blob: 7ed05fd0331dc1074112c77086f5d7febbafe438 [file] [log] [blame]
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "x86-isel"
STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
cl::desc("Enable setting constant bits to reduce size of mask immediates"),
cl::Hidden);
static cl::opt<bool> EnablePromoteAnyextLoad(
"x86-promote-anyext-load", cl::init(true),
cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
extern cl::opt<bool> IndirectBranchTracking;
//===----------------------------------------------------------------------===//
// Pattern Matcher Implementation
//===----------------------------------------------------------------------===//
namespace {
/// This corresponds to X86AddressMode, but uses SDValue's instead of register
/// numbers for the leaves of the matched tree.
struct X86ISelAddressMode {
enum {
RegBase,
FrameIndexBase
} BaseType;
// This is really a union, discriminated by BaseType!
SDValue Base_Reg;
int Base_FrameIndex;
unsigned Scale;
SDValue IndexReg;
int32_t Disp;
SDValue Segment;
const GlobalValue *GV;
const Constant *CP;
const BlockAddress *BlockAddr;
const char *ES;
MCSymbol *MCSym;
int JT;
Align Alignment; // CP alignment.
unsigned char SymbolFlags; // X86II::MO_*
bool NegateIndex = false;
X86ISelAddressMode()
: BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
MCSym(nullptr), JT(-1), SymbolFlags(X86II::MO_NO_FLAG) {}
bool hasSymbolicDisplacement() const {
return GV != nullptr || CP != nullptr || ES != nullptr ||
MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
}
bool hasBaseOrIndexReg() const {
return BaseType == FrameIndexBase ||
IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
}
/// Return true if this addressing mode is already RIP-relative.
bool isRIPRelative() const {
if (BaseType != RegBase) return false;
if (RegisterSDNode *RegNode =
dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
return RegNode->getReg() == X86::RIP;
return false;
}
void setBaseReg(SDValue Reg) {
BaseType = RegBase;
Base_Reg = Reg;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump(SelectionDAG *DAG = nullptr) {
dbgs() << "X86ISelAddressMode " << this << '\n';
dbgs() << "Base_Reg ";
if (Base_Reg.getNode())
Base_Reg.getNode()->dump(DAG);
else
dbgs() << "nul\n";
if (BaseType == FrameIndexBase)
dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
dbgs() << " Scale " << Scale << '\n'
<< "IndexReg ";
if (NegateIndex)
dbgs() << "negate ";
if (IndexReg.getNode())
IndexReg.getNode()->dump(DAG);
else
dbgs() << "nul\n";
dbgs() << " Disp " << Disp << '\n'
<< "GV ";
if (GV)
GV->dump();
else
dbgs() << "nul";
dbgs() << " CP ";
if (CP)
CP->dump();
else
dbgs() << "nul";
dbgs() << '\n'
<< "ES ";
if (ES)
dbgs() << ES;
else
dbgs() << "nul";
dbgs() << " MCSym ";
if (MCSym)
dbgs() << MCSym;
else
dbgs() << "nul";
dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
}
#endif
};
}
namespace {
//===--------------------------------------------------------------------===//
/// ISel - X86-specific code to select X86 machine instructions for
/// SelectionDAG operations.
///
class X86DAGToDAGISel final : public SelectionDAGISel {
/// Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
/// If true, selector should try to optimize for minimum code size.
bool OptForMinSize;
/// Disable direct TLS access through segment registers.
bool IndirectTlsSegRefs;
public:
explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
OptForMinSize(false), IndirectTlsSegRefs(false) {}
StringRef getPassName() const override {
return "X86 DAG->DAG Instruction Selection";
}
bool runOnMachineFunction(MachineFunction &MF) override {
// Reset the subtarget each time through.
Subtarget = &MF.getSubtarget<X86Subtarget>();
IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
"indirect-tls-seg-refs");
// OptFor[Min]Size are used in pattern predicates that isel is matching.
OptForMinSize = MF.getFunction().hasMinSize();
assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
"OptForMinSize implies OptForSize");
SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
void emitFunctionEntryCode() override;
bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
void PreprocessISelDAG() override;
void PostprocessISelDAG() override;
// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"
private:
void Select(SDNode *N) override;
bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
bool AllowSegmentRegForX32 = false);
bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
bool matchAddress(SDValue N, X86ISelAddressMode &AM);
bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
unsigned Depth);
bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
unsigned Depth);
bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
SDValue ScaleOp, SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp, SDValue &Segment);
bool selectMOV64Imm32(SDValue N, SDValue &Imm);
bool selectLEAAddr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectLEA64_32Addr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectTLSADDRAddr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectRelocImm(SDValue N, SDValue &Op);
bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment);
// Convenience method where P is also root.
bool tryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
}
bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool isProfitableToFormMaskedOp(SDNode *N) const;
/// Implement addressing mode selection for inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
void emitSpecialCodeForMain();
inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
MVT VT, SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
Base = CurDAG->getTargetFrameIndex(
AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
else if (AM.Base_Reg.getNode())
Base = AM.Base_Reg;
else
Base = CurDAG->getRegister(0, VT);
Scale = getI8Imm(AM.Scale, DL);
// Negate the index if needed.
if (AM.NegateIndex) {
unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
AM.IndexReg), 0);
AM.IndexReg = Neg;
}
if (AM.IndexReg.getNode())
Index = AM.IndexReg;
else
Index = CurDAG->getRegister(0, VT);
// These are 32-bit even in 64-bit mode since RIP-relative offset
// is 32-bit.
if (AM.GV)
Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
MVT::i32, AM.Disp,
AM.SymbolFlags);
else if (AM.CP)
Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
AM.Disp, AM.SymbolFlags);
else if (AM.ES) {
assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
} else if (AM.MCSym) {
assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
assert(AM.SymbolFlags == 0 && "oo");
Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
} else if (AM.JT != -1) {
assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
} else if (AM.BlockAddr)
Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
AM.SymbolFlags);
else
Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
if (AM.Segment.getNode())
Segment = AM.Segment;
else
Segment = CurDAG->getRegister(0, MVT::i16);
}
// Utility function to determine whether we should avoid selecting
// immediate forms of instructions for better code size or not.
