue;
}
ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
}
}
// If the type does not have a capability, see if the components of the
// expression have capabilities. This allows for writing C code where the
// capability may be on the type, and the expression is a capability
// boolean logic expression. Eg) requires_capability(A || B && !C)
if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
<< AL << ArgTy;
Args.push_back(ArgExp);
}
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!threadSafetyCheckIsPointer(S, D, AL))
return;
D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
}
static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
Expr *&Arg) {
SmallVector<Expr *, 1> Args;
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
unsigned Size = Args.size();
if (Size != 1)
return false;
Arg = Args[0];
return true;
}
static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *Arg = nullptr;
if (!checkGuardedByAttrCommon(S, D, AL, Arg))
return;
D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
}
static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *Arg = nullptr;
if (!checkGuardedByAttrCommon(S, D, AL, Arg))
return;
if (!threadSafetyCheckIsPointer(S, D, AL))
return;
D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
}
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args) {
if (!AL.checkAtLeastNumArgs(S, 1))
return false;
// Check that this attribute only applies to lockable types.
QualType QT = cast<ValueDecl>(D)->getType();
if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
return false;
}
// Check that all arguments are lockable objects.
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
if (Args.empty())
return false;
return true;
}
static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
}
static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
}
static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args) {
// zero or more arguments ok
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
return true;
}
static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkLockFunAttrCommon(S, D, AL, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
D->addAttr(::new (S.Context)
AssertSharedLockAttr(S.Context, AL, StartArg, Size));
}
static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkLockFunAttrCommon(S, D, AL, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
D->addAttr(::new (S.Context)
AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
}
/// Checks to be sure that the given parameter number is in bounds, and
/// is an integral type. Will emit appropriate diagnostics if this returns
/// false.
///
/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
template <typename AttrInfo>
static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
unsigned AttrArgNo) {
assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
ParamIdx Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
Idx))
return false;
QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
SourceLocation SrcLoc = AttrArg->getBeginLoc();
S.Diag(SrcLoc, diag::err_attribute_integers_only)
<< AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
return false;
}
return true;
}
static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
return;
assert(isFunctionOrMethod(D) && hasFunctionProto(D));
QualType RetTy = getFunctionOrMethodResultType(D);
if (!RetTy->isPointerType()) {
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
return;
}
const Expr *SizeExpr = AL.getArgAsExpr(0);
int SizeArgNoVal;
// Parameter indices are 1-indexed, hence Index=1
if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
return;
if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
return;
ParamIdx SizeArgNo(SizeArgNoVal, D);
ParamIdx NumberArgNo;
if (AL.getNumArgs() == 2) {
const Expr *NumberExpr = AL.getArgAsExpr(1);
int Val;
// Parameter indices are 1-based, hence Index=2
if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
return;
if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
return;
NumberArgNo = ParamIdx(Val, D);
}
D->addAttr(::new (S.Context)
AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
}
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args) {
if (!AL.checkAtLeastNumArgs(S, 1))
return false;
if (!isIntOrBool(AL.getArgAsExpr(0))) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIntOrBool;
return false;
}
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
return true;
}
static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
return;
D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
}
static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
return;
D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
}
static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// check that the argument is lockable object
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
}
static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.checkAtLeastNumArgs(S, 1))
return;
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
LocksExcludedAttr(S.Context, AL, StartArg, Size));
}
static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
Expr *&Cond, StringRef &Msg) {
Cond = AL.getArgAsExpr(0);
if (!Cond->isTypeDependent()) {
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
if (Converted.isInvalid())
return false;
Cond = Converted.get();
}
if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
return false;
if (Msg.empty())
Msg = "<no message provided>";
SmallVector<PartialDiagnosticAt, 8> Diags;
if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
!Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
Diags)) {
S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
for (const PartialDiagnosticAt &PDiag : Diags)
S.Diag(PDiag.first, PDiag.second);
return false;
}
return true;
}
static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
