blob: fee9939b8dfc7c9e5fad3d564e8f3c694ab45d1f [file] [log] [blame]
//===-- X86InstrInfo.td - Main X86 Instruction Definition --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// X86 specific DAG Nodes.
//
def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
SDTCisSameAs<1, 2>]>;
def SDTX86FCmp : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisFP<1>,
SDTCisSameAs<1, 2>]>;
def SDTX86Cmov : SDTypeProfile<1, 4,
[SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
SDTCisVT<3, i8>, SDTCisVT<4, i32>]>;
// Unary and binary operator instructions that set EFLAGS as a side-effect.
def SDTUnaryArithWithFlags : SDTypeProfile<2, 1,
[SDTCisSameAs<0, 2>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
// SDTBinaryArithWithFlagsInOut - RES1, EFLAGS = op LHS, RHS, EFLAGS
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<4, i32>]>;
// RES1, RES2, FLAGS = op LHS, RHS
def SDT2ResultBinaryArithWithFlags : SDTypeProfile<3, 2,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTX86BrCond : SDTypeProfile<0, 3,
[SDTCisVT<0, OtherVT>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86SetCC : SDTypeProfile<1, 2,
[SDTCisVT<0, i8>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86SetCC_C : SDTypeProfile<1, 2,
[SDTCisInt<0>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86sahf : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i8>]>;
def SDTX86rdrand : SDTypeProfile<2, 0, [SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTX86rdpkru : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDTX86wrpkru : SDTypeProfile<0, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>,
SDTCisVT<2, i8>]>;
def SDTX86cas8pair : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDTX86cas16pair : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i64>]>;
def SDTLockBinaryArithWithFlags : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisPtrTy<1>,
SDTCisInt<2>]>;
def SDTLockUnaryArithWithFlags : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
SDTCisPtrTy<1>]>;
def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_X86NtBrind : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>,
SDTCisPtrTy<1>]>;
def SDT_X86VAARG : SDTypeProfile<1, -1, [SDTCisPtrTy<0>,
SDTCisPtrTy<1>,
SDTCisVT<2, i32>,
SDTCisVT<3, i8>,
SDTCisVT<4, i32>]>;
def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>;
def SDTX86Void : SDTypeProfile<0, 0, []>;
def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86TLSBASEADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86DYN_ALLOCA : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_X86SEG_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
def SDT_X86PROBED_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
def SDT_X86MEMBARRIER : SDTypeProfile<0, 0, []>;
def SDT_X86ENQCMD : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisPtrTy<1>, SDTCisSameAs<1, 2>]>;
def SDT_X86AESENCDECKL : SDTypeProfile<2, 2, [SDTCisVT<0, v2i64>,
SDTCisVT<1, i32>,
SDTCisVT<2, v2i64>,
SDTCisPtrTy<3>]>;
def X86MemBarrier : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIER,
[SDNPHasChain,SDNPSideEffect]>;
def X86MFence : SDNode<"X86ISD::MFENCE", SDT_X86MEMBARRIER,
[SDNPHasChain]>;
def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>;
def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>;
def X86fshl : SDNode<"X86ISD::FSHL", SDTIntShiftDOp>;
def X86fshr : SDNode<"X86ISD::FSHR", SDTIntShiftDOp>;
def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>;
def X86fcmp : SDNode<"X86ISD::FCMP", SDTX86FCmp>;
def X86strict_fcmp : SDNode<"X86ISD::STRICT_FCMP", SDTX86FCmp, [SDNPHasChain]>;
def X86strict_fcmps : SDNode<"X86ISD::STRICT_FCMPS", SDTX86FCmp, [SDNPHasChain]>;
def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>;
def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>;
def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond,
[SDNPHasChain]>;
def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>;
def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>;
def X86rdrand : SDNode<"X86ISD::RDRAND", SDTX86rdrand,
[SDNPHasChain, SDNPSideEffect]>;
def X86rdseed : SDNode<"X86ISD::RDSEED", SDTX86rdrand,
[SDNPHasChain, SDNPSideEffect]>;
def X86rdpkru : SDNode<"X86ISD::RDPKRU", SDTX86rdpkru,
[SDNPHasChain, SDNPSideEffect]>;
def X86wrpkru : SDNode<"X86ISD::WRPKRU", SDTX86wrpkru,
[SDNPHasChain, SDNPSideEffect]>;
def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86cas8pair,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86cas16 : SDNode<"X86ISD::LCMPXCHG16_DAG", SDTX86cas16pair,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def X86iret : SDNode<"X86ISD::IRET", SDTX86Ret,
[SDNPHasChain, SDNPOptInGlue]>;
def X86vastart_save_xmm_regs :
SDNode<"X86ISD::VASTART_SAVE_XMM_REGS",
SDT_X86VASTART_SAVE_XMM_REGS,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand, SDNPVariadic]>;
def X86vaarg64 :
SDNode<"X86ISD::VAARG_64", SDT_X86VAARG,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore,
SDNPMemOperand]>;
def X86vaargx32 :
SDNode<"X86ISD::VAARG_X32", SDT_X86VAARG,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore,
SDNPMemOperand]>;
def X86callseq_start :
SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def X86callseq_end :
SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def X86call : SDNode<"X86ISD::CALL", SDT_X86Call,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
def X86call_rvmarker : SDNode<"X86ISD::CALL_RVMARKER", SDT_X86Call,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
def X86NoTrackCall : SDNode<"X86ISD::NT_CALL", SDT_X86Call,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
def X86NoTrackBrind : SDNode<"X86ISD::NT_BRIND", SDT_X86NtBrind,
[SDNPHasChain]>;
def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore]>;
def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad]>;
def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>;
def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>;
def X86RecoverFrameAlloc : SDNode<"ISD::LOCAL_RECOVER",
SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
SDTCisInt<1>]>>;
def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def X86tlsbaseaddr : SDNode<"X86ISD::TLSBASEADDR", SDT_X86TLSBASEADDR,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET,
[SDNPHasChain]>;
def X86eh_sjlj_setjmp : SDNode<"X86ISD::EH_SJLJ_SETJMP",
SDTypeProfile<1, 1, [SDTCisInt<0>,
SDTCisPtrTy<1>]>,
[SDNPHasChain, SDNPSideEffect]>;
def X86eh_sjlj_longjmp : SDNode<"X86ISD::EH_SJLJ_LONGJMP",
SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>,
[SDNPHasChain, SDNPSideEffect]>;
def X86eh_sjlj_setup_dispatch : SDNode<"X86ISD::EH_SJLJ_SETUP_DISPATCH",
SDTypeProfile<0, 0, []>,
[SDNPHasChain, SDNPSideEffect]>;
def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>;
def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86umul_flag : SDNode<"X86ISD::UMUL", SDT2ResultBinaryArithWithFlags,
[SDNPCommutative]>;
def X86adc_flag : SDNode<"X86ISD::ADC", SDTBinaryArithWithFlagsInOut>;
def X86sbb_flag : SDNode<"X86ISD::SBB", SDTBinaryArithWithFlagsInOut>;
def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86lock_add : SDNode<"X86ISD::LADD", SDTLockBinaryArithWithFlags,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad,
SDNPMemOperand]>;
def X86lock_sub : SDNode<"X86ISD::LSUB", SDTLockBinaryArithWithFlags,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad,
SDNPMemOperand]>;
def X86lock_or : SDNode<"X86ISD::LOR", SDTLockBinaryArithWithFlags,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad,
SDNPMemOperand]>;
def X86lock_xor : SDNode<"X86ISD::LXOR", SDTLockBinaryArithWithFlags,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad,
SDNPMemOperand]>;
def X86lock_and : SDNode<"X86ISD::LAND", SDTLockBinaryArithWithFlags,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad,
SDNPMemOperand]>;
def X86bextr : SDNode<"X86ISD::BEXTR", SDTIntBinOp>;
def X86bextri : SDNode<"X86ISD::BEXTRI", SDTIntBinOp>;
def X86bzhi : SDNode<"X86ISD::BZHI", SDTIntBinOp>;
def X86pdep : SDNode<"X86ISD::PDEP", SDTIntBinOp>;
def X86pext : SDNode<"X86ISD::PEXT", SDTIntBinOp>;
def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>;
def X86DynAlloca : SDNode<"X86ISD::DYN_ALLOCA", SDT_X86DYN_ALLOCA,
[SDNPHasChain, SDNPOutGlue]>;
def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA,
[SDNPHasChain]>;
def X86ProbedAlloca : SDNode<"X86ISD::PROBED_ALLOCA", SDT_X86PROBED_ALLOCA,
[SDNPHasChain]>;
def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def X86lwpins : SDNode<"X86ISD::LWPINS",
SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPSideEffect]>;
def X86umwait : SDNode<"X86ISD::UMWAIT",
SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>,
[SDNPHasChain, SDNPSideEffect]>;
def X86tpause : SDNode<"X86ISD::TPAUSE",
SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>,
[SDNPHasChain, SDNPSideEffect]>;
def X86enqcmd : SDNode<"X86ISD::ENQCMD", SDT_X86ENQCMD,
[SDNPHasChain, SDNPSideEffect]>;
def X86enqcmds : SDNode<"X86ISD::ENQCMDS", SDT_X86ENQCMD,
[SDNPHasChain, SDNPSideEffect]>;
def X86testui : SDNode<"X86ISD::TESTUI",
SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>,
[SDNPHasChain, SDNPSideEffect]>;
def X86aesenc128kl : SDNode<"X86ISD::AESENC128KL", SDT_X86AESENCDECKL,
[SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
SDNPMemOperand]>;
def X86aesdec128kl : SDNode<"X86ISD::AESDEC128KL", SDT_X86AESENCDECKL,
[SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
SDNPMemOperand]>;
def X86aesenc256kl : SDNode<"X86ISD::AESENC256KL", SDT_X86AESENCDECKL,
[SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
SDNPMemOperand]>;
def X86aesdec256kl : SDNode<"X86ISD::AESDEC256KL", SDT_X86AESENCDECKL,
[SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
SDNPMemOperand]>;
//===----------------------------------------------------------------------===//
// X86 Operand Definitions.
//
// A version of ptr_rc which excludes SP, ESP, and RSP. This is used for
// the index operand of an address, to conform to x86 encoding restrictions.
def ptr_rc_nosp : PointerLikeRegClass<1>;
// *mem - Operand definitions for the funky X86 addressing mode operands.