// At a high level, we'd like to avoid such instructions when
// we have similar constants used within the same basic block
// that can be kept in a register.
//
bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
uint32_t UseCount = 0;
// Do not want to hoist if we're not optimizing for size.
// TODO: We'd like to remove this restriction.
// See the comment in X86InstrInfo.td for more info.
if (!CurDAG->shouldOptForSize())
return false;
// Walk all the users of the immediate.
for (const SDNode *User : N->uses()) {
if (UseCount >= 2)
break;
// This user is already selected. Count it as a legitimate use and
// move on.
if (User->isMachineOpcode()) {
UseCount++;
continue;
}
// We want to count stores of immediates as real uses.
if (User->getOpcode() == ISD::STORE &&
User->getOperand(1).getNode() == N) {
UseCount++;
continue;
}
// We don't currently match users that have > 2 operands (except
// for stores, which are handled above)
// Those instruction won't match in ISEL, for now, and would
// be counted incorrectly.
// This may change in the future as we add additional instruction
// types.
if (User->getNumOperands() != 2)
continue;
// If this is a sign-extended 8-bit integer immediate used in an ALU
// instruction, there is probably an opcode encoding to save space.
auto *C = dyn_cast<ConstantSDNode>(N);
if (C && isInt<8>(C->getSExtValue()))
continue;
// Immediates that are used for offsets as part of stack
// manipulation should be left alone. These are typically
// used to indicate SP offsets for argument passing and
// will get pulled into stores/pushes (implicitly).
if (User->getOpcode() == X86ISD::ADD ||
User->getOpcode() == ISD::ADD ||
User->getOpcode() == X86ISD::SUB ||
User->getOpcode() == ISD::SUB) {
// Find the other operand of the add/sub.
SDValue OtherOp = User->getOperand(0);
if (OtherOp.getNode() == N)
OtherOp = User->getOperand(1);
// Don't count if the other operand is SP.
RegisterSDNode *RegNode;
if (OtherOp->getOpcode() == ISD::CopyFromReg &&
(RegNode = dyn_cast_or_null<RegisterSDNode>(
OtherOp->getOperand(1).getNode())))
if ((RegNode->getReg() == X86::ESP) ||
(RegNode->getReg() == X86::RSP))
continue;
}
// ... otherwise, count this and move on.
UseCount++;
}
// If we have more than 1 use, then recommend for hoisting.
return (UseCount > 1);
}
/// Return a target constant with the specified value of type i8.
inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
}
/// Return a target constant with the specified value, of type i32.
inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
}
/// Return a target constant with the specified value, of type i64.
inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
}
SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
const SDLoc &DL) {
assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
uint64_t Index = N->getConstantOperandVal(1);
MVT VecVT = N->getOperand(0).getSimpleValueType();
return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
}
SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
const SDLoc &DL) {
assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
uint64_t Index = N->getConstantOperandVal(2);
MVT VecVT = N->getSimpleValueType(0);
return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
}
SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
const SDLoc &DL) {
assert(VecWidth == 128 && "Unexpected vector width");
uint64_t Index = N->getConstantOperandVal(2);
MVT VecVT = N->getSimpleValueType(0);
uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
// vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
// vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
}
// Helper to detect unneeded and instructions on shift amounts. Called
// from PatFrags in tablegen.
bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
if (Val.countTrailingOnes() >= Width)
return true;
APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
return Mask.countTrailingOnes() >= Width;
}
/// Return an SDNode that returns the value of the global base register.
/// Output instructions required to initialize the global base register,
/// if necessary.
SDNode *getGlobalBaseReg();
/// Return a reference to the TargetMachine, casted to the target-specific
/// type.
const X86TargetMachine &getTargetMachine() const {
return static_cast<const X86TargetMachine &>(TM);
}
/// Return a reference to the TargetInstrInfo, casted to the target-specific
/// type.
const X86InstrInfo *getInstrInfo() const {
return Subtarget->getInstrInfo();
}
/// Address-mode matching performs shift-of-and to and-of-shift
/// reassociation in order to expose more scaled addressing
/// opportunities.
bool ComplexPatternFuncMutatesDAG() const override {
return true;
}
bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
// Indicates we should prefer to use a non-temporal load for this load.
bool useNonTemporalLoad(LoadSDNode *N) const {
if (!N->isNonTemporal())
return false;
unsigned StoreSize = N->getMemoryVT().getStoreSize();
if (N->getAlignment() < StoreSize)
return false;
switch (StoreSize) {
default: llvm_unreachable("Unsupported store size");
case 4:
case 8:
return false;
case 16:
return Subtarget->hasSSE41();
case 32:
return Subtarget->hasAVX2();
case 64:
return Subtarget->hasAVX512();
}
}
bool foldLoadStoreIntoMemOperand(SDNode *Node);
MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
bool matchBitExtract(SDNode *Node);
bool shrinkAndImmediate(SDNode *N);
bool isMaskZeroExtended(SDNode *N) const;
bool tryShiftAmountMod(SDNode *N);
bool tryShrinkShlLogicImm(SDNode *N);
bool tryVPTERNLOG(SDNode *N);
bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
SDNode *ParentC, SDValue A, SDValue B, SDValue C,
uint8_t Imm);
bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
bool tryMatchBitSelect(SDNode *N);
MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
const SDLoc &dl, MVT VT, SDNode *Node);
MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
const SDLoc &dl, MVT VT, SDNode *Node,
SDValue &InFlag);
bool tryOptimizeRem8Extend(SDNode *N);
bool onlyUsesZeroFlag(SDValue Flags) const;
bool hasNoSignFlagUses(SDValue Flags) const;
bool hasNoCarryFlagUses(SDValue Flags) const;
};
}
// Returns true if this masked compare can be implemented legally with this
// type.
static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
unsigned Opcode = N->getOpcode();
if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
// We can get 256-bit 8 element types here without VLX being enabled. When
// this happens we will use 512-bit operations and the mask will not be
// zero extended.