Expr *Cond;
StringRef Msg;
if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
}
namespace {
/// Determines if a given Expr references any of the given function's
/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
class ArgumentDependenceChecker
: public RecursiveASTVisitor<ArgumentDependenceChecker> {
#ifndef NDEBUG
const CXXRecordDecl *ClassType;
#endif
llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
bool Result;
public:
ArgumentDependenceChecker(const FunctionDecl *FD) {
#ifndef NDEBUG
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
ClassType = MD->getParent();
else
ClassType = nullptr;
#endif
Parms.insert(FD->param_begin(), FD->param_end());
}
bool referencesArgs(Expr *E) {
Result = false;
TraverseStmt(E);
return Result;
}
bool VisitCXXThisExpr(CXXThisExpr *E) {
assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
"`this` doesn't refer to the enclosing class?");
Result = true;
return false;
}
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
if (Parms.count(PVD)) {
Result = true;
return false;
}
return true;
}
};
}
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
Expr *Cond;
StringRef Msg;
if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
return;
StringRef DiagTypeStr;
if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
return;
DiagnoseIfAttr::DiagnosticType DiagType;
if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
diag::err_diagnose_if_invalid_diagnostic_type);
return;
}
bool ArgDependent = false;
if (const auto *FD = dyn_cast<FunctionDecl>(D))
ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
D->addAttr(::new (S.Context) DiagnoseIfAttr(
S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
}
static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
static constexpr const StringRef kWildcard = "*";
llvm::SmallVector<StringRef, 16> Names;
bool HasWildcard = false;
const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
if (Name == kWildcard)
HasWildcard = true;
Names.push_back(Name);
};
// Add previously defined attributes.
if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
for (StringRef BuiltinName : NBA->builtinNames())
AddBuiltinName(BuiltinName);
// Add current attributes.
if (AL.getNumArgs() == 0)
AddBuiltinName(kWildcard);
else
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
StringRef BuiltinName;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
return;
if (Builtin::Context::isBuiltinFunc(BuiltinName))
AddBuiltinName(BuiltinName);
else
S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
<< BuiltinName << AL;
}
// Repeating the same attribute is fine.
llvm::sort(Names);
Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
// Empty no_builtin must be on its own.
if (HasWildcard && Names.size() > 1)
S.Diag(D->getLocation(),
diag::err_attribute_no_builtin_wildcard_or_builtin_name)
<< AL;
if (D->hasAttr<NoBuiltinAttr>())
D->dropAttr<NoBuiltinAttr>();
D->addAttr(::new (S.Context)
NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
}
static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (D->hasAttr<PassObjectSizeAttr>()) {
S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
return;
}
Expr *E = AL.getArgAsExpr(0);
uint32_t Type;
if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
return;
// pass_object_size's argument is passed in as the second argument of
// __builtin_object_size. So, it has the same constraints as that second
// argument; namely, it must be in the range [0, 3].
if (Type > 3) {
S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
<< AL << 0 << 3 << E->getSourceRange();
return;
}
// pass_object_size is only supported on constant pointer parameters; as a
// kindness to users, we allow the parameter to be non-const for declarations.
// At this point, we have no clue if `D` belongs to a function declaration or
// definition, so we defer the constness check until later.
if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
return;
}
D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
}
static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
ConsumableAttr::ConsumedState DefaultState;
if (AL.isArgIdent(0)) {
IdentifierLoc *IL = AL.getArgAsIdent(0);
if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
DefaultState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
<< IL->Ident;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
}
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
const ParsedAttr &AL) {
QualType ThisType = MD->getThisType()->getPointeeType();
if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
if (!RD->hasAttr<ConsumableAttr>()) {
S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
return false;
}
}
return true;
}
static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.checkAtLeastNumArgs(S, 1))
return;
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
return;
SmallVector<CallableWhenAttr::ConsumedState, 3> States;
for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
CallableWhenAttr::ConsumedState CallableState;
StringRef StateString;
SourceLocation Loc;
if (AL.isArgIdent(ArgIndex)) {
IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
StateString = Ident->Ident->getName();
Loc = Ident->Loc;
} else {
if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
return;
}
if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
CallableState)) {
S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
return;
}
States.push_back(CallableState);
}
D->addAttr(::new (S.Context)
CallableWhenAttr(S.Context, AL, States.data(), States.size()));
}
static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
ParamTypestateAttr::ConsumedState ParamState;
if (AL.isArgIdent(0)) {
IdentifierLoc *Ident = AL.getArgAsIdent(0);
StringRef StateString = Ident->Ident->getName();
if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