//
def X86MemAsmOperand : AsmOperandClass {
let Name = "Mem";
}
let RenderMethod = "addMemOperands", SuperClasses = [X86MemAsmOperand] in {
def X86Mem8AsmOperand : AsmOperandClass { let Name = "Mem8"; }
def X86Mem16AsmOperand : AsmOperandClass { let Name = "Mem16"; }
def X86Mem32AsmOperand : AsmOperandClass { let Name = "Mem32"; }
def X86Mem64AsmOperand : AsmOperandClass { let Name = "Mem64"; }
def X86Mem80AsmOperand : AsmOperandClass { let Name = "Mem80"; }
def X86Mem128AsmOperand : AsmOperandClass { let Name = "Mem128"; }
def X86Mem256AsmOperand : AsmOperandClass { let Name = "Mem256"; }
def X86Mem512AsmOperand : AsmOperandClass { let Name = "Mem512"; }
// Gather mem operands
def X86Mem64_RC128Operand : AsmOperandClass { let Name = "Mem64_RC128"; }
def X86Mem128_RC128Operand : AsmOperandClass { let Name = "Mem128_RC128"; }
def X86Mem256_RC128Operand : AsmOperandClass { let Name = "Mem256_RC128"; }
def X86Mem128_RC256Operand : AsmOperandClass { let Name = "Mem128_RC256"; }
def X86Mem256_RC256Operand : AsmOperandClass { let Name = "Mem256_RC256"; }
def X86Mem64_RC128XOperand : AsmOperandClass { let Name = "Mem64_RC128X"; }
def X86Mem128_RC128XOperand : AsmOperandClass { let Name = "Mem128_RC128X"; }
def X86Mem256_RC128XOperand : AsmOperandClass { let Name = "Mem256_RC128X"; }
def X86Mem128_RC256XOperand : AsmOperandClass { let Name = "Mem128_RC256X"; }
def X86Mem256_RC256XOperand : AsmOperandClass { let Name = "Mem256_RC256X"; }
def X86Mem512_RC256XOperand : AsmOperandClass { let Name = "Mem512_RC256X"; }
def X86Mem256_RC512Operand : AsmOperandClass { let Name = "Mem256_RC512"; }
def X86Mem512_RC512Operand : AsmOperandClass { let Name = "Mem512_RC512"; }
def X86SibMemOperand : AsmOperandClass { let Name = "SibMem"; }
}
def X86AbsMemAsmOperand : AsmOperandClass {
let Name = "AbsMem";
let SuperClasses = [X86MemAsmOperand];
}
class X86MemOperand<string printMethod,
AsmOperandClass parserMatchClass = X86MemAsmOperand> : Operand<iPTR> {
let PrintMethod = printMethod;
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, SEGMENT_REG);
let ParserMatchClass = parserMatchClass;
let OperandType = "OPERAND_MEMORY";
}
// Gather mem operands
class X86VMemOperand<RegisterClass RC, string printMethod,
AsmOperandClass parserMatchClass>
: X86MemOperand<printMethod, parserMatchClass> {
let MIOperandInfo = (ops ptr_rc, i8imm, RC, i32imm, SEGMENT_REG);
}
def anymem : X86MemOperand<"printMemReference">;
def X86any_fcmp : PatFrags<(ops node:$lhs, node:$rhs),
[(X86strict_fcmp node:$lhs, node:$rhs),
(X86fcmp node:$lhs, node:$rhs)]>;
// FIXME: Right now we allow any size during parsing, but we might want to
// restrict to only unsized memory.
def opaquemem : X86MemOperand<"printMemReference">;
def sibmem: X86MemOperand<"printMemReference", X86SibMemOperand>;
def i8mem : X86MemOperand<"printbytemem", X86Mem8AsmOperand>;
def i16mem : X86MemOperand<"printwordmem", X86Mem16AsmOperand>;
def i32mem : X86MemOperand<"printdwordmem", X86Mem32AsmOperand>;
def i64mem : X86MemOperand<"printqwordmem", X86Mem64AsmOperand>;
def i128mem : X86MemOperand<"printxmmwordmem", X86Mem128AsmOperand>;
def i256mem : X86MemOperand<"printymmwordmem", X86Mem256AsmOperand>;
def i512mem : X86MemOperand<"printzmmwordmem", X86Mem512AsmOperand>;
def f16mem : X86MemOperand<"printwordmem", X86Mem16AsmOperand>;
def f32mem : X86MemOperand<"printdwordmem", X86Mem32AsmOperand>;
def f64mem : X86MemOperand<"printqwordmem", X86Mem64AsmOperand>;
def f80mem : X86MemOperand<"printtbytemem", X86Mem80AsmOperand>;
def f128mem : X86MemOperand<"printxmmwordmem", X86Mem128AsmOperand>;
def f256mem : X86MemOperand<"printymmwordmem", X86Mem256AsmOperand>;
def f512mem : X86MemOperand<"printzmmwordmem", X86Mem512AsmOperand>;
// Gather mem operands
def vx64mem : X86VMemOperand<VR128, "printqwordmem", X86Mem64_RC128Operand>;
def vx128mem : X86VMemOperand<VR128, "printxmmwordmem", X86Mem128_RC128Operand>;
def vx256mem : X86VMemOperand<VR128, "printymmwordmem", X86Mem256_RC128Operand>;
def vy128mem : X86VMemOperand<VR256, "printxmmwordmem", X86Mem128_RC256Operand>;
def vy256mem : X86VMemOperand<VR256, "printymmwordmem", X86Mem256_RC256Operand>;
def vx64xmem : X86VMemOperand<VR128X, "printqwordmem", X86Mem64_RC128XOperand>;
def vx128xmem : X86VMemOperand<VR128X, "printxmmwordmem", X86Mem128_RC128XOperand>;
def vx256xmem : X86VMemOperand<VR128X, "printymmwordmem", X86Mem256_RC128XOperand>;
def vy128xmem : X86VMemOperand<VR256X, "printxmmwordmem", X86Mem128_RC256XOperand>;
def vy256xmem : X86VMemOperand<VR256X, "printymmwordmem", X86Mem256_RC256XOperand>;
def vy512xmem : X86VMemOperand<VR256X, "printzmmwordmem", X86Mem512_RC256XOperand>;
def vz256mem : X86VMemOperand<VR512, "printymmwordmem", X86Mem256_RC512Operand>;
def vz512mem : X86VMemOperand<VR512, "printzmmwordmem", X86Mem512_RC512Operand>;
// A version of i8mem for use on x86-64 and x32 that uses a NOREX GPR instead
// of a plain GPR, so that it doesn't potentially require a REX prefix.
def ptr_rc_norex : PointerLikeRegClass<2>;
def ptr_rc_norex_nosp : PointerLikeRegClass<3>;
def i8mem_NOREX : Operand<iPTR> {
let PrintMethod = "printbytemem";
let MIOperandInfo = (ops ptr_rc_norex, i8imm, ptr_rc_norex_nosp, i32imm,
SEGMENT_REG);
let ParserMatchClass = X86Mem8AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
// GPRs available for tailcall.
// It represents GR32_TC, GR64_TC or GR64_TCW64.
def ptr_rc_tailcall : PointerLikeRegClass<4>;
// Special i32mem for addresses of load folding tail calls. These are not
// allowed to use callee-saved registers since they must be scheduled
// after callee-saved register are popped.
def i32mem_TC : Operand<i32> {
let PrintMethod = "printdwordmem";
let MIOperandInfo = (ops ptr_rc_tailcall, i8imm, ptr_rc_tailcall,
i32imm, SEGMENT_REG);
let ParserMatchClass = X86Mem32AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
// Special i64mem for addresses of load folding tail calls. These are not
// allowed to use callee-saved registers since they must be scheduled
// after callee-saved register are popped.
def i64mem_TC : Operand<i64> {
let PrintMethod = "printqwordmem";
let MIOperandInfo = (ops ptr_rc_tailcall, i8imm,
ptr_rc_tailcall, i32imm, SEGMENT_REG);
let ParserMatchClass = X86Mem64AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
// Special parser to detect 16-bit mode to select 16-bit displacement.
def X86AbsMem16AsmOperand : AsmOperandClass {
let Name = "AbsMem16";
let RenderMethod = "addAbsMemOperands";
let SuperClasses = [X86AbsMemAsmOperand];
}
// Branch targets print as pc-relative values.
class BranchTargetOperand<ValueType ty> : Operand<ty> {
let OperandType = "OPERAND_PCREL";
let PrintMethod = "printPCRelImm";
let ParserMatchClass = X86AbsMemAsmOperand;
}
def i32imm_brtarget : BranchTargetOperand<i32>;
def i16imm_brtarget : BranchTargetOperand<i16>;
// 64-bits but only 32 bits are significant, and those bits are treated as being
// pc relative.