EVT OpVT = N->getOperand(0).getValueType();
// The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
// second operand.
if (Opcode == X86ISD::STRICT_CMPM)
OpVT = N->getOperand(1).getValueType();
if (OpVT.is256BitVector() || OpVT.is128BitVector())
return Subtarget->hasVLX();
return true;
}
// Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
Opcode == X86ISD::FSETCCM_SAE)
return true;
return false;
}
// Returns true if we can assume the writer of the mask has zero extended it
// for us.
bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
// If this is an AND, check if we have a compare on either side. As long as
// one side guarantees the mask is zero extended, the AND will preserve those
// zeros.
if (N->getOpcode() == ISD::AND)
return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
return isLegalMaskCompare(N, Subtarget);
}
bool
X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
if (OptLevel == CodeGenOpt::None) return false;
if (!N.hasOneUse())
return false;
if (N.getOpcode() != ISD::LOAD)
return true;
// Don't fold non-temporal loads if we have an instruction for them.
if (useNonTemporalLoad(cast<LoadSDNode>(N)))
return false;
// If N is a load, do additional profitability checks.
if (U == Root) {
switch (U->getOpcode()) {
default: break;
case X86ISD::ADD:
case X86ISD::ADC:
case X86ISD::SUB:
case X86ISD::SBB:
case X86ISD::AND:
case X86ISD::XOR:
case X86ISD::OR:
case ISD::ADD:
case ISD::ADDCARRY:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
SDValue Op1 = U->getOperand(1);
// If the other operand is a 8-bit immediate we should fold the immediate
// instead. This reduces code size.
// e.g.
// movl 4(%esp), %eax
// addl $4, %eax
// vs.
// movl $4, %eax
// addl 4(%esp), %eax
// The former is 2 bytes shorter. In case where the increment is 1, then
// the saving can be 4 bytes (by using incl %eax).
if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
if (Imm->getAPIntValue().isSignedIntN(8))
return false;
// If this is a 64-bit AND with an immediate that fits in 32-bits,
// prefer using the smaller and over folding the load. This is needed to
// make sure immediates created by shrinkAndImmediate are always folded.
// Ideally we would narrow the load during DAG combine and get the
// best of both worlds.
if (U->getOpcode() == ISD::AND &&
Imm->getAPIntValue().getBitWidth() == 64 &&
Imm->getAPIntValue().isIntN(32))
return false;
// If this really a zext_inreg that can be represented with a movzx
// instruction, prefer that.
// TODO: We could shrink the load and fold if it is non-volatile.
if (U->getOpcode() == ISD::AND &&
(Imm->getAPIntValue() == UINT8_MAX ||
Imm->getAPIntValue() == UINT16_MAX ||
Imm->getAPIntValue() == UINT32_MAX))
return false;
// ADD/SUB with can negate the immediate and use the opposite operation
// to fit 128 into a sign extended 8 bit immediate.
if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
(-Imm->getAPIntValue()).isSignedIntN(8))
return false;
if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
(-Imm->getAPIntValue()).isSignedIntN(8) &&
hasNoCarryFlagUses(SDValue(U, 1)))
return false;
}
// If the other operand is a TLS address, we should fold it instead.
// This produces
// movl %gs:0, %eax
// leal i@NTPOFF(%eax), %eax
// instead of
// movl $i@NTPOFF, %eax
// addl %gs:0, %eax
// if the block also has an access to a second TLS address this will save
// a load.
// FIXME: This is probably also true for non-TLS addresses.
if (Op1.getOpcode() == X86ISD::Wrapper) {
SDValue Val = Op1.getOperand(0);
if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
return false;
}
// Don't fold load if this matches the BTS/BTR/BTC patterns.
// BTS: (or X, (shl 1, n))
// BTR: (and X, (rotl -2, n))
// BTC: (xor X, (shl 1, n))
if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
if (U->getOperand(0).getOpcode() == ISD::SHL &&
isOneConstant(U->getOperand(0).getOperand(0)))
return false;
if (U->getOperand(1).getOpcode() == ISD::SHL &&
isOneConstant(U->getOperand(1).getOperand(0)))
return false;
}
if (U->getOpcode() == ISD::AND) {
SDValue U0 = U->getOperand(0);
SDValue U1 = U->getOperand(1);
if (U0.getOpcode() == ISD::ROTL) {
auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
if (C && C->getSExtValue() == -2)
return false;
}
if (U1.getOpcode() == ISD::ROTL) {
auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
if (C && C->getSExtValue() == -2)
return false;
}
}
break;
}
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
// Don't fold a load into a shift by immediate. The BMI2 instructions
// support folding a load, but not an immediate. The legacy instructions
// support folding an immediate, but can't fold a load. Folding an
// immediate is preferable to folding a load.
if (isa<ConstantSDNode>(U->getOperand(1)))
return false;
break;
}
}
// Prevent folding a load if this can implemented with an insert_subreg or
// a move that implicitly zeroes.
if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
isNullConstant(Root->getOperand(2)) &&
(Root->getOperand(0).isUndef() ||
ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
return false;
return true;
}
// Indicates it is profitable to form an AVX512 masked operation. Returning
// false will favor a masked register-register masked move or vblendm and the
// operation will be selected separately.
bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
assert(
(N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
"Unexpected opcode!");
// If the operation has additional users, the operation will be duplicated.
// Check the use count to prevent that.