ParamState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< AL << StateString;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType = cast<ParmVarDecl>(D)->getType();
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
}
static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
ReturnTypestateAttr::ConsumedState ReturnState;
if (AL.isArgIdent(0)) {
IdentifierLoc *IL = AL.getArgAsIdent(0);
if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
ReturnState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
<< IL->Ident;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType;
//
//if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
// ReturnType = Param->getType();
//
//} else if (const CXXConstructorDecl *Constructor =
// dyn_cast<CXXConstructorDecl>(D)) {
// ReturnType = Constructor->getThisType()->getPointeeType();
//
//} else {
//
// ReturnType = cast<FunctionDecl>(D)->getCallResultType();
//}
//
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
}
static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
return;
SetTypestateAttr::ConsumedState NewState;
if (AL.isArgIdent(0)) {
IdentifierLoc *Ident = AL.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
<< Param;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
}
static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
return;
TestTypestateAttr::ConsumedState TestState;
if (AL.isArgIdent(0)) {
IdentifierLoc *Ident = AL.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
<< Param;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
}
static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
}
static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (auto *TD = dyn_cast<TagDecl>(D))
TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
else if (auto *FD = dyn_cast<FieldDecl>(D)) {
bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
!FD->getType()->isIncompleteType() &&
FD->isBitField() &&
S.Context.getTypeAlign(FD->getType()) <= 8);
if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
if (BitfieldByteAligned)
// The PS4 target needs to maintain ABI backwards compatibility.
S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
<< AL << FD->getType();
else
FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
} else {
// Report warning about changed offset in the newer compiler versions.
if (BitfieldByteAligned)
S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
}
} else
S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
}
static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
auto *RD = cast<CXXRecordDecl>(D);
ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
assert(CTD && "attribute does not appertain to this declaration");
ParsedType PT = AL.getTypeArg();
TypeSourceInfo *TSI = nullptr;
QualType T = S.GetTypeFromParser(PT, &TSI);
if (!TSI)
TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
if (!T.hasQualifiers() && T->isTypedefNameType()) {
// Find the template name, if this type names a template specialization.
const TemplateDecl *Template = nullptr;
if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
T->getAsCXXRecordDecl())) {
Template = CTSD->getSpecializedTemplate();
} else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
while (TST && TST->isTypeAlias())
TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
if (TST)
Template = TST->getTemplateName().getAsTemplateDecl();
}
if (Template && declaresSameEntity(Template, CTD)) {
D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
return;
}
}
S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
<< T << CTD;
if (const auto *TT = T->getAs<TypedefType>())
S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
<< TT->getDecl();
}
static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
// The IBOutlet/IBOutletCollection attributes only apply to instance
// variables or properties of Objective-C classes. The outlet must also
// have an object reference type.
if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
<< AL << VD->getType() << 0;
return false;
}
}
else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
<< AL << PD->getType() << 1;
return false;
}
}
else {
S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
return false;
}
return true;
}
static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkIBOutletCommon(S, D, AL))
return;
D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
}
static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
// The iboutletcollection attribute can have zero or one arguments.
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
return;
}
if (!checkIBOutletCommon(S, D, AL))
return;
ParsedType PT;
if (AL.hasParsedType())
PT = AL.getTypeArg();
else {
PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
S.getScopeForContext(D->getDeclContext()->getParent()));
if (!PT) {
S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
return;
}
}
TypeSourceInfo *QTLoc = nullptr;
QualType QT = S.GetTypeFromParser(PT, &QTLoc);
if (!QTLoc)
QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
// Diagnose use of non-object type in iboutletcollection attribute.
// FIXME. Gnu attribute extension ignores use of builtin types in
// attributes. So, __attribute__((iboutletcollection(char))) will be
// treated as __attribute__((iboutletcollection())).
if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
S.Diag(AL.getLoc(),
QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
: diag::err_iboutletcollection_type) << QT;
return;
}
D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
}
bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
if (RefOkay) {
if (T->isReferenceType())
return true;
} else {
T = T.getNonReferenceType();
}
// The nonnull attribute, and other similar attributes, can be applied to a
// transparent union that contains a pointer type.
