blob: 336985f3bf9dd149f77e750534705de03ac3f434 [file] [log] [blame]
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86.h"
#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86MacroFusion.h"
#include "X86Subtarget.h"
#include "X86TargetObjectFile.h"
#include "X86TargetTransformInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/CFGuard.h"
#include <memory>
#include <string>
using namespace llvm;
static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
cl::desc("Enable the machine combiner pass"),
cl::init(true), cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
// Register the target.
RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
PassRegistry &PR = *PassRegistry::getPassRegistry();
initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
initializeX86LowerAMXTypeLegacyPassPass(PR);
initializeX86PreAMXConfigPassPass(PR);
initializeGlobalISel(PR);
initializeWinEHStatePassPass(PR);
initializeFixupBWInstPassPass(PR);
initializeEvexToVexInstPassPass(PR);
initializeFixupLEAPassPass(PR);
initializeFPSPass(PR);
initializeX86FixupSetCCPassPass(PR);
initializeX86CallFrameOptimizationPass(PR);
initializeX86CmovConverterPassPass(PR);
initializeX86TileConfigPass(PR);
initializeX86FastTileConfigPass(PR);
initializeX86LowerTileCopyPass(PR);
initializeX86ExpandPseudoPass(PR);
initializeX86ExecutionDomainFixPass(PR);
initializeX86DomainReassignmentPass(PR);
initializeX86AvoidSFBPassPass(PR);
initializeX86AvoidTrailingCallPassPass(PR);
initializeX86SpeculativeLoadHardeningPassPass(PR);
initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
initializeX86FlagsCopyLoweringPassPass(PR);
initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
initializeX86LoadValueInjectionRetHardeningPassPass(PR);
initializeX86OptimizeLEAPassPass(PR);
initializeX86PartialReductionPass(PR);
initializePseudoProbeInserterPass(PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
if (TT.isOSBinFormatMachO()) {
if (TT.getArch() == Triple::x86_64)
return std::make_unique<X86_64MachoTargetObjectFile>();
return std::make_unique<TargetLoweringObjectFileMachO>();
}
if (TT.isOSBinFormatCOFF())
return std::make_unique<TargetLoweringObjectFileCOFF>();
return std::make_unique<X86ELFTargetObjectFile>();
}
static std::string computeDataLayout(const Triple &TT) {
// X86 is little endian
std::string Ret = "e";
Ret += DataLayout::getManglingComponent(TT);
// X86 and x32 have 32 bit pointers.
if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
Ret += "-p:32:32";
// Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
Ret += "-p270:32:32-p271:32:32-p272:64:64";
// Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
Ret += "-i64:64";
else if (TT.isOSIAMCU())
Ret += "-i64:32-f64:32";
else
Ret += "-f64:32:64";
// Some ABIs align long double to 128 bits, others to 32.
if (TT.isOSNaCl() || TT.isOSIAMCU())
; // No f80
else if (TT.isArch64Bit() || TT.isOSDarwin())
Ret += "-f80:128";
else
Ret += "-f80:32";
if (TT.isOSIAMCU())
Ret += "-f128:32";
// The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
if (TT.isArch64Bit())
Ret += "-n8:16:32:64";
else
Ret += "-n8:16:32";
// The stack is aligned to 32 bits on some ABIs and 128 bits on others.
if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
Ret += "-a:0:32-S32";
else
Ret += "-S128";
return Ret;
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
bool JIT,
Optional<Reloc::Model> RM) {
bool is64Bit = TT.getArch() == Triple::x86_64;
if (!RM.hasValue()) {
// JIT codegen should use static relocations by default, since it's
// typically executed in process and not relocatable.
if (JIT)
return Reloc::Static;
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
// use static relocation model by default.
if (TT.isOSDarwin()) {
if (is64Bit)
return Reloc::PIC_;
return Reloc::DynamicNoPIC;
}
if (TT.isOSWindows() && is64Bit)
return Reloc::PIC_;
return Reloc::Static;
}
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (*RM == Reloc::DynamicNoPIC) {
if (is64Bit)
return Reloc::PIC_;
if (!TT.isOSDarwin())
return Reloc::Static;
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
return Reloc::PIC_;
return *RM;
}
static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
bool JIT, bool Is64Bit) {
if (CM) {
if (*CM == CodeModel::Tiny)
report_fatal_error("Target does not support the tiny CodeModel", false);
return *CM;
}
if (JIT)
return Is64Bit ? CodeModel::Large : CodeModel::Small;
return CodeModel::Small;
}
/// Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(
T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, JIT, RM),
getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
OL),
TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
// On PS4, the "return address" of a 'noreturn' call must still be within
// the calling function, and TrapUnreachable is an easy way to get that.
if (TT.isPS4() || TT.isOSBinFormatMachO()) {
this->Options.TrapUnreachable = true;
this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
}
setMachineOutliner(true);
// x86 supports the debug entry values.
setSupportsDebugEntryValues(true);
initAsmInfo();
}
X86TargetMachine::~X86TargetMachine() = default;
const X86Subtarget *
X86TargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
StringRef CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
StringRef TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU;
StringRef FS =
FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
SmallString<512> Key;
// The additions here are ordered so that the definitely short strings are
// added first so we won't exceed the small size. We append the
// much longer FS string at the end so that we only heap allocate at most
// one time.