// FIXME: Are there cheap opcodes we might want to duplicate?
return N->getOperand(1).hasOneUse();
}
/// Replace the original chain operand of the call with
/// load's chain operand and move load below the call's chain operand.
static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
SDValue Call, SDValue OrigChain) {
SmallVector<SDValue, 8> Ops;
SDValue Chain = OrigChain.getOperand(0);
if (Chain.getNode() == Load.getNode())
Ops.push_back(Load.getOperand(0));
else {
assert(Chain.getOpcode() == ISD::TokenFactor &&
"Unexpected chain operand");
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
if (Chain.getOperand(i).getNode() == Load.getNode())
Ops.push_back(Load.getOperand(0));
else
Ops.push_back(Chain.getOperand(i));
SDValue NewChain =
CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
Ops.clear();
Ops.push_back(NewChain);
}
Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
Load.getOperand(1), Load.getOperand(2));
Ops.clear();
Ops.push_back(SDValue(Load.getNode(), 1));
Ops.append(Call->op_begin() + 1, Call->op_end());
CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
}
/// Return true if call address is a load and it can be
/// moved below CALLSEQ_START and the chains leading up to the call.
/// Return the CALLSEQ_START by reference as a second output.
/// In the case of a tail call, there isn't a callseq node between the call
/// chain and the load.
static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
// The transformation is somewhat dangerous if the call's chain was glued to
// the call. After MoveBelowOrigChain the load is moved between the call and
// the chain, this can create a cycle if the load is not folded. So it is
// *really* important that we are sure the load will be folded.
if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
return false;
LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
if (!LD ||
!LD->isSimple() ||
LD->getAddressingMode() != ISD::UNINDEXED ||
LD->getExtensionType() != ISD::NON_EXTLOAD)
return false;
// Now let's find the callseq_start.
while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
if (!Chain.hasOneUse())
return false;
Chain = Chain.getOperand(0);
}
if (!Chain.getNumOperands())
return false;
// Since we are not checking for AA here, conservatively abort if the chain
// writes to memory. It's not safe to move the callee (a load) across a store.
if (isa<MemSDNode>(Chain.getNode()) &&
cast<MemSDNode>(Chain.getNode())->writeMem())
return false;
if (Chain.getOperand(0).getNode() == Callee.getNode())
return true;
if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
Callee.getValue(1).hasOneUse())
return true;
return false;
}
static bool isEndbrImm64(uint64_t Imm) {
// There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
// i.g: 0xF3660F1EFA, 0xF3670F1EFA
if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
return false;
uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
0x65, 0x66, 0x67, 0xf0, 0xf2};
int i = 24; // 24bit 0x0F1EFA has matched
while (i < 64) {
uint8_t Byte = (Imm >> i) & 0xFF;
if (Byte == 0xF3)
return true;
if (!llvm::is_contained(OptionalPrefixBytes, Byte))
return false;
i += 8;
}
return false;
}
void X86DAGToDAGISel::PreprocessISelDAG() {
bool MadeChange = false;
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
E = CurDAG->allnodes_end(); I != E; ) {
SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
// This is for CET enhancement.
//
// ENDBR32 and ENDBR64 have specific opcodes:
// ENDBR32: F3 0F 1E FB
// ENDBR64: F3 0F 1E FA
// And we want that attackers won’t find unintended ENDBR32/64
// opcode matches in the binary
// Here’s an example:
// If the compiler had to generate asm for the following code:
// a = 0xF30F1EFA
// it could, for example, generate:
// mov 0xF30F1EFA, dword ptr[a]
// In such a case, the binary would include a gadget that starts
// with a fake ENDBR64 opcode. Therefore, we split such generation
// into multiple operations, let it not shows in the binary
if (N->getOpcode() == ISD::Constant) {
MVT VT = N->getSimpleValueType(0);
int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
if (Imm == EndbrImm || isEndbrImm64(Imm)) {
// Check that the cf-protection-branch is enabled.
Metadata *CFProtectionBranch =
MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
if (CFProtectionBranch || IndirectBranchTracking) {
SDLoc dl(N);
SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
Complement = CurDAG->getNOT(dl, Complement, VT);
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
++I;
MadeChange = true;
continue;
}
}
}
// If this is a target specific AND node with no flag usages, turn it back
// into ISD::AND to enable test instruction matching.
if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
MadeChange = true;
continue;
}
// Convert vector increment or decrement to sub/add with an all-ones
// constant:
// add X, <1, 1...> --> sub X, <-1, -1...>
// sub X, <1, 1...> --> add X, <-1, -1...>
// The all-ones vector constant can be materialized using a pcmpeq
// instruction that is commonly recognized as an idiom (has no register
// dependency), so that's better/smaller than loading a splat 1 constant.
//
// But don't do this if it would inhibit a potentially profitable load
// folding opportunity for the other operand. That only occurs with the
// intersection of:
// (1) The other operand (op0) is load foldable.
// (2) The op is an add (otherwise, we are *creating* an add and can still
// load fold the other op).
// (3) The target has AVX (otherwise, we have a destructive add and can't
// load fold the other op without killing the constant op).
// (4) The constant 1 vector has multiple uses (so it is profitable to load
// into a register anyway).
auto mayPreventLoadFold = [&]() {
return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
!N->getOperand(1).hasOneUse();
};
if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
APInt SplatVal;
if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
SplatVal.isOne()) {
SDLoc DL(N);
MVT VT = N->getSimpleValueType(0);
unsigned NumElts = VT.getSizeInBits() / 32;
SDValue AllOnes =
CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
AllOnes = CurDAG->getBitcast(VT, AllOnes);
unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
SDValue Res =
CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
--I;
CurDAG->ReplaceAllUsesWith(N, Res.getNode());
++I;
MadeChange = true;
continue;
}
}
switch (N->getOpcode()) {
case X86ISD::VBROADCAST: {
MVT VT = N->getSimpleValueType(0);
// Emulate v32i16/v64i8 broadcast without BWI.