if (const RecordType *UT = T->getAsUnionType()) {
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
RecordDecl *UD = UT->getDecl();
for (const auto *I : UD->fields()) {
QualType QT = I->getType();
if (QT->isAnyPointerType() || QT->isBlockPointerType())
return true;
}
}
}
return T->isAnyPointerType() || T->isBlockPointerType();
}
static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
SourceRange AttrParmRange,
SourceRange TypeRange,
bool isReturnValue = false) {
if (!S.isValidPointerAttrType(T)) {
if (isReturnValue)
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
<< AL << AttrParmRange << TypeRange;
else
S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
<< AL << AttrParmRange << TypeRange << 0;
return false;
}
return true;
}
static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<ParamIdx, 8> NonNullArgs;
for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
Expr *Ex = AL.getArgAsExpr(I);
ParamIdx Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
return;
// Is the function argument a pointer type?
if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
!attrNonNullArgCheck(
S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
Ex->getSourceRange(),
getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
continue;
NonNullArgs.push_back(Idx);
}
// If no arguments were specified to __attribute__((nonnull)) then all pointer
// arguments have a nonnull attribute; warn if there aren't any. Skip this
// check if the attribute came from a macro expansion or a template
// instantiation.
if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
!S.inTemplateInstantiation()) {
bool AnyPointers = isFunctionOrMethodVariadic(D);
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
I != E && !AnyPointers; ++I) {
QualType T = getFunctionOrMethodParamType(D, I);
if (T->isDependentType() || S.isValidPointerAttrType(T))
AnyPointers = true;
}
if (!AnyPointers)
S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
}
ParamIdx *Start = NonNullArgs.data();
unsigned Size = NonNullArgs.size();
llvm::array_pod_sort(Start, Start + Size);
D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
}
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
const ParsedAttr &AL) {
if (AL.getNumArgs() > 0) {
if (D->getFunctionType()) {
handleNonNullAttr(S, D, AL);
} else {
S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
<< D->getSourceRange();
}
return;
}
// Is the argument a pointer type?
if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
D->getSourceRange()))
return;
D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
}
static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
QualType ResultType = getFunctionOrMethodResultType(D);
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
/* isReturnValue */ true))
return;
D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
}
static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (D->isInvalidDecl())
return;
// noescape only applies to pointer types.
QualType T = cast<ParmVarDecl>(D)->getType();
if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
<< AL << AL.getRange() << 0;
return;
}
D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
}
static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *E = AL.getArgAsExpr(0),
*OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
S.AddAssumeAlignedAttr(D, AL, E, OE);
}
static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
}
void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
Expr *OE) {
QualType ResultType = getFunctionOrMethodResultType(D);
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
SourceLocation AttrLoc = TmpAttr.getLocation();
if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
<< &TmpAttr << TmpAttr.getRange() << SR;
return;
}
if (!E->isValueDependent()) {
Optional<llvm::APSInt> I = llvm::APSInt(64);
if (!(I = E->getIntegerConstantExpr(Context))) {
if (OE)
Diag(AttrLoc, diag::err_attribute_argument_n_type)
<< &TmpAttr << 1 << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
else
Diag(AttrLoc, diag::err_attribute_argument_type)
<< &TmpAttr << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
return;
}
if (!I->isPowerOf2()) {
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
<< E->getSourceRange();
return;
}
if (*I > Sema::MaximumAlignment)
Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
<< CI.getRange() << Sema::MaximumAlignment;
}
if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
Diag(AttrLoc, diag::err_attribute_argument_n_type)
<< &TmpAttr << 2 << AANT_ArgumentIntegerConstant
<< OE->getSourceRange();
return;
}
D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
}
void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *ParamExpr) {
QualType ResultType = getFunctionOrMethodResultType(D);
AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
SourceLocation AttrLoc = CI.getLoc();
if (!ResultType->isDependentType() &&
!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
<< &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
return;
}
ParamIdx Idx;
const auto *FuncDecl = cast<FunctionDecl>(D);
if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
/*AttrArgNum=*/1, ParamExpr, Idx))
return;
QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
!Ty->isAlignValT()) {
Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
<< &TmpAttr
<< FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
return;
}
D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
}
/// Check if \p AssumptionStr is a known assumption and warn if not.
static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
StringRef AssumptionStr) {
if (llvm::KnownAssumptionStrings.count(AssumptionStr))
return;
unsigned BestEditDistance = 3;
StringRef Suggestion;
for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
unsigned EditDistance =
AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
if (EditDistance < BestEditDistance) {
Suggestion = KnownAssumptionIt.getKey();
BestEditDistance = EditDistance;
}
}
if (!Suggestion.empty())
S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
<< AssumptionStr << Suggestion;
else
S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
}
static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Handle the case where the attribute has a text message.