def i64i32imm_brtarget : BranchTargetOperand<i64>;
def brtarget : BranchTargetOperand<OtherVT>;
def brtarget8 : BranchTargetOperand<OtherVT>;
def brtarget16 : BranchTargetOperand<OtherVT> {
let ParserMatchClass = X86AbsMem16AsmOperand;
}
def brtarget32 : BranchTargetOperand<OtherVT>;
let RenderMethod = "addSrcIdxOperands" in {
def X86SrcIdx8Operand : AsmOperandClass {
let Name = "SrcIdx8";
let SuperClasses = [X86Mem8AsmOperand];
}
def X86SrcIdx16Operand : AsmOperandClass {
let Name = "SrcIdx16";
let SuperClasses = [X86Mem16AsmOperand];
}
def X86SrcIdx32Operand : AsmOperandClass {
let Name = "SrcIdx32";
let SuperClasses = [X86Mem32AsmOperand];
}
def X86SrcIdx64Operand : AsmOperandClass {
let Name = "SrcIdx64";
let SuperClasses = [X86Mem64AsmOperand];
}
} // RenderMethod = "addSrcIdxOperands"
let RenderMethod = "addDstIdxOperands" in {
def X86DstIdx8Operand : AsmOperandClass {
let Name = "DstIdx8";
let SuperClasses = [X86Mem8AsmOperand];
}
def X86DstIdx16Operand : AsmOperandClass {
let Name = "DstIdx16";
let SuperClasses = [X86Mem16AsmOperand];
}
def X86DstIdx32Operand : AsmOperandClass {
let Name = "DstIdx32";
let SuperClasses = [X86Mem32AsmOperand];
}
def X86DstIdx64Operand : AsmOperandClass {
let Name = "DstIdx64";
let SuperClasses = [X86Mem64AsmOperand];
}
} // RenderMethod = "addDstIdxOperands"
let RenderMethod = "addMemOffsOperands" in {
def X86MemOffs16_8AsmOperand : AsmOperandClass {
let Name = "MemOffs16_8";
let SuperClasses = [X86Mem8AsmOperand];
}
def X86MemOffs16_16AsmOperand : AsmOperandClass {
let Name = "MemOffs16_16";
let SuperClasses = [X86Mem16AsmOperand];
}
def X86MemOffs16_32AsmOperand : AsmOperandClass {
let Name = "MemOffs16_32";
let SuperClasses = [X86Mem32AsmOperand];
}
def X86MemOffs32_8AsmOperand : AsmOperandClass {
let Name = "MemOffs32_8";
let SuperClasses = [X86Mem8AsmOperand];
}
def X86MemOffs32_16AsmOperand : AsmOperandClass {
let Name = "MemOffs32_16";
let SuperClasses = [X86Mem16AsmOperand];
}
def X86MemOffs32_32AsmOperand : AsmOperandClass {
let Name = "MemOffs32_32";
let SuperClasses = [X86Mem32AsmOperand];
}
def X86MemOffs32_64AsmOperand : AsmOperandClass {
let Name = "MemOffs32_64";
let SuperClasses = [X86Mem64AsmOperand];
}
def X86MemOffs64_8AsmOperand : AsmOperandClass {
let Name = "MemOffs64_8";
let SuperClasses = [X86Mem8AsmOperand];
}
def X86MemOffs64_16AsmOperand : AsmOperandClass {
let Name = "MemOffs64_16";
let SuperClasses = [X86Mem16AsmOperand];
}
def X86MemOffs64_32AsmOperand : AsmOperandClass {
let Name = "MemOffs64_32";
let SuperClasses = [X86Mem32AsmOperand];
}
def X86MemOffs64_64AsmOperand : AsmOperandClass {
let Name = "MemOffs64_64";
let SuperClasses = [X86Mem64AsmOperand];
}
} // RenderMethod = "addMemOffsOperands"
class X86SrcIdxOperand<string printMethod, AsmOperandClass parserMatchClass>
: X86MemOperand<printMethod, parserMatchClass> {
let MIOperandInfo = (ops ptr_rc, SEGMENT_REG);
}
class X86DstIdxOperand<string printMethod, AsmOperandClass parserMatchClass>
: X86MemOperand<printMethod, parserMatchClass> {
let MIOperandInfo = (ops ptr_rc);
}
def srcidx8 : X86SrcIdxOperand<"printSrcIdx8", X86SrcIdx8Operand>;
def srcidx16 : X86SrcIdxOperand<"printSrcIdx16", X86SrcIdx16Operand>;
def srcidx32 : X86SrcIdxOperand<"printSrcIdx32", X86SrcIdx32Operand>;
def srcidx64 : X86SrcIdxOperand<"printSrcIdx64", X86SrcIdx64Operand>;
def dstidx8 : X86DstIdxOperand<"printDstIdx8", X86DstIdx8Operand>;
def dstidx16 : X86DstIdxOperand<"printDstIdx16", X86DstIdx16Operand>;
def dstidx32 : X86DstIdxOperand<"printDstIdx32", X86DstIdx32Operand>;
def dstidx64 : X86DstIdxOperand<"printDstIdx64", X86DstIdx64Operand>;
class X86MemOffsOperand<Operand immOperand, string printMethod,
AsmOperandClass parserMatchClass>
: X86MemOperand<printMethod, parserMatchClass> {
let MIOperandInfo = (ops immOperand, SEGMENT_REG);
}
def offset16_8 : X86MemOffsOperand<i16imm, "printMemOffs8",
X86MemOffs16_8AsmOperand>;
def offset16_16 : X86MemOffsOperand<i16imm, "printMemOffs16",
X86MemOffs16_16AsmOperand>;
def offset16_32 : X86MemOffsOperand<i16imm, "printMemOffs32",
X86MemOffs16_32AsmOperand>;
def offset32_8 : X86MemOffsOperand<i32imm, "printMemOffs8",
X86MemOffs32_8AsmOperand>;
def offset32_16 : X86MemOffsOperand<i32imm, "printMemOffs16",
X86MemOffs32_16AsmOperand>;
def offset32_32 : X86MemOffsOperand<i32imm, "printMemOffs32",
X86MemOffs32_32AsmOperand>;
def offset32_64 : X86MemOffsOperand<i32imm, "printMemOffs64",
X86MemOffs32_64AsmOperand>;
def offset64_8 : X86MemOffsOperand<i64imm, "printMemOffs8",
X86MemOffs64_8AsmOperand>;
def offset64_16 : X86MemOffsOperand<i64imm, "printMemOffs16",
X86MemOffs64_16AsmOperand>;
def offset64_32 : X86MemOffsOperand<i64imm, "printMemOffs32",
X86MemOffs64_32AsmOperand>;
def offset64_64 : X86MemOffsOperand<i64imm, "printMemOffs64",
X86MemOffs64_64AsmOperand>;
def ccode : Operand<i8> {
let PrintMethod = "printCondCode";
let OperandNamespace = "X86";
let OperandType = "OPERAND_COND_CODE";
}
class ImmSExtAsmOperandClass : AsmOperandClass {
let SuperClasses = [ImmAsmOperand];
let RenderMethod = "addImmOperands";
}
def X86GR32orGR64AsmOperand : AsmOperandClass {
let Name = "GR32orGR64";
}
def GR32orGR64 : RegisterOperand<GR32> {
let ParserMatchClass = X86GR32orGR64AsmOperand;
}
def X86GR16orGR32orGR64AsmOperand : AsmOperandClass {
let Name = "GR16orGR32orGR64";
}
def GR16orGR32orGR64 : RegisterOperand<GR16> {
let ParserMatchClass = X86GR16orGR32orGR64AsmOperand;
}
def AVX512RCOperand : AsmOperandClass {
let Name = "AVX512RC";
}
def AVX512RC : Operand<i32> {
let PrintMethod = "printRoundingControl";
let OperandNamespace = "X86";
let OperandType = "OPERAND_ROUNDING_CONTROL";
let ParserMatchClass = AVX512RCOperand;
}
// Sign-extended immediate classes. We don't need to define the full lattice
// here because there is no instruction with an ambiguity between ImmSExti64i32
// and ImmSExti32i8.
//
// The strange ranges come from the fact that the assembler always works with
// 64-bit immediates, but for a 16-bit target value we want to accept both "-1"
// (which will be a -1ULL), and "0xFF" (-1 in 16-bits).
// [0, 0x7FFFFFFF] |
// [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF]
def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti64i32";
}
// [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] |
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti16i8";
let SuperClasses = [ImmSExti64i32AsmOperand];
}
// [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] |
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti32i8";
}
// [0, 0x0000007F] |
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti64i8";
let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand,
ImmSExti64i32AsmOperand];
}
// 4-bit immediate used by some XOP instructions
// [0, 0xF]
def ImmUnsignedi4AsmOperand : AsmOperandClass {
let Name = "ImmUnsignedi4";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidImmUnsignedi4";
}
// Unsigned immediate used by SSE/AVX instructions
// [0, 0xFF]
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmUnsignedi8AsmOperand : AsmOperandClass {
let Name = "ImmUnsignedi8";
let RenderMethod = "addImmOperands";
}
// A couple of more descriptive operand definitions.
// 16-bits but only 8 bits are significant.
def i16i8imm : Operand<i16> {
let ParserMatchClass = ImmSExti16i8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 32-bits but only 8 bits are significant.
def i32i8imm : Operand<i32> {
let ParserMatchClass = ImmSExti32i8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64> {
let ParserMatchClass = ImmSExti64i32AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 64-bits but only 8 bits are significant.
def i64i8imm : Operand<i64> {
let ParserMatchClass = ImmSExti64i8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// Unsigned 4-bit immediate used by some XOP instructions.
def u4imm : Operand<i8> {
let PrintMethod = "printU8Imm";
let ParserMatchClass = ImmUnsignedi4AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// Unsigned 8-bit immediate used by SSE/AVX instructions.
def u8imm : Operand<i8> {
let PrintMethod = "printU8Imm";
let ParserMatchClass = ImmUnsignedi8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 16-bit immediate but only 8-bits are significant and they are unsigned.
// Used by BT instructions.
def i16u8imm : Operand<i16> {
let PrintMethod = "printU8Imm";
let ParserMatchClass = ImmUnsignedi8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 32-bit immediate but only 8-bits are significant and they are unsigned.
// Used by some SSE/AVX instructions that use intrinsics.
def i32u8imm : Operand<i32> {
let PrintMethod = "printU8Imm";
let ParserMatchClass = ImmUnsignedi8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 64-bit immediate but only 8-bits are significant and they are unsigned.
// Used by BT instructions.
def i64u8imm : Operand<i64> {
let PrintMethod = "printU8Imm";
let ParserMatchClass = ImmUnsignedi8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
def lea64_32mem : Operand<i32> {
let PrintMethod = "printMemReference";
let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, SEGMENT_REG);
let ParserMatchClass = X86MemAsmOperand;
}
// Memory operands that use 64-bit pointers in both ILP32 and LP64.
def lea64mem : Operand<i64> {
let PrintMethod = "printMemReference";
let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, SEGMENT_REG);
let ParserMatchClass = X86MemAsmOperand;
}
let RenderMethod = "addMaskPairOperands" in {
def VK1PairAsmOperand : AsmOperandClass { let Name = "VK1Pair"; }
def VK2PairAsmOperand : AsmOperandClass { let Name = "VK2Pair"; }
def VK4PairAsmOperand : AsmOperandClass { let Name = "VK4Pair"; }
def VK8PairAsmOperand : AsmOperandClass { let Name = "VK8Pair"; }
def VK16PairAsmOperand : AsmOperandClass { let Name = "VK16Pair"; }
}
def VK1Pair : RegisterOperand<VK1PAIR, "printVKPair"> {
let ParserMatchClass = VK1PairAsmOperand;
}
def VK2Pair : RegisterOperand<VK2PAIR, "printVKPair"> {
let ParserMatchClass = VK2PairAsmOperand;
}
def VK4Pair : RegisterOperand<VK4PAIR, "printVKPair"> {
let ParserMatchClass = VK4PairAsmOperand;
}
def VK8Pair : RegisterOperand<VK8PAIR, "printVKPair"> {
let ParserMatchClass = VK8PairAsmOperand;
}
def VK16Pair : RegisterOperand<VK16PAIR, "printVKPair"> {
let ParserMatchClass = VK16PairAsmOperand;
}
//===----------------------------------------------------------------------===//
// X86 Complex Pattern Definitions.
//
// Define X86-specific addressing mode.
def addr : ComplexPattern<iPTR, 5, "selectAddr", [], [SDNPWantParent]>;
def lea32addr : ComplexPattern<i32, 5, "selectLEAAddr",
[add, sub, mul, X86mul_imm, shl, or, frameindex],
[]>;
// In 64-bit mode 32-bit LEAs can use RIP-relative addressing.
def lea64_32addr : ComplexPattern<i32, 5, "selectLEA64_32Addr",
[add, sub, mul, X86mul_imm, shl, or,
frameindex, X86WrapperRIP],
[]>;
def tls32addr : ComplexPattern<i32, 5, "selectTLSADDRAddr",
[tglobaltlsaddr], []>;
def tls32baseaddr : ComplexPattern<i32, 5, "selectTLSADDRAddr",
[tglobaltlsaddr], []>;
def lea64addr : ComplexPattern<i64, 5, "selectLEAAddr",
[add, sub, mul, X86mul_imm, shl, or, frameindex,
X86WrapperRIP], []>;
def tls64addr : ComplexPattern<i64, 5, "selectTLSADDRAddr",
[tglobaltlsaddr], []>;
def tls64baseaddr : ComplexPattern<i64, 5, "selectTLSADDRAddr",
[tglobaltlsaddr], []>;
def vectoraddr : ComplexPattern<iPTR, 5, "selectVectorAddr", [],[SDNPWantParent]>;
// A relocatable immediate is an operand that can be relocated by the linker to
// an immediate, such as a regular symbol in non-PIC code.
def relocImm : ComplexPattern<iAny, 1, "selectRelocImm",
[X86Wrapper], [], 0>;
//===----------------------------------------------------------------------===//
// X86 Instruction Predicate Definitions.