// Extract prefer-vector-width attribute.
unsigned PreferVectorWidthOverride = 0;
Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
if (PreferVecWidthAttr.isValid()) {
StringRef Val = PreferVecWidthAttr.getValueAsString();
unsigned Width;
if (!Val.getAsInteger(0, Width)) {
Key += 'p';
Key += Val;
PreferVectorWidthOverride = Width;
}
}
// Extract min-legal-vector-width attribute.
unsigned RequiredVectorWidth = UINT32_MAX;
Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
if (MinLegalVecWidthAttr.isValid()) {
StringRef Val = MinLegalVecWidthAttr.getValueAsString();
unsigned Width;
if (!Val.getAsInteger(0, Width)) {
Key += 'm';
Key += Val;
RequiredVectorWidth = Width;
}
}
// Add CPU to the Key.
Key += CPU;
// Add tune CPU to the Key.
Key += TuneCPU;
// Keep track of the start of the feature portion of the string.
unsigned FSStart = Key.size();
// FIXME: This is related to the code below to reset the target options,
// we need to know whether or not the soft float flag is set on the
// function before we can generate a subtarget. We also need to use
// it as a key for the subtarget since that can be the only difference
// between two functions.
bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
// If the soft float attribute is set on the function turn on the soft float
// subtarget feature.
if (SoftFloat)
Key += FS.empty() ? "+soft-float" : "+soft-float,";
Key += FS;
// We may have added +soft-float to the features so move the StringRef to
// point to the full string in the Key.
FS = Key.substr(FSStart);
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<X86Subtarget>(
TargetTriple, CPU, TuneCPU, FS, *this,
MaybeAlign(F.getParent()->getOverrideStackAlignment()),
PreferVectorWidthOverride, RequiredVectorWidth);
}
return I.get();
}
bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
assert(SrcAS != DestAS && "Expected different address spaces!");
if (getPointerSize(SrcAS) != getPointerSize(DestAS))
return false;
return SrcAS < 256 && DestAS < 256;
}
//===----------------------------------------------------------------------===//
// X86 TTI query.
//===----------------------------------------------------------------------===//
TargetTransformInfo
X86TargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(X86TTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
namespace {
/// X86 Code Generator Pass Configuration Options.
class X86PassConfig : public TargetPassConfig {
public:
X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
X86TargetMachine &getX86TargetMachine() const {
return getTM<X86TargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createX86MacroFusionDAGMutation());
return DAG;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
DAG->addMutation(createX86MacroFusionDAGMutation());
return DAG;
}
void addIRPasses() override;
bool addInstSelector() override;
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
bool addILPOpts() override;
bool addPreISel() override;
void addMachineSSAOptimization() override;
void addPreRegAlloc() override;
bool addPostFastRegAllocRewrite() override;
void addPostRegAlloc() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreSched2() override;
bool addPreRewrite() override;
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};
class X86ExecutionDomainFix : public ExecutionDomainFix {
public:
static char ID;
X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
StringRef getPassName() const override {
return "X86 Execution Dependency Fix";
}
};
char X86ExecutionDomainFix::ID;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
"X86 Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
"X86 Execution Domain Fix", false, false)
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
return new X86PassConfig(*this, PM);
}
void X86PassConfig::addIRPasses() {
addPass(createAtomicExpandPass());
// We add both pass anyway and when these two passes run, we skip the pass
// based on the option level and option attribute.
addPass(createX86LowerAMXIntrinsicsPass());
addPass(createX86LowerAMXTypePass());
if (TM->getOptLevel() == CodeGenOpt::None)
addPass(createX86PreAMXConfigPass());
TargetPassConfig::addIRPasses();
if (TM->getOptLevel() != CodeGenOpt::None) {
addPass(createInterleavedAccessPass());
addPass(createX86PartialReductionPass());
}
// Add passes that handle indirect branch removal and insertion of a retpoline
// thunk. These will be a no-op unless a function subtarget has the retpoline
// feature enabled.
addPass(createIndirectBrExpandPass());
// Add Control Flow Guard checks.
const Triple &TT = TM->getTargetTriple();
if (TT.isOSWindows()) {
if (TT.getArch() == Triple::x86_64) {
addPass(createCFGuardDispatchPass());
} else {
addPass(createCFGuardCheckPass());
}
}
}
bool X86PassConfig::addInstSelector() {
// Install an instruction selector.
addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
// For ELF, cleanup any local-dynamic TLS accesses.
if (TM->getTargetTriple().isOSBinFormatELF() &&
getOptLevel() != CodeGenOpt::None)
addPass(createCleanupLocalDynamicTLSPass());
addPass(createX86GlobalBaseRegPass());
return false;
}
bool X86PassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
bool X86PassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool X86PassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool X86PassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
return false;
}
bool X86PassConfig::addILPOpts() {
addPass(&EarlyIfConverterID);
if (EnableMachineCombinerPass)
addPass(&MachineCombinerID);
addPass(createX86CmovConverterPass());
return true;
}
bool X86PassConfig::addPreISel() {
// Only add this pass for 32-bit x86 Windows.
const Triple &TT = TM->getTargetTriple();
if (TT.isOSWindows() && TT.getArch() == Triple::x86)
addPass(createX86WinEHStatePass());
return true;
}
void X86PassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(&LiveRangeShrinkID);
addPass(createX86FixupSetCC());
addPass(createX86OptimizeLEAs());
addPass(createX86CallFrameOptimization());
addPass(createX86AvoidStoreForwardingBlocks());
}
addPass(createX86SpeculativeLoadHardeningPass());
addPass(createX86FlagsCopyLoweringPass());
addPass(createX86DynAllocaExpander());
if (getOptLevel() != CodeGenOpt::None) {
addPass(createX86PreTileConfigPass());
}
}
void X86PassConfig::addMachineSSAOptimization() {
addPass(createX86DomainReassignmentPass());
TargetPassConfig::addMachineSSAOptimization();
}
void X86PassConfig::addPostRegAlloc() {
addPass(createX86LowerTileCopyPass());
addPass(createX86FloatingPointStackifierPass());
// When -O0 is enabled, the Load Value Injection Hardening pass will fall back
// to using the Speculative Execution Side Effect Suppression pass for
// mitigation. This is to prevent slow downs due to
// analyses needed by the LVIHardening pass when compiling at -O0.
if (getOptLevel() != CodeGenOpt::None)
addPass(createX86LoadValueInjectionLoadHardeningPass());
}
void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
void X86PassConfig::addPreEmitPass() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(new X86ExecutionDomainFix());
addPass(createBreakFalseDeps());
}
addPass(createX86IndirectBranchTrackingPass());
addPass(createX86IssueVZeroUpperPass());
if (getOptLevel() != CodeGenOpt::None) {
addPass(createX86FixupBWInsts());
addPass(createX86PadShortFunctions());
addPass(createX86FixupLEAs());
}
addPass(createX86EvexToVexInsts());
addPass(createX86DiscriminateMemOpsPass());
addPass(createX86InsertPrefetchPass());
addPass(createX86InsertX87waitPass());
}
void X86PassConfig::addPreEmitPass2() {
const Triple &TT = TM->getTargetTriple();
const MCAsmInfo *MAI = TM->getMCAsmInfo();
// The X86 Speculative Execution Pass must run after all control
// flow graph modifying passes. As a result it was listed to run right before
// the X86 Retpoline Thunks pass. The reason it must run after control flow
// graph modifications is that the model of LFENCE in LLVM has to be updated
// (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
// placement of this pass was hand checked to ensure that the subsequent
// passes don't move the code around the LFENCEs in a way that will hurt the
// correctness of this pass. This placement has been shown to work based on
// hand inspection of the codegen output.
addPass(createX86SpeculativeExecutionSideEffectSuppression());
addPass(createX86IndirectThunksPass());
// Insert extra int3 instructions after trailing call instructions to avoid
// issues in the unwinder.
if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
addPass(createX86AvoidTrailingCallPass());
// Verify basic block incoming and outgoing cfa offset and register values and
// correct CFA calculation rule where needed by inserting appropriate CFI
// instructions.
if (!TT.isOSDarwin() &&
(!TT.isOSWindows() ||
MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
addPass(createCFIInstrInserter());
if (TT.isOSWindows()) {
// Identify valid longjmp targets for Windows Control Flow Guard.
addPass(createCFGuardLongjmpPass());
// Identify valid eh continuation targets for Windows EHCont Guard.
addPass(createEHContGuardCatchretPass());
}
addPass(createX86LoadValueInjectionRetHardeningPass());
// Insert pseudo probe annotation for callsite profiling
addPass(createPseudoProbeInserter());
}
bool X86PassConfig::addPostFastRegAllocRewrite() {
addPass(createX86FastTileConfigPass());
return true;
}
bool X86PassConfig::addPreRewrite() {
addPass(createX86TileConfigPass());
return true;
}
std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
return getStandardCSEConfigForOpt(TM->getOptLevel());
}