StringRef Str;
SourceLocation AttrStrLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
return;
checkAssumptionAttr(S, AttrStrLoc, Str);
D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
}
/// Normalize the attribute, __foo__ becomes foo.
/// Returns true if normalization was applied.
static bool normalizeName(StringRef &AttrName) {
if (AttrName.size() > 4 && AttrName.startswith("__") &&
AttrName.endswith("__")) {
AttrName = AttrName.drop_front(2).drop_back(2);
return true;
}
return false;
}
static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// This attribute must be applied to a function declaration. The first
// argument to the attribute must be an identifier, the name of the resource,
// for example: malloc. The following arguments must be argument indexes, the
// arguments must be of integer type for Returns, otherwise of pointer type.
// The difference between Holds and Takes is that a pointer may still be used
// after being held. free() should be __attribute((ownership_takes)), whereas
// a list append function may well be __attribute((ownership_holds)).
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
// Figure out our Kind.
OwnershipAttr::OwnershipKind K =
OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
// Check arguments.
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (AL.getNumArgs() < 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
return;
}
break;
case OwnershipAttr::Returns:
if (AL.getNumArgs() > 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
return;
}
break;
}
IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
StringRef ModuleName = Module->getName();
if (normalizeName(ModuleName)) {
Module = &S.PP.getIdentifierTable().get(ModuleName);
}
SmallVector<ParamIdx, 8> OwnershipArgs;
for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
Expr *Ex = AL.getArgAsExpr(i);
ParamIdx Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
return;
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
int Err = -1; // No error
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (!T->isAnyPointerType() && !T->isBlockPointerType())
Err = 0;
break;
case OwnershipAttr::Returns:
if (!T->isIntegerType())
Err = 1;
break;
}
if (-1 != Err) {
S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
<< Ex->getSourceRange();
return;
}
// Check we don't have a conflict with another ownership attribute.
for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
// Cannot have two ownership attributes of different kinds for the same
// index.
if (I->getOwnKind() != K && I->args_end() !=
std::find(I->args_begin(), I->args_end(), Idx)) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
return;
} else if (K == OwnershipAttr::Returns &&
I->getOwnKind() == OwnershipAttr::Returns) {
// A returns attribute conflicts with any other returns attribute using
// a different index.
if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
<< I->args_begin()->getSourceIndex();
if (I->args_size())
S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
<< Idx.getSourceIndex() << Ex->getSourceRange();
return;
}
}
}
OwnershipArgs.push_back(Idx);
}
ParamIdx *Start = OwnershipArgs.data();
unsigned Size = OwnershipArgs.size();
llvm::array_pod_sort(Start, Start + Size);
D->addAttr(::new (S.Context)
OwnershipAttr(S.Context, AL, Module, Start, Size));
}
static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Check the attribute arguments.
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
return;
}
// gcc rejects
// class c {
// static int a __attribute__((weakref ("v2")));
// static int b() __attribute__((weakref ("f3")));
// };
// and ignores the attributes of
// void f(void) {
// static int a __attribute__((weakref ("v2")));
// }
// we reject them
const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
if (!Ctx->isFileContext()) {
S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
<< cast<NamedDecl>(D);
return;
}
// The GCC manual says
//
// At present, a declaration to which `weakref' is attached can only
// be `static'.
//
// It also says
//
// Without a TARGET,
// given as an argument to `weakref' or to `alias', `weakref' is
// equivalent to `weak'.
//
// gcc 4.4.1 will accept
// int a7 __attribute__((weakref));
// as
// int a7 __attribute__((weak));
// This looks like a bug in gcc. We reject that for now. We should revisit
// it if this behaviour is actually used.
// GCC rejects
// static ((alias ("y"), weakref)).
// Should we? How to check that weakref is before or after alias?
// FIXME: it would be good for us to keep the WeakRefAttr as-written instead
// of transforming it into an AliasAttr. The WeakRefAttr never uses the
// StringRef parameter it was given anyway.