def TruePredicate : Predicate<"true">;
def HasCMov : Predicate<"Subtarget->hasCMov()">;
def NoCMov : Predicate<"!Subtarget->hasCMov()">;
def HasMMX : Predicate<"Subtarget->hasMMX()">;
def Has3DNow : Predicate<"Subtarget->has3DNow()">;
def Has3DNowA : Predicate<"Subtarget->has3DNowA()">;
def HasSSE1 : Predicate<"Subtarget->hasSSE1()">;
def UseSSE1 : Predicate<"Subtarget->hasSSE1() && !Subtarget->hasAVX()">;
def HasSSE2 : Predicate<"Subtarget->hasSSE2()">;
def UseSSE2 : Predicate<"Subtarget->hasSSE2() && !Subtarget->hasAVX()">;
def HasSSE3 : Predicate<"Subtarget->hasSSE3()">;
def UseSSE3 : Predicate<"Subtarget->hasSSE3() && !Subtarget->hasAVX()">;
def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">;
def UseSSSE3 : Predicate<"Subtarget->hasSSSE3() && !Subtarget->hasAVX()">;
def HasSSE41 : Predicate<"Subtarget->hasSSE41()">;
def NoSSE41 : Predicate<"!Subtarget->hasSSE41()">;
def UseSSE41 : Predicate<"Subtarget->hasSSE41() && !Subtarget->hasAVX()">;
def HasSSE42 : Predicate<"Subtarget->hasSSE42()">;
def UseSSE42 : Predicate<"Subtarget->hasSSE42() && !Subtarget->hasAVX()">;
def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">;
def NoAVX : Predicate<"!Subtarget->hasAVX()">;
def HasAVX : Predicate<"Subtarget->hasAVX()">;
def HasAVX2 : Predicate<"Subtarget->hasAVX2()">;
def HasAVX1Only : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX2()">;
def HasAVX512 : Predicate<"Subtarget->hasAVX512()">;
def UseAVX : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX512()">;
def UseAVX2 : Predicate<"Subtarget->hasAVX2() && !Subtarget->hasAVX512()">;
def NoAVX512 : Predicate<"!Subtarget->hasAVX512()">;
def HasCDI : Predicate<"Subtarget->hasCDI()">;
def HasVPOPCNTDQ : Predicate<"Subtarget->hasVPOPCNTDQ()">;
def HasPFI : Predicate<"Subtarget->hasPFI()">;
def HasERI : Predicate<"Subtarget->hasERI()">;
def HasDQI : Predicate<"Subtarget->hasDQI()">;
def NoDQI : Predicate<"!Subtarget->hasDQI()">;
def HasBWI : Predicate<"Subtarget->hasBWI()">;
def NoBWI : Predicate<"!Subtarget->hasBWI()">;
def HasVLX : Predicate<"Subtarget->hasVLX()">;
def NoVLX : Predicate<"!Subtarget->hasVLX()">;
def NoVLX_Or_NoBWI : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasBWI()">;
def NoVLX_Or_NoDQI : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasDQI()">;
def PKU : Predicate<"Subtarget->hasPKU()">;
def HasVNNI : Predicate<"Subtarget->hasVNNI()">;
def HasVP2INTERSECT : Predicate<"Subtarget->hasVP2INTERSECT()">;
def HasBF16 : Predicate<"Subtarget->hasBF16()">;
def HasFP16 : Predicate<"Subtarget->hasFP16()">;
def HasAVXVNNI : Predicate <"Subtarget->hasAVXVNNI()">;
def NoVLX_Or_NoVNNI : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasVNNI()">;
def HasBITALG : Predicate<"Subtarget->hasBITALG()">;
def HasPOPCNT : Predicate<"Subtarget->hasPOPCNT()">;
def HasAES : Predicate<"Subtarget->hasAES()">;
def HasVAES : Predicate<"Subtarget->hasVAES()">;
def NoVLX_Or_NoVAES : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasVAES()">;
def HasFXSR : Predicate<"Subtarget->hasFXSR()">;
def HasXSAVE : Predicate<"Subtarget->hasXSAVE()">;
def HasXSAVEOPT : Predicate<"Subtarget->hasXSAVEOPT()">;
def HasXSAVEC : Predicate<"Subtarget->hasXSAVEC()">;
def HasXSAVES : Predicate<"Subtarget->hasXSAVES()">;
def HasPCLMUL : Predicate<"Subtarget->hasPCLMUL()">;
def NoVLX_Or_NoVPCLMULQDQ :
Predicate<"!Subtarget->hasVLX() || !Subtarget->hasVPCLMULQDQ()">;
def HasVPCLMULQDQ : Predicate<"Subtarget->hasVPCLMULQDQ()">;
def HasGFNI : Predicate<"Subtarget->hasGFNI()">;
def HasFMA : Predicate<"Subtarget->hasFMA()">;
def HasFMA4 : Predicate<"Subtarget->hasFMA4()">;
def NoFMA4 : Predicate<"!Subtarget->hasFMA4()">;
def HasXOP : Predicate<"Subtarget->hasXOP()">;
def HasTBM : Predicate<"Subtarget->hasTBM()">;
def NoTBM : Predicate<"!Subtarget->hasTBM()">;
def HasLWP : Predicate<"Subtarget->hasLWP()">;
def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">;
def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">;
def HasF16C : Predicate<"Subtarget->hasF16C()">;
def HasFSGSBase : Predicate<"Subtarget->hasFSGSBase()">;
def HasLZCNT : Predicate<"Subtarget->hasLZCNT()">;
def HasBMI : Predicate<"Subtarget->hasBMI()">;
def HasBMI2 : Predicate<"Subtarget->hasBMI2()">;
def NoBMI2 : Predicate<"!Subtarget->hasBMI2()">;
def HasVBMI : Predicate<"Subtarget->hasVBMI()">;
def HasVBMI2 : Predicate<"Subtarget->hasVBMI2()">;
def HasIFMA : Predicate<"Subtarget->hasIFMA()">;
def HasRTM : Predicate<"Subtarget->hasRTM()">;
def HasADX : Predicate<"Subtarget->hasADX()">;
def HasSHA : Predicate<"Subtarget->hasSHA()">;
def HasSGX : Predicate<"Subtarget->hasSGX()">;
def HasRDSEED : Predicate<"Subtarget->hasRDSEED()">;
def HasSSEPrefetch : Predicate<"Subtarget->hasSSEPrefetch()">;
def NoSSEPrefetch : Predicate<"!Subtarget->hasSSEPrefetch()">;
def HasPrefetchW : Predicate<"Subtarget->hasPrefetchW()">;
def HasPREFETCHWT1 : Predicate<"Subtarget->hasPREFETCHWT1()">;
def HasLAHFSAHF : Predicate<"Subtarget->hasLAHFSAHF()">;
def HasMWAITX : Predicate<"Subtarget->hasMWAITX()">;
def HasCLZERO : Predicate<"Subtarget->hasCLZERO()">;
def HasCLDEMOTE : Predicate<"Subtarget->hasCLDEMOTE()">;
def HasMOVDIRI : Predicate<"Subtarget->hasMOVDIRI()">;
def HasMOVDIR64B : Predicate<"Subtarget->hasMOVDIR64B()">;
def HasPTWRITE : Predicate<"Subtarget->hasPTWRITE()">;
def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">;
def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">;
def HasSHSTK : Predicate<"Subtarget->hasSHSTK()">;
def HasCLFLUSHOPT : Predicate<"Subtarget->hasCLFLUSHOPT()">;
def HasCLWB : Predicate<"Subtarget->hasCLWB()">;
def HasWBNOINVD : Predicate<"Subtarget->hasWBNOINVD()">;
def HasRDPID : Predicate<"Subtarget->hasRDPID()">;
def HasWAITPKG : Predicate<"Subtarget->hasWAITPKG()">;
def HasINVPCID : Predicate<"Subtarget->hasINVPCID()">;
def HasCmpxchg8b : Predicate<"Subtarget->hasCmpxchg8b()">;
def HasCmpxchg16b: Predicate<"Subtarget->hasCmpxchg16b()">;
def HasPCONFIG : Predicate<"Subtarget->hasPCONFIG()">;
def HasENQCMD : Predicate<"Subtarget->hasENQCMD()">;
def HasKL : Predicate<"Subtarget->hasKL()">;
def HasWIDEKL : Predicate<"Subtarget->hasWIDEKL()">;
def HasHRESET : Predicate<"Subtarget->hasHRESET()">;
def HasSERIALIZE : Predicate<"Subtarget->hasSERIALIZE()">;
def HasTSXLDTRK : Predicate<"Subtarget->hasTSXLDTRK()">;
def HasAMXTILE : Predicate<"Subtarget->hasAMXTILE()">;
def HasAMXBF16 : Predicate<"Subtarget->hasAMXBF16()">;
def HasAMXINT8 : Predicate<"Subtarget->hasAMXINT8()">;
def HasUINTR : Predicate<"Subtarget->hasUINTR()">;
def HasCRC32 : Predicate<"Subtarget->hasCRC32()">;
def Not64BitMode : Predicate<"!Subtarget->is64Bit()">,
AssemblerPredicate<(all_of (not Mode64Bit)), "Not 64-bit mode">;
def In64BitMode : Predicate<"Subtarget->is64Bit()">,
AssemblerPredicate<(all_of Mode64Bit), "64-bit mode">;
def IsLP64 : Predicate<"Subtarget->isTarget64BitLP64()">;
def NotLP64 : Predicate<"!Subtarget->isTarget64BitLP64()">;
def In16BitMode : Predicate<"Subtarget->is16Bit()">,
AssemblerPredicate<(all_of Mode16Bit), "16-bit mode">;
def Not16BitMode : Predicate<"!Subtarget->is16Bit()">,
AssemblerPredicate<(all_of (not Mode16Bit)), "Not 16-bit mode">;
def In32BitMode : Predicate<"Subtarget->is32Bit()">,
AssemblerPredicate<(all_of Mode32Bit), "32-bit mode">;
def IsWin64 : Predicate<"Subtarget->isTargetWin64()">;
def NotWin64 : Predicate<"!Subtarget->isTargetWin64()">;
def NotWin64WithoutFP : Predicate<"!Subtarget->isTargetWin64() ||"
"Subtarget->getFrameLowering()->hasFP(*MF)"> {
let RecomputePerFunction = 1;
}
def IsPS4 : Predicate<"Subtarget->isTargetPS4()">;
def NotPS4 : Predicate<"!Subtarget->isTargetPS4()">;
def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">;
def NotNaCl : Predicate<"!Subtarget->isTargetNaCl()">;
def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">;
def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">;
def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||"
"TM.getCodeModel() == CodeModel::Kernel">;
def IsNotPIC : Predicate<"!TM.isPositionIndependent()">;
// We could compute these on a per-module basis but doing so requires accessing
// the Function object through the <Target>Subtarget and objections were raised
// to that (see post-commit review comments for r301750).
let RecomputePerFunction = 1 in {
def OptForSize : Predicate<"shouldOptForSize(MF)">;
def OptForMinSize : Predicate<"MF->getFunction().hasMinSize()">;
def OptForSpeed : Predicate<"!shouldOptForSize(MF)">;
def UseIncDec : Predicate<"!Subtarget->slowIncDec() || "
"shouldOptForSize(MF)">;
def NoSSE41_Or_OptForSize : Predicate<"shouldOptForSize(MF) || "
"!Subtarget->hasSSE41()">;
}
def CallImmAddr : Predicate<"Subtarget->isLegalToCallImmediateAddr()">;
def FavorMemIndirectCall : Predicate<"!Subtarget->slowTwoMemOps()">;
def HasFastMem32 : Predicate<"!Subtarget->isUnalignedMem32Slow()">;
def HasFastLZCNT : Predicate<"Subtarget->hasFastLZCNT()">;
def HasFastSHLDRotate : Predicate<"Subtarget->hasFastSHLDRotate()">;
def HasERMSB : Predicate<"Subtarget->hasERMSB()">;
def HasFSRM : Predicate<"Subtarget->hasFSRM()">;
def HasMFence : Predicate<"Subtarget->hasMFence()">;
def UseIndirectThunkCalls : Predicate<"Subtarget->useIndirectThunkCalls()">;
def NotUseIndirectThunkCalls : Predicate<"!Subtarget->useIndirectThunkCalls()">;
//===----------------------------------------------------------------------===//
// X86 Instruction Format Definitions.