if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
SDLoc dl(N);
SDValue NarrowBCast =
CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
SDValue Res =
CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
unsigned Index = VT == MVT::v32i16 ? 16 : 32;
Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
CurDAG->getIntPtrConstant(Index, dl));
--I;
CurDAG->ReplaceAllUsesWith(N, Res.getNode());
++I;
MadeChange = true;
continue;
}
break;
}
case X86ISD::VBROADCAST_LOAD: {
MVT VT = N->getSimpleValueType(0);
// Emulate v32i16/v64i8 broadcast without BWI.
if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
auto *MemNode = cast<MemSDNode>(N);
SDLoc dl(N);
SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
MemNode->getMemOperand());
SDValue Res =
CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
unsigned Index = VT == MVT::v32i16 ? 16 : 32;
Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
CurDAG->getIntPtrConstant(Index, dl));
--I;
SDValue To[] = {Res, NarrowBCast.getValue(1)};
CurDAG->ReplaceAllUsesWith(N, To);
++I;
MadeChange = true;
continue;
}
break;
}
case ISD::VSELECT: {
// Replace VSELECT with non-mask conditions with with BLENDV.
if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
break;
assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
SDValue Blendv =
CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1), N->getOperand(2));
--I;
CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
++I;
MadeChange = true;
continue;
}
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT: {
// Replace vector fp_to_s/uint with their X86 specific equivalent so we
// don't need 2 sets of patterns.
if (!N->getSimpleValueType(0).isVector())
break;
unsigned NewOpc;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::FP_ROUND: NewOpc = X86ISD::VFPROUND; break;
case ISD::STRICT_FP_ROUND: NewOpc = X86ISD::STRICT_VFPROUND; break;
case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break;
case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break;
}
SDValue Res;
if (N->isStrictFPOpcode())
Res =
CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
{N->getOperand(0), N->getOperand(1)});
else
Res =
CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
N->getOperand(0));
--I;
CurDAG->ReplaceAllUsesWith(N, Res.getNode());
++I;
MadeChange = true;
continue;
}
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: {
// Replace vector shifts with their X86 specific equivalent so we don't
// need 2 sets of patterns.
if (!N->getValueType(0).isVector())
break;
unsigned NewOpc;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
}
SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
MadeChange = true;
continue;
}
case ISD::ANY_EXTEND:
case ISD::ANY_EXTEND_VECTOR_INREG: {
// Replace vector any extend with the zero extend equivalents so we don't
// need 2 sets of patterns. Ignore vXi1 extensions.
if (!N->getValueType(0).isVector())
break;
unsigned NewOpc;
if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
assert(N->getOpcode() == ISD::ANY_EXTEND &&
"Unexpected opcode for mask vector!");
NewOpc = ISD::SIGN_EXTEND;
} else {
NewOpc = N->getOpcode() == ISD::ANY_EXTEND
? ISD::ZERO_EXTEND
: ISD::ZERO_EXTEND_VECTOR_INREG;
}
SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
N->getOperand(0));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
MadeChange = true;
continue;
}
case ISD::FCEIL:
case ISD::STRICT_FCEIL:
case ISD::FFLOOR:
case ISD::STRICT_FFLOOR:
case ISD::FTRUNC:
case ISD::STRICT_FTRUNC:
case ISD::FROUNDEVEN:
case ISD::STRICT_FROUNDEVEN:
case ISD::FNEARBYINT:
case ISD::STRICT_FNEARBYINT:
case ISD::FRINT:
case ISD::STRICT_FRINT: {
// Replace fp rounding with their X86 specific equivalent so we don't
// need 2 sets of patterns.
unsigned Imm;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::STRICT_FCEIL:
case ISD::FCEIL: Imm = 0xA; break;
case ISD::STRICT_FFLOOR:
case ISD::FFLOOR: Imm = 0x9; break;
case ISD::STRICT_FTRUNC:
case ISD::FTRUNC: Imm = 0xB; break;
case ISD::STRICT_FROUNDEVEN:
case ISD::FROUNDEVEN: Imm = 0x8; break;
case ISD::STRICT_FNEARBYINT:
case ISD::FNEARBYINT: Imm = 0xC; break;
case ISD::STRICT_FRINT:
case ISD::FRINT: Imm = 0x4; break;
}
SDLoc dl(N);
bool IsStrict = N->isStrictFPOpcode();
SDValue Res;
if (IsStrict)
Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
{N->getValueType(0), MVT::Other},
{N->getOperand(0), N->getOperand(1),
CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
else
Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
N->getOperand(0),
CurDAG->getTargetConstant(Imm, dl, MVT::i32));
--I;
CurDAG->ReplaceAllUsesWith(N, Res.getNode());
++I;
MadeChange = true;
continue;
}
case X86ISD::FANDN:
case X86ISD::FAND:
case X86ISD::FOR:
case X86ISD::FXOR: {
// Widen scalar fp logic ops to vector to reduce isel patterns.
// FIXME: Can we do this during lowering/combine.
MVT VT = N->getSimpleValueType(0);
if (VT.isVector() || VT == MVT::f128)
break;
MVT VecVT = VT == MVT::f64 ? MVT::v2f64
: VT == MVT::f32 ? MVT::v4f32
: MVT::v8f16;
SDLoc dl(N);
SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
N->getOperand(0));
SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
N->getOperand(1));
SDValue Res;
if (Subtarget->hasSSE2()) {
EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
unsigned Opc;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
case X86ISD::FAND: Opc = ISD::AND; break;
case X86ISD::FOR: Opc = ISD::OR; break;
case X86ISD::FXOR: Opc = ISD::XOR; break;
}
Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
} else {
Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
}
Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
CurDAG->getIntPtrConstant(0, dl));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
MadeChange = true;
continue;
}
}
if (OptLevel != CodeGenOpt::None &&
// Only do this when the target can fold the load into the call or
// jmp.