StringRef Str;
if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
// GCC will accept anything as the argument of weakref. Should we
// check for an existing decl?
D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
}
static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
// Aliases should be on declarations, not definitions.
const auto *FD = cast<FunctionDecl>(D);
if (FD->isThisDeclarationADefinition()) {
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
return;
}
D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
}
static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
return;
}
if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
}
// Aliases should be on declarations, not definitions.
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isThisDeclarationADefinition()) {
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
return;
}
} else {
const auto *VD = cast<VarDecl>(D);
if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
return;
}
}
// Mark target used to prevent unneeded-internal-declaration warnings.
if (!S.LangOpts.CPlusPlus) {
// FIXME: demangle Str for C++, as the attribute refers to the mangled
// linkage name, not the pre-mangled identifier.
const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
LookupResult LR(S, target, Sema::LookupOrdinaryName);
if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
for (NamedDecl *ND : LR)
ND->markUsed(S.Context);
}
D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
}
static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Model;
SourceLocation LiteralLoc;
// Check that it is a string.
if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
return;
// Check that the value.
if (Model != "global-dynamic" && Model != "local-dynamic"
&& Model != "initial-exec" && Model != "local-exec") {
S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
return;
}
D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
}
static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
QualType ResultType = getFunctionOrMethodResultType(D);
if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
return;
}
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
<< AL << getFunctionOrMethodResultSourceRange(D);
}
static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
FunctionDecl *FD = cast<FunctionDecl>(D);
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
if (MD->getParent()->isLambda()) {
S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
return;
}
}
if (!AL.checkAtLeastNumArgs(S, 1))
return;
SmallVector<IdentifierInfo *, 8> CPUs;
for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
if (!AL.isArgIdent(ArgNo)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
StringRef CPUName = CPUArg->Ident->getName().trim();
if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
<< CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
return;
}
const TargetInfo &Target = S.Context.getTargetInfo();
if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
return Target.CPUSpecificManglingCharacter(CPUName) ==
Target.CPUSpecificManglingCharacter(Cur->getName());
})) {
S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
return;
}
CPUs.push_back(CPUArg->Ident);
}
FD->setIsMultiVersion(true);
if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
D->addAttr(::new (S.Context)
CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
else
D->addAttr(::new (S.Context)
CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
}
static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (S.LangOpts.CPlusPlus) {
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
<< AL << AttributeLangSupport::Cpp;
return;
}
D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
}
static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
return;
}
const auto *FD = cast<FunctionDecl>(D);
if (!FD->isExternallyVisible()) {
S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
return;
}
D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
}
static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (AL.isDeclspecAttribute()) {
const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
const auto &Arch = Triple.getArch();
if (Arch != llvm::Triple::x86 &&
(Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
<< AL << Triple.getArchName();
return;
}
}
D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
}
static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
if (hasDeclarator(D)) return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attrs << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
}
static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
if (!S.getLangOpts().CFProtectionBranch)
S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
else
handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
}
bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
if (!Attrs.checkExactlyNumArgs(*this, 0)) {
Attrs.setInvalid();
return true;
}
return false;
}
bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
// Check whether the attribute is valid on the current target.
if (!AL.existsInTarget(Context.getTargetInfo())) {
Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
<< AL << AL.getRange();
AL.setInvalid();
return true;
}
return false;
}
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// The checking path for 'noreturn' and 'analyzer_noreturn' are different
// because 'analyzer_noreturn' does not impact the type.
if (!isFunctionOrMethodOrBlock(D)) {
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD || (!VD->getType()->isBlockPointerType() &&
!VD->getType()->isFunctionPointerType())) {
S.Diag(AL.getLoc(), AL.isCXX11Attribute()
? diag::err_attribute_wrong_decl_type
: diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedFunctionMethodOrBlock;
return;
}
}
D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
}
// PS3 PPU-specific.
static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
/*
Returning a Vector Class in Registers
According to the PPU ABI specifications, a class with a single member of
vector type is returned in memory when used as the return value of a
function.
This results in inefficient code when implementing vector classes. To return
the value in a single vector register, add the vecreturn attribute to the
class definition. This attribute is also applicable to struct types.