//
include "X86InstrFormats.td"
//===----------------------------------------------------------------------===//
// Pattern fragments.
//
// X86 specific condition code. These correspond to CondCode in
// X86InstrInfo.h. They must be kept in synch.
def X86_COND_O : PatLeaf<(i8 0)>;
def X86_COND_NO : PatLeaf<(i8 1)>;
def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C
def X86_COND_AE : PatLeaf<(i8 3)>; // alt. COND_NC
def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z
def X86_COND_NE : PatLeaf<(i8 5)>; // alt. COND_NZ
def X86_COND_BE : PatLeaf<(i8 6)>; // alt. COND_NA
def X86_COND_A : PatLeaf<(i8 7)>; // alt. COND_NBE
def X86_COND_S : PatLeaf<(i8 8)>;
def X86_COND_NS : PatLeaf<(i8 9)>;
def X86_COND_P : PatLeaf<(i8 10)>; // alt. COND_PE
def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO
def X86_COND_L : PatLeaf<(i8 12)>; // alt. COND_NGE
def X86_COND_GE : PatLeaf<(i8 13)>; // alt. COND_NL
def X86_COND_LE : PatLeaf<(i8 14)>; // alt. COND_NG
def X86_COND_G : PatLeaf<(i8 15)>; // alt. COND_NLE
def i16immSExt8 : ImmLeaf<i16, [{ return isInt<8>(Imm); }]>;
def i32immSExt8 : ImmLeaf<i32, [{ return isInt<8>(Imm); }]>;
def i64immSExt8 : ImmLeaf<i64, [{ return isInt<8>(Imm); }]>;
def i64immSExt32 : ImmLeaf<i64, [{ return isInt<32>(Imm); }]>;
def i64timmSExt32 : TImmLeaf<i64, [{ return isInt<32>(Imm); }]>;
def i16relocImmSExt8 : PatLeaf<(i16 relocImm), [{
return isSExtAbsoluteSymbolRef(8, N);
}]>;
def i32relocImmSExt8 : PatLeaf<(i32 relocImm), [{
return isSExtAbsoluteSymbolRef(8, N);
}]>;
def i64relocImmSExt8 : PatLeaf<(i64 relocImm), [{
return isSExtAbsoluteSymbolRef(8, N);
}]>;
def i64relocImmSExt32 : PatLeaf<(i64 relocImm), [{
return isSExtAbsoluteSymbolRef(32, N);
}]>;
// If we have multiple users of an immediate, it's much smaller to reuse
// the register, rather than encode the immediate in every instruction.
// This has the risk of increasing register pressure from stretched live
// ranges, however, the immediates should be trivial to rematerialize by
// the RA in the event of high register pressure.
// TODO : This is currently enabled for stores and binary ops. There are more
// cases for which this can be enabled, though this catches the bulk of the
// issues.
// TODO2 : This should really also be enabled under O2, but there's currently
// an issue with RA where we don't pull the constants into their users
// when we rematerialize them. I'll follow-up on enabling O2 after we fix that
// issue.
// TODO3 : This is currently limited to single basic blocks (DAG creation
// pulls block immediates to the top and merges them if necessary).
// Eventually, it would be nice to allow ConstantHoisting to merge constants
// globally for potentially added savings.
//
def imm_su : PatLeaf<(imm), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i64immSExt32_su : PatLeaf<(i64immSExt32), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def relocImm8_su : PatLeaf<(i8 relocImm), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def relocImm16_su : PatLeaf<(i16 relocImm), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def relocImm32_su : PatLeaf<(i32 relocImm), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i16relocImmSExt8_su : PatLeaf<(i16relocImmSExt8), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i32relocImmSExt8_su : PatLeaf<(i32relocImmSExt8), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i64relocImmSExt8_su : PatLeaf<(i64relocImmSExt8), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i64relocImmSExt32_su : PatLeaf<(i64relocImmSExt32), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i16immSExt8_su : PatLeaf<(i16immSExt8), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i32immSExt8_su : PatLeaf<(i32immSExt8), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
def i64immSExt8_su : PatLeaf<(i64immSExt8), [{
return !shouldAvoidImmediateInstFormsForSize(N);
}]>;
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// unsigned field.
def i64immZExt32 : ImmLeaf<i64, [{ return isUInt<32>(Imm); }]>;
def i64immZExt32SExt8 : ImmLeaf<i64, [{
return isUInt<32>(Imm) && isInt<8>(static_cast<int32_t>(Imm));
}]>;
// Helper fragments for loads.
// It's safe to fold a zextload/extload from i1 as a regular i8 load. The
// upper bits are guaranteed to be zero and we were going to emit a MOV8rm
// which might get folded during peephole anyway.
def loadi8 : PatFrag<(ops node:$ptr), (i8 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
return ExtType == ISD::NON_EXTLOAD || ExtType == ISD::EXTLOAD ||
ExtType == ISD::ZEXTLOAD;
}]>;
// It's always safe to treat a anyext i16 load as a i32 load if the i16 is
// known to be 32-bit aligned or better. Ditto for i8 to i16.
def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD && EnablePromoteAnyextLoad)
return LD->getAlignment() >= 2 && LD->isSimple();
return false;
}]>;
def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD && EnablePromoteAnyextLoad)
return LD->getAlignment() >= 4 && LD->isSimple();
return false;
}]>;
def loadi64 : PatFrag<(ops node:$ptr), (i64 (load node:$ptr))>;
def loadf16 : PatFrag<(ops node:$ptr), (f16 (load node:$ptr))>;
def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>;
def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>;
def loadf80 : PatFrag<(ops node:$ptr), (f80 (load node:$ptr))>;
def loadf128 : PatFrag<(ops node:$ptr), (f128 (load node:$ptr))>;
def alignedloadf128 : PatFrag<(ops node:$ptr), (f128 (load node:$ptr)), [{
LoadSDNode *Ld = cast<LoadSDNode>(N);
return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();
}]>;
def memopf128 : PatFrag<(ops node:$ptr), (f128 (load node:$ptr)), [{
LoadSDNode *Ld = cast<LoadSDNode>(N);
return Subtarget->hasSSEUnalignedMem() ||
Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();
}]>;
def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>;
def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>;
def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>;
def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>;
def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>;
def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>;
def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>;
def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>;
def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
// We can treat an i8/i16 extending load to i64 as a 32 bit load if its known
// to be 4 byte aligned or better.
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType != ISD::EXTLOAD)
return false;
if (LD->getMemoryVT() == MVT::i32)
return true;
return LD->getAlignment() >= 4 && LD->isSimple();
}]>;
// An 'and' node with a single use.
def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'srl' node with a single use.
def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'trunc' node with a single use.
def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{
return N->hasOneUse();
}]>;
//===----------------------------------------------------------------------===//
// Instruction list.
//
// Nop
let hasSideEffects = 0, SchedRW = [WriteNop] in {
def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>;
def NOOPW : I<0x1f, MRMXm, (outs), (ins i16mem:$zero),
"nop{w}\t$zero", []>, TB, OpSize16, NotMemoryFoldable;
def NOOPL : I<0x1f, MRMXm, (outs), (ins i32mem:$zero),
"nop{l}\t$zero", []>, TB, OpSize32, NotMemoryFoldable;
def NOOPQ : RI<0x1f, MRMXm, (outs), (ins i64mem:$zero),
"nop{q}\t$zero", []>, TB, NotMemoryFoldable,
Requires<[In64BitMode]>;
// Also allow register so we can assemble/disassemble
def NOOPWr : I<0x1f, MRMXr, (outs), (ins GR16:$zero),
"nop{w}\t$zero", []>, TB, OpSize16, NotMemoryFoldable;
def NOOPLr : I<0x1f, MRMXr, (outs), (ins GR32:$zero),
"nop{l}\t$zero", []>, TB, OpSize32, NotMemoryFoldable;
def NOOPQr : RI<0x1f, MRMXr, (outs), (ins GR64:$zero),
"nop{q}\t$zero", []>, TB, NotMemoryFoldable,
Requires<[In64BitMode]>;
}
// Constructing a stack frame.