!Subtarget->useIndirectThunkCalls() &&
((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
(N->getOpcode() == X86ISD::TC_RETURN &&
(Subtarget->is64Bit() ||
!getTargetMachine().isPositionIndependent())))) {
/// Also try moving call address load from outside callseq_start to just
/// before the call to allow it to be folded.
///
/// [Load chain]
/// ^
/// |
/// [Load]
/// ^ ^
/// | |
/// / \--
/// / |
///[CALLSEQ_START] |
/// ^ |
/// | |
/// [LOAD/C2Reg] |
/// | |
/// \ /
/// \ /
/// [CALL]
bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
SDValue Chain = N->getOperand(0);
SDValue Load = N->getOperand(1);
if (!isCalleeLoad(Load, Chain, HasCallSeq))
continue;
moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
++NumLoadMoved;
MadeChange = true;
continue;
}
// Lower fpround and fpextend nodes that target the FP stack to be store and
// load to the stack. This is a gross hack. We would like to simply mark
// these as being illegal, but when we do that, legalize produces these when
// it expands calls, then expands these in the same legalize pass. We would
// like dag combine to be able to hack on these between the call expansion
// and the node legalization. As such this pass basically does "really
// late" legalization of these inline with the X86 isel pass.
// FIXME: This should only happen when not compiled with -O0.
switch (N->getOpcode()) {
default: continue;
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
{
MVT SrcVT = N->getOperand(0).getSimpleValueType();
MVT DstVT = N->getSimpleValueType(0);
// If any of the sources are vectors, no fp stack involved.
if (SrcVT.isVector() || DstVT.isVector())
continue;
// If the source and destination are SSE registers, then this is a legal
// conversion that should not be lowered.
const X86TargetLowering *X86Lowering =
static_cast<const X86TargetLowering *>(TLI);
bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
if (SrcIsSSE && DstIsSSE)
continue;
if (!SrcIsSSE && !DstIsSSE) {
// If this is an FPStack extension, it is a noop.
if (N->getOpcode() == ISD::FP_EXTEND)
continue;
// If this is a value-preserving FPStack truncation, it is a noop.
if (N->getConstantOperandVal(1))
continue;
}
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
// FPStack has extload and truncstore. SSE can fold direct loads into other
// operations. Based on this, decide what we want to do.
MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
MachinePointerInfo MPI =
MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
SDLoc dl(N);
// FIXME: optimize the case where the src/dest is a load or store?
SDValue Store = CurDAG->getTruncStore(
CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
MemTmp, MPI, MemVT);
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
// extload we created. This will cause general havok on the dag because
// anything below the conversion could be folded into other existing nodes.
// To avoid invalidating 'I', back it up to the convert node.
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
break;
}
//The sequence of events for lowering STRICT_FP versions of these nodes requires
//dealing with the chain differently, as there is already a preexisting chain.
case ISD::STRICT_FP_ROUND:
case ISD::STRICT_FP_EXTEND:
{
MVT SrcVT = N->getOperand(1).getSimpleValueType();
MVT DstVT = N->getSimpleValueType(0);
// If any of the sources are vectors, no fp stack involved.
if (SrcVT.isVector() || DstVT.isVector())
continue;
// If the source and destination are SSE registers, then this is a legal
// conversion that should not be lowered.
const X86TargetLowering *X86Lowering =
static_cast<const X86TargetLowering *>(TLI);
bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
if (SrcIsSSE && DstIsSSE)
continue;
if (!SrcIsSSE && !DstIsSSE) {
// If this is an FPStack extension, it is a noop.
if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
continue;
// If this is a value-preserving FPStack truncation, it is a noop.
if (N->getConstantOperandVal(2))
continue;
}
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
// FPStack has extload and truncstore. SSE can fold direct loads into other
// operations. Based on this, decide what we want to do.
MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
MachinePointerInfo MPI =
MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
SDLoc dl(N);
// FIXME: optimize the case where the src/dest is a load or store?
//Since the operation is StrictFP, use the preexisting chain.
SDValue Store, Result;
if (!SrcIsSSE) {
SDVTList VTs = CurDAG->getVTList(MVT::Other);
SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
MPI, /*Align*/ None,
MachineMemOperand::MOStore);
if (N->getFlags().hasNoFPExcept()) {
SDNodeFlags Flags = Store->getFlags();
Flags.setNoFPExcept(true);
Store->setFlags(Flags);
}
} else {
assert(SrcVT == MemVT && "Unexpected VT!");
Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
MPI);
}
if (!DstIsSSE) {
SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
SDValue Ops[] = {Store, MemTmp};
Result = CurDAG->getMemIntrinsicNode(
X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
/*Align*/ None, MachineMemOperand::MOLoad);
if (N->getFlags().hasNoFPExcept()) {
SDNodeFlags Flags = Result->getFlags();
Flags.setNoFPExcept(true);
Result->setFlags(Flags);
}
} else {
assert(DstVT == MemVT && "Unexpected VT!");
Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
}
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
// extload we created. This will cause general havok on the dag because
// anything below the conversion could be folded into other existing nodes.
// To avoid invalidating 'I', back it up to the convert node.
--I;
CurDAG->ReplaceAllUsesWith(N, Result.getNode());
break;
}
}
// Now that we did that, the node is dead. Increment the iterator to the
// next node to process, then delete N.
++I;
MadeChange = true;
}
// Remove any dead nodes that may have been left behind.
if (MadeChange)
CurDAG->RemoveDeadNodes();
}
// Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
unsigned Opc = N->getMachineOpcode();
if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
Opc != X86::MOVSX64rr8)
return false;
SDValue N0 = N->getOperand(0);
// We need to be extracting the lower bit of an extend.
if (!N0.isMachineOpcode() ||
N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
N0.getConstantOperandVal(1) != X86::sub_8bit)
return false;
// We're looking for either a movsx or movzx to match the original opcode.
unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
: X86::MOVSX32rr8_NOREX;
SDValue N00 = N0.getOperand(0);
if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
return false;
if (Opc == X86::MOVSX64rr8) {
// If we had a sign extend from 8 to 64 bits. We still need to go from 32
// to 64.
MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
MVT::i64, N00);
ReplaceUses(N, Extend);
} else {
// Ok we can drop this extend and just use the original extend.
ReplaceUses(N, N00.getNode());
}
return true;
}
void X86DAGToDAGISel::PostprocessISelDAG() {
// Skip peepholes at -O0.
if (TM.getOptLevel() == CodeGenOpt::None)
return;
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
// Skip dead nodes and any non-machine opcodes.
if (N->use_empty() || !N->isMachineOpcode())
continue;
if (tryOptimizeRem8Extend(N)) {
MadeChange = true;
continue;
}
// Look for a TESTrr+ANDrr pattern where both operands of the test are
// the same. Rewrite to remove the AND.
unsigned Opc = N->getMachineOpcode();
if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
N->getOperand(0) == N->getOperand(1) &&
N->isOnlyUserOf(N->getOperand(0).getNode()) &&
N->getOperand(0).isMachineOpcode()) {
SDValue And = N->getOperand(0);
unsigned N0Opc = And.getMachineOpcode();
if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
MVT::i32,
And.getOperand(0),
And.getOperand(1));
ReplaceUses(N, Test);
MadeChange = true;
continue;
}
if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
unsigned NewOpc;
switch (N0Opc) {
case X86::AND8rm: NewOpc = X86::TEST8mr; break;
case X86::AND16rm: NewOpc = X86::TEST16mr; break;
case X86::AND32rm: NewOpc = X86::TEST32mr; break;
case X86::AND64rm: NewOpc = X86::TEST64mr; break;
}
// Need to swap the memory and register operand.
SDValue Ops[] = { And.getOperand(1),
And.getOperand(2),
And.getOperand(3),
And.getOperand(4),
And.getOperand(5),
And.getOperand(0),
And.getOperand(6) /* Chain */ };
MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
MVT::i32, MVT::Other, Ops);
CurDAG->setNodeMemRefs(
Test, cast<MachineSDNode>(And.getNode())->memoperands());
ReplaceUses(N, Test);
MadeChange = true;
continue;
}
}
// Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
// used. We're doing this late so we can prefer to fold the AND into masked
// comparisons. Doing that can be better for the live range of the mask
// register.
if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
N->getOperand(0) == N->getOperand(1) &&
N->isOnlyUserOf(N->getOperand(0).getNode()) &&
N->getOperand(0).isMachineOpcode() &&
onlyUsesZeroFlag(SDValue(N, 0))) {
SDValue And = N->getOperand(0);
unsigned N0Opc = And.getMachineOpcode();
// KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
// KAND instructions and KTEST use the same ISA feature.
if (N0Opc == X86::KANDBrr ||
(N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
unsigned NewOpc;
switch (Opc) {
default: llvm_unreachable("Unexpected opcode!");
case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
}
MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
MVT::i32,
And.getOperand(0),
And.getOperand(1));
ReplaceUses(N, KTest);
MadeChange = true;
continue;
}
}
// Attempt to remove vectors moves that were inserted to zero upper bits.
if (Opc != TargetOpcode::SUBREG_TO_REG)
continue;
unsigned SubRegIdx = N->getConstantOperandVal(2);
if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
continue;
SDValue Move = N->getOperand(1);
if (!Move.isMachineOpcode())
continue;
// Make sure its one of the move opcodes we recognize.
switch (Move.getMachineOpcode()) {
default:
continue;
case X86::VMOVAPDrr: case X86::VMOVUPDrr:
case X86::VMOVAPSrr: case X86::VMOVUPSrr:
case X86::VMOVDQArr: case X86::VMOVDQUrr:
case X86::VMOVAPDYrr: case X86::VMOVUPDYrr:
case X86::VMOVAPSYrr: case X86::VMOVUPSYrr:
case X86::VMOVDQAYrr: case X86::VMOVDQUYrr:
case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr:
case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr:
case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr:
case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr:
case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
break;
}
SDValue In = Move.getOperand(0);
if (!In.isMachineOpcode() ||
In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
continue;
// Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
// the SHA instructions which use a legacy encoding.
uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
(TSFlags & X86II::EncodingMask) != X86II::EVEX &&
(TSFlags & X86II::EncodingMask) != X86II::XOP)
continue;
// Producing instruction is another vector instruction. We can drop the
// move.
CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
MadeChange = true;
}
if (MadeChange)
CurDAG->RemoveDeadNodes();
}
/// Emit any code that needs to be executed only in the main function.
void X86DAGToDAGISel::emitSpecialCodeForMain() {
if (Subtarget->isTargetCygMing()) {
TargetLowering::ArgListTy Args;
auto &DL = CurDAG->getDataLayout();
TargetLowering::CallLoweringInfo CLI(*CurDAG);
CLI.setChain(CurDAG->getRoot())
.setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
std::move(Args));
const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
CurDAG->setRoot(Result.second);
}
}
void X86DAGToDAGISel::emitFunctionEntryCode() {
// If this is main, emit special code for main.
const Function &F = MF->getFunction();
if (F.hasExternalLinkage() && F.getName() == "main")
emitSpecialCodeForMain();
}
static bool isDispSafeForFrameIndex(int64_t Val) {
// On 64-bit platforms, we can run into an issue where a frame index
// includes a displacement that, when added to the explicit displacement,
// will overflow the displacement field. Assuming that the frame index
// displacement fits into a 31-bit integer (which is only slightly more
// aggressive than the current fundamental assumption that it fits into
// a 32-bit integer), a 31-bit disp should always be safe.
return isInt<31>(Val);
}
bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
X86ISelAddressMode &AM) {
// We may have already matched a displacement and the caller just added the
// symbolic displacement. So we still need to do the checks even if Offset
// is zero.
int64_t Val = AM.Disp + Offset;
// Cannot combine ExternalSymbol displacements with integer offsets.
if (Val != 0 && (AM.ES || AM.MCSym))
return true;
CodeModel::Model M = TM.getCodeModel();
if (Subtarget->is64Bit()) {
if (Val != 0 &&
!X86::isOffsetSuitableForCodeModel(Val, M,
AM.hasSymbolicDisplacement()))
return true;
// In addition to the checks required for a register base, check that
// we do not try to use an unsafe Disp with a frame index.
if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
!isDispSafeForFrameIndex(Val))
return true;
}
AM.Disp = Val;
return false;
}
bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
bool AllowSegmentRegForX32) {
SDValue Address = N->getOperand(1);
// load gs:0 -> GS segment register.