Example:
struct Vector
{
__vector float xyzw;
} __attribute__((vecreturn));
Vector Add(Vector lhs, Vector rhs)
{
Vector result;
result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
return result; // This will be returned in a register
}
*/
if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
return;
}
const auto *R = cast<RecordDecl>(D);
int count = 0;
if (!isa<CXXRecordDecl>(R)) {
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
if (!cast<CXXRecordDecl>(R)->isPOD()) {
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
return;
}
for (const auto *I : R->fields()) {
if ((count == 1) || !I->getType()->isVectorType()) {
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
count++;
}
D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
}
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
const ParsedAttr &AL) {
if (isa<ParmVarDecl>(D)) {
// [[carries_dependency]] can only be applied to a parameter if it is a
// parameter of a function declaration or lambda.
if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
S.Diag(AL.getLoc(),
diag::err_carries_dependency_param_not_function_decl);
return;
}
}
D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
}
static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
// If this is spelled as the standard C++17 attribute, but not in C++17, warn
// about using it as an extension.
if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
}
static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t priority = ConstructorAttr::DefaultPriority;
if (AL.getNumArgs() &&
!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
}
static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t priority = DestructorAttr::DefaultPriority;
if (AL.getNumArgs() &&
!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
}
template <typename AttrTy>
static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
// Handle the case where the attribute has a text message.
StringRef Str;
if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
}
static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
<< AL << AL.getRange();
return;
}
D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
}
static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
IdentifierInfo *Platform,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted) {
StringRef PlatformName
= AvailabilityAttr::getPrettyPlatformName(Platform->getName());
if (PlatformName.empty())
PlatformName = Platform->getName();
// Ensure that Introduced <= Deprecated <= Obsoleted (although not all
// of these steps are needed).
if (!Introduced.empty() && !Deprecated.empty() &&
!(Introduced <= Deprecated)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 1 << PlatformName << Deprecated.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Introduced.empty() && !Obsoleted.empty() &&
!(Introduced <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Deprecated.empty() && !Obsoleted.empty() &&
!(Deprecated <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 1 << Deprecated.getAsString();
return true;
}
return false;
}
/// Check whether the two versions match.
///
/// If either version tuple is empty, then they are assumed to match. If
/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
bool BeforeIsOkay) {
if (X.empty() || Y.empty())
return true;
if (X == Y)
return true;
if (BeforeIsOkay && X < Y)
return true;
return false;
}
AvailabilityAttr *Sema::mergeAvailabilityAttr(
NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
int Priority) {
VersionTuple MergedIntroduced = Introduced;
VersionTuple MergedDeprecated = Deprecated;
VersionTuple MergedObsoleted = Obsoleted;
bool FoundAny = false;
bool OverrideOrImpl = false;
switch (AMK) {
case AMK_None:
case AMK_Redeclaration:
OverrideOrImpl = false;
break;
case AMK_Override:
case AMK_ProtocolImplementation:
OverrideOrImpl = true;
break;
}
if (D->hasAttrs()) {
AttrVec &Attrs = D->getAttrs();
for (unsigned i = 0, e = Attrs.size(); i != e;) {
const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
if (!OldAA) {
++i;
continue;
}
IdentifierInfo *OldPlatform = OldAA->getPlatform();
if (OldPlatform != Platform) {
++i;
continue;
}
// If there is an existing availability attribute for this platform that
// has a lower priority use the existing one and discard the new
// attribute.
if (OldAA->getPriority() < Priority)
return nullptr;
// If there is an existing attribute for this platform that has a higher
// priority than the new attribute then erase the old one and continue
// processing the attributes.
if (OldAA->getPriority() > Priority) {
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
FoundAny = true;
VersionTuple OldIntroduced = OldAA->getIntroduced();
VersionTuple OldDeprecated = OldAA->getDeprecated();
VersionTuple OldObsoleted = OldAA->getObsoleted();
bool OldIsUnavailable = OldAA->getUnavailable();
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
!(OldIsUnavailable == IsUnavailable ||
(OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
if (OverrideOrImpl) {
int Which = -1;
VersionTuple FirstVersion;
VersionTuple SecondVersion;
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
Which = 0;
FirstVersion = OldIntroduced;
SecondVersion = Introduced;
} else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
Which = 1;
FirstVersion = Deprecated;
SecondVersion = OldDeprecated;
} else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
Which = 2;
FirstVersion = Obsoleted;