def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl),
"enter\t$len, $lvl", []>, Sched<[WriteMicrocoded]>;
let SchedRW = [WriteALU] in {
let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, hasSideEffects=0 in
def LEAVE : I<0xC9, RawFrm, (outs), (ins), "leave", []>,
Requires<[Not64BitMode]>;
let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, hasSideEffects = 0 in
def LEAVE64 : I<0xC9, RawFrm, (outs), (ins), "leave", []>,
Requires<[In64BitMode]>;
} // SchedRW
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1,
SchedRW = [WriteSystem] in
def Int_eh_sjlj_setup_dispatch
: PseudoI<(outs), (ins), [(X86eh_sjlj_setup_dispatch)]>;
let Defs = [ESP], Uses = [ESP], hasSideEffects=0 in {
let mayLoad = 1, SchedRW = [WriteLoad] in {
def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
OpSize16;
def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>,
OpSize32, Requires<[Not64BitMode]>;
// Long form for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1 in {
def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
OpSize16, NotMemoryFoldable;
def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>,
OpSize32, Requires<[Not64BitMode]>, NotMemoryFoldable;
} // isCodeGenOnly = 1, ForceDisassemble = 1
} // mayLoad, SchedRW
let mayStore = 1, mayLoad = 1, SchedRW = [WriteCopy] in {
def POP16rmm: I<0x8F, MRM0m, (outs), (ins i16mem:$dst), "pop{w}\t$dst", []>,
OpSize16;
def POP32rmm: I<0x8F, MRM0m, (outs), (ins i32mem:$dst), "pop{l}\t$dst", []>,
OpSize32, Requires<[Not64BitMode]>;
} // mayStore, mayLoad, SchedRW
let mayStore = 1, SchedRW = [WriteStore] in {
def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
OpSize16;
def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>,
OpSize32, Requires<[Not64BitMode]>;
// Long form for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1 in {
def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
OpSize16, NotMemoryFoldable;
def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>,
OpSize32, Requires<[Not64BitMode]>, NotMemoryFoldable;
} // isCodeGenOnly = 1, ForceDisassemble = 1
def PUSH16i8 : Ii8<0x6a, RawFrm, (outs), (ins i16i8imm:$imm),
"push{w}\t$imm", []>, OpSize16;
def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
"push{w}\t$imm", []>, OpSize16;
def PUSH32i8 : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm),
"push{l}\t$imm", []>, OpSize32,
Requires<[Not64BitMode]>;
def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm),
"push{l}\t$imm", []>, OpSize32,
Requires<[Not64BitMode]>;
} // mayStore, SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteCopy] in {
def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src", []>,
OpSize16;
def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src", []>,
OpSize32, Requires<[Not64BitMode]>;
} // mayLoad, mayStore, SchedRW
}
let mayLoad = 1, mayStore = 1, usesCustomInserter = 1,
SchedRW = [WriteRMW], Defs = [ESP] in {
let Uses = [ESP] in
def RDFLAGS32 : PseudoI<(outs GR32:$dst), (ins),
[(set GR32:$dst, (int_x86_flags_read_u32))]>,
Requires<[Not64BitMode]>;
let Uses = [RSP] in
def RDFLAGS64 : PseudoI<(outs GR64:$dst), (ins),
[(set GR64:$dst, (int_x86_flags_read_u64))]>,
Requires<[In64BitMode]>;
}
let mayLoad = 1, mayStore = 1, usesCustomInserter = 1,
SchedRW = [WriteRMW] in {
let Defs = [ESP, EFLAGS, DF], Uses = [ESP] in
def WRFLAGS32 : PseudoI<(outs), (ins GR32:$src),
[(int_x86_flags_write_u32 GR32:$src)]>,
Requires<[Not64BitMode]>;
let Defs = [RSP, EFLAGS, DF], Uses = [RSP] in
def WRFLAGS64 : PseudoI<(outs), (ins GR64:$src),
[(int_x86_flags_write_u64 GR64:$src)]>,
Requires<[In64BitMode]>;
}
let Defs = [ESP, EFLAGS, DF], Uses = [ESP], mayLoad = 1, hasSideEffects=0,
SchedRW = [WriteLoad] in {
def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", []>, OpSize16;
def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", []>, OpSize32,
Requires<[Not64BitMode]>;
}
let Defs = [ESP], Uses = [ESP, EFLAGS, DF], mayStore = 1, hasSideEffects=0,
SchedRW = [WriteStore] in {
def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", []>, OpSize16;
def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", []>, OpSize32,
Requires<[Not64BitMode]>;
}
let Defs = [RSP], Uses = [RSP], hasSideEffects=0 in {
let mayLoad = 1, SchedRW = [WriteLoad] in {
def POP64r : I<0x58, AddRegFrm, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>,
OpSize32, Requires<[In64BitMode]>;
// Long form for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1 in {
def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>,
OpSize32, Requires<[In64BitMode]>, NotMemoryFoldable;
} // isCodeGenOnly = 1, ForceDisassemble = 1
} // mayLoad, SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteCopy] in
def POP64rmm: I<0x8F, MRM0m, (outs), (ins i64mem:$dst), "pop{q}\t$dst", []>,
OpSize32, Requires<[In64BitMode]>;
let mayStore = 1, SchedRW = [WriteStore] in {
def PUSH64r : I<0x50, AddRegFrm, (outs), (ins GR64:$reg), "push{q}\t$reg", []>,
OpSize32, Requires<[In64BitMode]>;
// Long form for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1 in {
def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", []>,
OpSize32, Requires<[In64BitMode]>, NotMemoryFoldable;
} // isCodeGenOnly = 1, ForceDisassemble = 1
} // mayStore, SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteCopy] in {
def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", []>,
OpSize32, Requires<[In64BitMode]>;
} // mayLoad, mayStore, SchedRW
}
let Defs = [RSP], Uses = [RSP], hasSideEffects = 0, mayStore = 1,
SchedRW = [WriteStore] in {
def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm),
"push{q}\t$imm", []>, OpSize32,
Requires<[In64BitMode]>;
def PUSH64i32 : Ii32S<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
"push{q}\t$imm", []>, OpSize32,
Requires<[In64BitMode]>;
}
let Defs = [RSP, EFLAGS, DF], Uses = [RSP], mayLoad = 1, hasSideEffects=0 in
def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", []>,
OpSize32, Requires<[In64BitMode]>, Sched<[WriteLoad]>;
let Defs = [RSP], Uses = [RSP, EFLAGS, DF], mayStore = 1, hasSideEffects=0 in
def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", []>,
OpSize32, Requires<[In64BitMode]>, Sched<[WriteStore]>;
let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP],
mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteLoad] in {
def POPA32 : I<0x61, RawFrm, (outs), (ins), "popal", []>,
OpSize32, Requires<[Not64BitMode]>;
def POPA16 : I<0x61, RawFrm, (outs), (ins), "popaw", []>,
OpSize16, Requires<[Not64BitMode]>;
}
let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP],
mayStore = 1, hasSideEffects = 0, SchedRW = [WriteStore] in {
def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pushal", []>,
OpSize32, Requires<[Not64BitMode]>;
def PUSHA16 : I<0x60, RawFrm, (outs), (ins), "pushaw", []>,
OpSize16, Requires<[Not64BitMode]>;
}
let Constraints = "$src = $dst", SchedRW = [WriteBSWAP32] in {
// This instruction is a consequence of BSWAP32r observing operand size. The
// encoding is valid, but the behavior is undefined.
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
def BSWAP16r_BAD : I<0xC8, AddRegFrm, (outs GR16:$dst), (ins GR16:$src),
"bswap{w}\t$dst", []>, OpSize16, TB;
// GR32 = bswap GR32
def BSWAP32r : I<0xC8, AddRegFrm, (outs GR32:$dst), (ins GR32:$src),
"bswap{l}\t$dst",
[(set GR32:$dst, (bswap GR32:$src))]>, OpSize32, TB;
let SchedRW = [WriteBSWAP64] in
def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
"bswap{q}\t$dst",
[(set GR64:$dst, (bswap GR64:$src))]>, TB;
} // Constraints = "$src = $dst", SchedRW
// Bit scan instructions.
let Defs = [EFLAGS] in {
def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"bsf{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))]>,
PS, OpSize16, Sched<[WriteBSF]>;
def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"bsf{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))]>,
PS, OpSize16, Sched<[WriteBSFLd]>;
def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"bsf{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))]>,
PS, OpSize32, Sched<[WriteBSF]>;
def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"bsf{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))]>,
PS, OpSize32, Sched<[WriteBSFLd]>;
def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))]>,
PS, Sched<[WriteBSF]>;
def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))]>,
PS, Sched<[WriteBSFLd]>;
def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"bsr{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))]>,
PS, OpSize16, Sched<[WriteBSR]>;
def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"bsr{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))]>,
PS, OpSize16, Sched<[WriteBSRLd]>;
def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"bsr{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))]>,
PS, OpSize32, Sched<[WriteBSR]>;
def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"bsr{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))]>,
PS, OpSize32, Sched<[WriteBSRLd]>;
def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))]>,
PS, Sched<[WriteBSR]>;
def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))]>,
PS, Sched<[WriteBSRLd]>;
} // Defs = [EFLAGS]
let SchedRW = [WriteMicrocoded] in {
let Defs = [EDI,ESI], Uses = [EDI,ESI,DF] in {
def MOVSB : I<0xA4, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src),
"movsb\t{$src, $dst|$dst, $src}", []>;
def MOVSW : I<0xA5, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src),
"movsw\t{$src, $dst|$dst, $src}", []>, OpSize16;
def MOVSL : I<0xA5, RawFrmDstSrc, (outs), (ins dstidx32:$dst, srcidx32:$src),
"movs{l|d}\t{$src, $dst|$dst, $src}", []>, OpSize32;
def MOVSQ : RI<0xA5, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src),
"movsq\t{$src, $dst|$dst, $src}", []>,
Requires<[In64BitMode]>;
}
let Defs = [EDI], Uses = [AL,EDI,DF] in
def STOSB : I<0xAA, RawFrmDst, (outs), (ins dstidx8:$dst),
"stosb\t{%al, $dst|$dst, al}", []>;
let Defs = [EDI], Uses = [AX,EDI,DF] in
def STOSW : I<0xAB, RawFrmDst, (outs), (ins dstidx16:$dst),
"stosw\t{%ax, $dst|$dst, ax}", []>, OpSize16;
let Defs = [EDI], Uses = [EAX,EDI,DF] in
def STOSL : I<0xAB, RawFrmDst, (outs), (ins dstidx32:$dst),
"stos{l|d}\t{%eax, $dst|$dst, eax}", []>, OpSize32;
let Defs = [RDI], Uses = [RAX,RDI,DF] in
def STOSQ : RI<0xAB, RawFrmDst, (outs), (ins dstidx64:$dst),
"stosq\t{%rax, $dst|$dst, rax}", []>,
Requires<[In64BitMode]>;
let Defs = [EDI,EFLAGS], Uses = [AL,EDI,DF] in
def SCASB : I<0xAE, RawFrmDst, (outs), (ins dstidx8:$dst),
"scasb\t{$dst, %al|al, $dst}", []>;
let Defs = [EDI,EFLAGS], Uses = [AX,EDI,DF] in
def SCASW : I<0xAF, RawFrmDst, (outs), (ins dstidx16:$dst),
"scasw\t{$dst, %ax|ax, $dst}", []>, OpSize16;
let Defs = [EDI,EFLAGS], Uses = [EAX,EDI,DF] in
def SCASL : I<0xAF, RawFrmDst, (outs), (ins dstidx32:$dst),
"scas{l|d}\t{$dst, %eax|eax, $dst}", []>, OpSize32;
let Defs = [EDI,EFLAGS], Uses = [RAX,EDI,DF] in
def SCASQ : RI<0xAF, RawFrmDst, (outs), (ins dstidx64:$dst),
"scasq\t{$dst, %rax|rax, $dst}", []>,
Requires<[In64BitMode]>;
let Defs = [EDI,ESI,EFLAGS], Uses = [EDI,ESI,DF] in {
def CMPSB : I<0xA6, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src),
"cmpsb\t{$dst, $src|$src, $dst}", []>;
def CMPSW : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src),
"cmpsw\t{$dst, $src|$src, $dst}", []>, OpSize16;
def CMPSL : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx32:$dst, srcidx32:$src),
"cmps{l|d}\t{$dst, $src|$src, $dst}", []>, OpSize32;
def CMPSQ : RI<0xA7, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src),
"cmpsq\t{$dst, $src|$src, $dst}", []>,
Requires<[In64BitMode]>;
}
} // SchedRW
//===----------------------------------------------------------------------===//
// Move Instructions.
//
let SchedRW = [WriteMove] in {
let hasSideEffects = 0, isMoveReg = 1 in {
def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>;
def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize16;
def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>, OpSize32;
def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}", []>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(set GR8:$dst, imm:$src)]>;
def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, imm:$src)]>, OpSize16;
def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, imm:$src)]>, OpSize32;
def MOV64ri32 : RIi32S<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, i64immSExt32:$src)]>;
}
let isReMaterializable = 1, isMoveImm = 1 in {
def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
"movabs{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, imm:$src)]>;
}
// Longer forms that use a ModR/M byte. Needed for disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def MOV8ri_alt : Ii8 <0xC6, MRM0r, (outs GR8 :$dst), (ins i8imm :$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOV8ri">;
def MOV16ri_alt : Ii16<0xC7, MRM0r, (outs GR16:$dst), (ins i16imm:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize16,
FoldGenData<"MOV16ri">;
def MOV32ri_alt : Ii32<0xC7, MRM0r, (outs GR32:$dst), (ins i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>, OpSize32,
FoldGenData<"MOV32ri">;
}
} // SchedRW
let SchedRW = [WriteStore] in {
def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(store (i8 imm_su:$src), addr:$dst)]>;
def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(store (i16 imm_su:$src), addr:$dst)]>, OpSize16;
def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(store (i32 imm_su:$src), addr:$dst)]>, OpSize32;
def MOV64mi32 : RIi32S<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store i64immSExt32_su:$src, addr:$dst)]>,
Requires<[In64BitMode]>;
} // SchedRW
def : Pat<(i32 relocImm:$src), (MOV32ri relocImm:$src)>;
def : Pat<(i64 relocImm:$src), (MOV64ri relocImm:$src)>;
def : Pat<(store (i8 relocImm8_su:$src), addr:$dst),
(MOV8mi addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (i16 relocImm16_su:$src), addr:$dst),
(MOV16mi addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (i32 relocImm32_su:$src), addr:$dst),
(MOV32mi addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (i64 i64relocImmSExt32_su:$src), addr:$dst),
(MOV64mi32 addr:$dst, i64immSExt32_su:$src)>;
let hasSideEffects = 0 in {
/// Memory offset versions of moves. The immediate is an address mode sized
/// offset from the segment base.
let SchedRW = [WriteALU] in {
let mayLoad = 1 in {
let Defs = [AL] in
def MOV8ao32 : Ii32<0xA0, RawFrmMemOffs, (outs), (ins offset32_8:$src),
"mov{b}\t{$src, %al|al, $src}", []>,
AdSize32;
let Defs = [AX] in
def MOV16ao32 : Ii32<0xA1, RawFrmMemOffs, (outs), (ins offset32_16:$src),
"mov{w}\t{$src, %ax|ax, $src}", []>,
OpSize16, AdSize32;
let Defs = [EAX] in
def MOV32ao32 : Ii32<0xA1, RawFrmMemOffs, (outs), (ins offset32_32:$src),
"mov{l}\t{$src, %eax|eax, $src}", []>,
OpSize32, AdSize32;
let Defs = [RAX] in
def MOV64ao32 : RIi32<0xA1, RawFrmMemOffs, (outs), (ins offset32_64:$src),
"mov{q}\t{$src, %rax|rax, $src}", []>,
AdSize32;
let Defs = [AL] in
def MOV8ao16 : Ii16<0xA0, RawFrmMemOffs, (outs), (ins offset16_8:$src),
"mov{b}\t{$src, %al|al, $src}", []>, AdSize16;
let Defs = [AX] in
def MOV16ao16 : Ii16<0xA1, RawFrmMemOffs, (outs), (ins offset16_16:$src),
"mov{w}\t{$src, %ax|ax, $src}", []>,
OpSize16, AdSize16;
let Defs = [EAX] in
def MOV32ao16 : Ii16<0xA1, RawFrmMemOffs, (outs), (ins offset16_32:$src),
"mov{l}\t{$src, %eax|eax, $src}", []>,
AdSize16, OpSize32;
} // mayLoad
let mayStore = 1 in {
let Uses = [AL] in
def MOV8o32a : Ii32<0xA2, RawFrmMemOffs, (outs), (ins offset32_8:$dst),
"mov{b}\t{%al, $dst|$dst, al}", []>, AdSize32;
let Uses = [AX] in
def MOV16o32a : Ii32<0xA3, RawFrmMemOffs, (outs), (ins offset32_16:$dst),
"mov{w}\t{%ax, $dst|$dst, ax}", []>,
OpSize16, AdSize32;
let Uses = [EAX] in
def MOV32o32a : Ii32<0xA3, RawFrmMemOffs, (outs), (ins offset32_32:$dst),
"mov{l}\t{%eax, $dst|$dst, eax}", []>,
OpSize32, AdSize32;
let Uses = [RAX] in
def MOV64o32a : RIi32<0xA3, RawFrmMemOffs, (outs), (ins offset32_64:$dst),
"mov{q}\t{%rax, $dst|$dst, rax}", []>,
AdSize32;
let Uses = [AL] in
def MOV8o16a : Ii16<0xA2, RawFrmMemOffs, (outs), (ins offset16_8:$dst),
"mov{b}\t{%al, $dst|$dst, al}", []>, AdSize16;
let Uses = [AX] in
def MOV16o16a : Ii16<0xA3, RawFrmMemOffs, (outs), (ins offset16_16:$dst),
"mov{w}\t{%ax, $dst|$dst, ax}", []>,
OpSize16, AdSize16;
let Uses = [EAX] in
def MOV32o16a : Ii16<0xA3, RawFrmMemOffs, (outs), (ins offset16_32:$dst),
"mov{l}\t{%eax, $dst|$dst, eax}", []>,
OpSize32, AdSize16;
} // mayStore
// These forms all have full 64-bit absolute addresses in their instructions
// and use the movabs mnemonic to indicate this specific form.
let mayLoad = 1 in {
let Defs = [AL] in
def MOV8ao64 : Ii64<0xA0, RawFrmMemOffs, (outs), (ins offset64_8:$src),
"movabs{b}\t{$src, %al|al, $src}", []>,
AdSize64;
let Defs = [AX] in
def MOV16ao64 : Ii64<0xA1, RawFrmMemOffs, (outs), (ins offset64_16:$src),
"movabs{w}\t{$src, %ax|ax, $src}", []>,
OpSize16, AdSize64;
let Defs = [EAX] in
def MOV32ao64 : Ii64<0xA1, RawFrmMemOffs, (outs), (ins offset64_32:$src),
"movabs{l}\t{$src, %eax|eax, $src}", []>,
OpSize32, AdSize64;
let Defs = [RAX] in
def MOV64ao64 : RIi64<0xA1, RawFrmMemOffs, (outs), (ins offset64_64:$src),
"movabs{q}\t{$src, %rax|rax, $src}", []>,
AdSize64;
} // mayLoad
let mayStore = 1 in {
let Uses = [AL] in
def MOV8o64a : Ii64<0xA2, RawFrmMemOffs, (outs), (ins offset64_8:$dst),
"movabs{b}\t{%al, $dst|$dst, al}", []>,
AdSize64;
let Uses = [AX] in
def MOV16o64a : Ii64<0xA3, RawFrmMemOffs, (outs), (ins offset64_16:$dst),
"movabs{w}\t{%ax, $dst|$dst, ax}", []>,
OpSize16, AdSize64;
let Uses = [EAX] in
def MOV32o64a : Ii64<0xA3, RawFrmMemOffs, (outs), (ins offset64_32:$dst),
"movabs{l}\t{%eax, $dst|$dst, eax}", []>,
OpSize32, AdSize64;
let Uses = [RAX] in
def MOV64o64a : RIi64<0xA3, RawFrmMemOffs, (outs), (ins offset64_64:$dst),
"movabs{q}\t{%rax, $dst|$dst, rax}", []>,
AdSize64;
} // mayStore
} // SchedRW
} // hasSideEffects = 0
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteMove], isMoveReg = 1 in {
def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOV8rr">;
def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize16,
FoldGenData<"MOV16rr">;
def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>, OpSize32,
FoldGenData<"MOV32rr">;
def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOV64rr">;
}
// Reversed version with ".s" suffix for GAS compatibility.
def : InstAlias<"mov{b}.s\t{$src, $dst|$dst, $src}",
(MOV8rr_REV GR8:$dst, GR8:$src), 0>;
def : InstAlias<"mov{w}.s\t{$src, $dst|$dst, $src}",
(MOV16rr_REV GR16:$dst, GR16:$src), 0>;
def : InstAlias<"mov{l}.s\t{$src, $dst|$dst, $src}",
(MOV32rr_REV GR32:$dst, GR32:$src), 0>;
def : InstAlias<"mov{q}.s\t{$src, $dst|$dst, $src}",
(MOV64rr_REV GR64:$dst, GR64:$src), 0>;
def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}",
(MOV8rr_REV GR8:$dst, GR8:$src), 0, "att">;
def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}",
(MOV16rr_REV GR16:$dst, GR16:$src), 0, "att">;
def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}",
(MOV32rr_REV GR32:$dst, GR32:$src), 0, "att">;
def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}",
(MOV64rr_REV GR64:$dst, GR64:$src), 0, "att">;
let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in {
def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(set GR8:$dst, (loadi8 addr:$src))]>;
def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (loadi16 addr:$src))]>, OpSize16;
def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (loadi32 addr:$src))]>, OpSize32;
def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (load addr:$src))]>;
}
let SchedRW = [WriteStore] in {
def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(store GR8:$src, addr:$dst)]>;
def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(store GR16:$src, addr:$dst)]>, OpSize16;
def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(store GR32:$src, addr:$dst)]>, OpSize32;
def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store GR64:$src, addr:$dst)]>;
} // SchedRW
// Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so
// that they can be used for copying and storing h registers, which can't be
// encoded when a REX prefix is present.
let isCodeGenOnly = 1 in {
let hasSideEffects = 0, isMoveReg = 1 in
def MOV8rr_NOREX : I<0x88, MRMDestReg,
(outs GR8_NOREX:$dst), (ins GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteMove]>;
let mayStore = 1, hasSideEffects = 0 in
def MOV8mr_NOREX : I<0x88, MRMDestMem,
(outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteStore]>;
let mayLoad = 1, hasSideEffects = 0,
canFoldAsLoad = 1, isReMaterializable = 1 in
def MOV8rm_NOREX : I<0x8A, MRMSrcMem,
(outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteLoad]>;
}
// Condition code ops, incl. set if equal/not equal/...
let SchedRW = [WriteLAHFSAHF] in {
let Defs = [EFLAGS], Uses = [AH], hasSideEffects = 0 in
def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", []>, // flags = AH
Requires<[HasLAHFSAHF]>;
let Defs = [AH], Uses = [EFLAGS], hasSideEffects = 0 in
def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", []>, // AH = flags
Requires<[HasLAHFSAHF]>;
} // SchedRW
//===----------------------------------------------------------------------===//
// Bit tests instructions: BT, BTS, BTR, BTC.
let Defs = [EFLAGS] in {
let SchedRW = [WriteBitTest] in {
def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))]>,
OpSize16, TB, NotMemoryFoldable;
def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))]>,
OpSize32, TB, NotMemoryFoldable;
def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))]>, TB,
NotMemoryFoldable;
} // SchedRW
// Unlike with the register+register form, the memory+register form of the
// bt instruction does not ignore the high bits of the index. From ISel's
// perspective, this is pretty bizarre. Make these instructions disassembly
// only for now. These instructions are also slow on modern CPUs so that's
// another reason to avoid generating them.
let mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteBitTestRegLd] in {
def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[]>, OpSize16, TB, NotMemoryFoldable;
def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[]>, OpSize32, TB, NotMemoryFoldable;
def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[]>, TB, NotMemoryFoldable;
}
let SchedRW = [WriteBitTest] in {
def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16u8imm:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR16:$src1, imm:$src2))]>,
OpSize16, TB;
def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32u8imm:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR32:$src1, imm:$src2))]>,
OpSize32, TB;
def BT64ri8 : RIi8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64u8imm:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR64:$src1, imm:$src2))]>, TB;
} // SchedRW
// Note that these instructions aren't slow because that only applies when the
// other operand is in a register. When it's an immediate, bt is still fast.
let SchedRW = [WriteBitTestImmLd] in {
def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16u8imm:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi16 addr:$src1),
imm:$src2))]>,
OpSize16, TB;
def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32u8imm:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi32 addr:$src1),
imm:$src2))]>,
OpSize32, TB;
def BT64mi8 : RIi8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64u8imm:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi64 addr:$src1),
imm:$src2))]>, TB,
Requires<[In64BitMode]>;
} // SchedRW
let hasSideEffects = 0 in {
let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in {
def BTC16rr : I<0xBB, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB, NotMemoryFoldable;
def BTC32rr : I<0xBB, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB, NotMemoryFoldable;
def BTC64rr : RI<0xBB, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
NotMemoryFoldable;
} // SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetRegRMW] in {
def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB, NotMemoryFoldable;
def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB, NotMemoryFoldable;
def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
NotMemoryFoldable;
}
let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in {
def BTC16ri8 : Ii8<0xBA, MRM7r, (outs GR16:$dst), (ins GR16:$src1, i16u8imm:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB;
def BTC32ri8 : Ii8<0xBA, MRM7r, (outs GR32:$dst), (ins GR32:$src1, i32u8imm:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB;
def BTC64ri8 : RIi8<0xBA, MRM7r, (outs GR64:$dst), (ins GR64:$src1, i64u8imm:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
} // SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetImmRMW] in {
def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16u8imm:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB;
def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32u8imm:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB;
def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64u8imm:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
Requires<[In64BitMode]>;
}
let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in {
def BTR16rr : I<0xB3, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB, NotMemoryFoldable;
def BTR32rr : I<0xB3, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB, NotMemoryFoldable;
def BTR64rr : RI<0xB3, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
NotMemoryFoldable;
} // SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetRegRMW] in {
def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB, NotMemoryFoldable;
def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB, NotMemoryFoldable;
def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
NotMemoryFoldable;
}
let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in {
def BTR16ri8 : Ii8<0xBA, MRM6r, (outs GR16:$dst), (ins GR16:$src1, i16u8imm:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB;
def BTR32ri8 : Ii8<0xBA, MRM6r, (outs GR32:$dst), (ins GR32:$src1, i32u8imm:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB;
def BTR64ri8 : RIi8<0xBA, MRM6r, (outs GR64:$dst), (ins GR64:$src1, i64u8imm:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
} // SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetImmRMW] in {
def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16u8imm:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB;
def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32u8imm:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB;
def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64u8imm:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
Requires<[In64BitMode]>;
}
let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in {
def BTS16rr : I<0xAB, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB, NotMemoryFoldable;
def BTS32rr : I<0xAB, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB, NotMemoryFoldable;
def BTS64rr : RI<0xAB, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
NotMemoryFoldable;
} // SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetRegRMW] in {
def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, TB, NotMemoryFoldable;
def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, TB, NotMemoryFoldable;
def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
NotMemoryFoldable;
}
let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in {
def BTS16ri8 : Ii8<0xBA, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i16u8imm:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB;
def BTS32ri8 : Ii8<0xBA, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i32u8imm:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB;
def BTS64ri8 : RIi8<0xBA, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i64u8imm:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
} // SchedRW
let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetImmRMW] in {
def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16u8imm:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB;
def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32u8imm:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB;
def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64u8imm:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB,
Requires<[In64BitMode]>;
}
} // hasSideEffects = 0
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
// Atomic support
//
// Atomic swap. These are just normal xchg instructions. But since a memory
// operand is referenced, the atomicity is ensured.
multiclass ATOMIC_SWAP<bits<8> opc8, bits<8> opc, string mnemonic, string frag> {
let Constraints = "$val = $dst", SchedRW = [WriteALULd, WriteRMW] in {
def NAME#8rm : I<opc8, MRMSrcMem, (outs GR8:$dst),
(ins GR8:$val, i8mem:$ptr),
!strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
[(set
GR8:$dst,
(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
def NAME#16rm : I<opc, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$val, i16mem:$ptr),
!strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
[(set
GR16:$dst,
(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
OpSize16;
def NAME#32rm : I<opc, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$val, i32mem:$ptr),
!strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
[(set
GR32:$dst,
(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
OpSize32;
def NAME#64rm : RI<opc, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$val, i64mem:$ptr),
!strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
[(set
GR64:$dst,
(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
}
}
defm XCHG : ATOMIC_SWAP<0x86, 0x87, "xchg", "atomic_swap">, NotMemoryFoldable;
// Swap between registers.
let SchedRW = [WriteXCHG] in {
let Constraints = "$src1 = $dst1, $src2 = $dst2", hasSideEffects = 0 in {
def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst1, GR8:$dst2),
(ins GR8:$src1, GR8:$src2),
"xchg{b}\t{$src2, $src1|$src1, $src2}", []>, NotMemoryFoldable;
def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst1, GR16:$dst2),
(ins GR16:$src1, GR16:$src2),
"xchg{w}\t{$src2, $src1|$src1, $src2}", []>,
OpSize16, NotMemoryFoldable;
def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst1, GR32:$dst2),
(ins GR32:$src1, GR32:$src2),
"xchg{l}\t{$src2, $src1|$src1, $src2}", []>,
OpSize32, NotMemoryFoldable;
def XCHG64rr : RI<0x87, MRMSrcReg, (outs GR64:$dst1, GR64:$dst2),
(ins GR64:$src1 ,GR64:$src2),
"xchg{q}\t{$src2, $src1|$src1, $src2}", []>, NotMemoryFoldable;
}
// Swap between EAX and other registers.
let Constraints = "$src = $dst", hasSideEffects = 0 in {
let Uses = [AX], Defs = [AX] in
def XCHG16ar : I<0x90, AddRegFrm, (outs GR16:$dst), (ins GR16:$src),
"xchg{w}\t{$src, %ax|ax, $src}", []>, OpSize16;
let Uses = [EAX], Defs = [EAX] in
def XCHG32ar : I<0x90, AddRegFrm, (outs GR32:$dst), (ins GR32:$src),
"xchg{l}\t{$src, %eax|eax, $src}", []>, OpSize32;
let Uses = [RAX], Defs = [RAX] in
def XCHG64ar : RI<0x90, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
"xchg{q}\t{$src, %rax|rax, $src}", []>;
}
} // SchedRW
let hasSideEffects = 0, Constraints = "$src1 = $dst1, $src2 = $dst2",
Defs = [EFLAGS], SchedRW = [WriteXCHG] in {
def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst1, GR8:$dst2),
(ins GR8:$src1, GR8:$src2),
"xadd{b}\t{$src2, $src1|$src1, $src2}", []>, TB;
def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst1, GR16:$dst2),
(ins GR16:$src1, GR16:$src2),
"xadd{w}\t{$src2, $src1|$src1, $src2}", []>, TB, OpSize16;
def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst1, GR32:$dst2),
(ins GR32:$src1, GR32:$src2),
"xadd{l}\t{$src2, $src1|$src1, $src2}", []>, TB, OpSize32;
def XADD64rr : RI<0xC1, MRMDestReg, (outs GR64:$dst1, GR64:$dst2),
(ins GR64:$src1, GR64:$src2),
"xadd{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
} // SchedRW
let mayLoad = 1, mayStore = 1, hasSideEffects = 0, Constraints = "$val = $dst",
Defs = [EFLAGS], SchedRW = [WriteALULd, WriteRMW] in {
def XADD8rm : I<0xC0, MRMSrcMem, (outs GR8:$dst),
(ins GR8:$val, i8mem:$ptr),
"xadd{b}\t{$val, $ptr|$ptr, $val}", []>, TB;
def XADD16rm : I<0xC1, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$val, i16mem:$ptr),
"xadd{w}\t{$val, $ptr|$ptr, $val}", []>, TB,
OpSize16;
def XADD32rm : I<0xC1, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$val, i32mem:$ptr),
"xadd{l}\t{$val, $ptr|$ptr, $val}", []>, TB,
OpSize32;
def XADD64rm : RI<0xC1, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$val, i64mem:$ptr),
"xadd{q}\t{$val, $ptr|$ptr, $val}", []>, TB;
}
let SchedRW = [WriteCMPXCHG], hasSideEffects = 0 in {
let Defs = [AL, EFLAGS], Uses = [AL] in
def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
"cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB,
NotMemoryFoldable;
let Defs = [AX, EFLAGS], Uses = [AX] in
def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16,
NotMemoryFoldable;
let Defs = [EAX, EFLAGS], Uses = [EAX] in
def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32,
NotMemoryFoldable;
let Defs = [RAX, EFLAGS], Uses = [RAX] in
def CMPXCHG64rr : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB,
NotMemoryFoldable;
} // SchedRW, hasSideEffects
let SchedRW = [WriteCMPXCHGRMW], mayLoad = 1, mayStore = 1,
hasSideEffects = 0 in {
let Defs = [AL, EFLAGS], Uses = [AL] in
def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
"cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB,
NotMemoryFoldable;
let Defs = [AX, EFLAGS], Uses = [AX] in
def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16,
NotMemoryFoldable;
let Defs = [EAX, EFLAGS], Uses = [EAX] in
def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32,
NotMemoryFoldable;
let Defs = [RAX, EFLAGS], Uses = [RAX] in
def CMPXCHG64rm : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB,
NotMemoryFoldable;
let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in
def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst),
"cmpxchg8b\t$dst", []>, TB, Requires<[HasCmpxchg8b]>;
let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in
// NOTE: In64BitMode check needed for the AssemblerPredicate.
def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst),
"cmpxchg16b\t$dst", []>,
TB, Requires<[HasCmpxchg16b,In64BitMode]>;
} // SchedRW, mayLoad, mayStore, hasSideEffects
// Lock instruction prefix
let SchedRW = [WriteMicrocoded] in
def LOCK_PREFIX : I<0xF0, PrefixByte, (outs), (ins), "lock", []>;
let SchedRW = [WriteNop] in {
// Rex64 instruction prefix
def REX64_PREFIX : I<0x48, PrefixByte, (outs), (ins), "rex64", []>,
Requires<[In64BitMode]>;
// Data16 instruction prefix
def DATA16_PREFIX : I<0x66, PrefixByte, (outs), (ins), "data16", []>;
} // SchedRW
// Repeat string operation instruction prefixes
let Defs = [ECX], Uses = [ECX,DF], SchedRW = [WriteMicrocoded] in {
// Repeat (used with INS, OUTS, MOVS, LODS and STOS)
def REP_PREFIX : I<0xF3, PrefixByte, (outs), (ins), "rep", []>;
// Repeat while not equal (used with CMPS and SCAS)
def REPNE_PREFIX : I<0xF2, PrefixByte, (outs), (ins), "repne", []>;
}
// String manipulation instructions
let SchedRW = [WriteMicrocoded] in {
let Defs = [AL,ESI], Uses = [ESI,DF] in