// load fs:0 -> FS segment register.
//
// This optimization is generally valid because the GNU TLS model defines that
// gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
// with 32-bit registers, as we get in ILP32 mode, those registers are first
// zero-extended to 64 bits and then added it to the base address, which gives
// unwanted results when the register holds a negative value.
// For more information see http://people.redhat.com/drepper/tls.pdf
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) {
if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
!IndirectTlsSegRefs &&
(Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
Subtarget->isTargetFuchsia())) {
if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
return true;
switch (N->getPointerInfo().getAddrSpace()) {
case X86AS::GS:
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
return false;
case X86AS::FS:
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
return false;
// Address space X86AS::SS is not handled here, because it is not used to
// address TLS areas.
}
}
}
return true;
}
/// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
/// mode. These wrap things that will resolve down into a symbol reference.
/// If no match is possible, this returns true, otherwise it returns false.
bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
// If the addressing mode already has a symbol as the displacement, we can
// never match another symbol.
if (AM.hasSymbolicDisplacement())
return true;
bool IsRIPRelTLS = false;
bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
if (IsRIPRel) {
SDValue Val = N.getOperand(0);
if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
IsRIPRelTLS = true;
}
// We can't use an addressing mode in the 64-bit large code model.
// Global TLS addressing is an exception. In the medium code model,
// we use can use a mode when RIP wrappers are present.
// That signifies access to globals that are known to be "near",
// such as the GOT itself.
CodeModel::Model M = TM.getCodeModel();
if (Subtarget->is64Bit() &&
((M == CodeModel::Large && !IsRIPRelTLS) ||
(M == CodeModel::Medium && !IsRIPRel)))
return true;
// Base and index reg must be 0 in order to use %rip as base.
if (IsRIPRel && AM.hasBaseOrIndexReg())
return true;
// Make a local copy in case we can't do this fold.
X86ISelAddressMode Backup = AM;
int64_t Offset = 0;
SDValue N0 = N.getOperand(0);
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
AM.GV = G->getGlobal();
AM.SymbolFlags = G->getTargetFlags();
Offset = G->getOffset();
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
AM.CP = CP->getConstVal();
AM.Alignment = CP->getAlign();
AM.SymbolFlags = CP->getTargetFlags();
Offset = CP->getOffset();
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
AM.ES = S->getSymbol();
AM.SymbolFlags = S->getTargetFlags();
} else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
AM.MCSym = S->getMCSymbol();
} else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
AM.JT = J->getIndex();
AM.SymbolFlags = J->getTargetFlags();
} else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
AM.BlockAddr = BA->getBlockAddress();
AM.SymbolFlags = BA->getTargetFlags();
Offset = BA->getOffset();
} else
llvm_unreachable("Unhandled symbol reference node.");
if (foldOffsetIntoAddress(Offset, AM)) {
AM = Backup;
return true;
}
if (IsRIPRel)
AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
// Commit the changes now that we know this fold is safe.
return false;
}
/// Add the specified node to the specified addressing mode, returning true if
/// it cannot be done. This just pattern matches for the addressing mode.
bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
if (matchAddressRecursively(N, AM, 0))
return true;
// Post-processing: Make a second attempt to fold a load, if we now know
// that there will not be any other register. This is only performed for
// 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
// any foldable load the first time.
if (Subtarget->isTarget64BitILP32() &&
AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
SDValue Save_Base_Reg = AM.Base_Reg;
if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
AM.Base_Reg = SDValue();
if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
AM.Base_Reg = Save_Base_Reg;
}
}
// Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
// a smaller encoding and avoids a scaled-index.
if (AM.Scale == 2 &&
AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr) {
AM.Base_Reg = AM.IndexReg;
AM.Scale = 1;
}
// Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
// because it has a smaller encoding.
// TODO: Which other code models can use this?
switch (TM.getCodeModel()) {
default: break;
case CodeModel::Small:
case CodeModel::Kernel:
if (Subtarget->is64Bit() &&
AM.Scale == 1 &&
AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr &&
AM.IndexReg.getNode() == nullptr &&
AM.SymbolFlags == X86II::MO_NO_FLAG &&
AM.hasSymbolicDisplacement())
AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
break;
}
return false;
}
bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
unsigned Depth) {
// Add an artificial use to this node so that we can keep track of
// it if it gets CSE'd with a different node.
HandleSDNode Handle(N);
X86ISelAddressMode Backup = AM;
if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
return false;
AM = Backup;
// Try again after commutating the operands.
if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
Depth + 1) &&
!matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
return false;
AM = Backup;
// If we couldn't fold both operands into the address at the same time,
// see if we can just put each operand into a register and fold at least
// the add.
if (AM.BaseType == X86ISelAddressMode::RegBase &&
!AM.Base_Reg.getNode() &&
!AM.IndexReg.getNode()) {
N = Handle.getValue();
AM.Base_Reg = N.getOperand(0);
AM.IndexReg = N.getOperand(1);
AM.Scale = 1;
return false;
}
N = Handle.getValue();
return true;
}
// Insert a node into the DAG at least before the Pos node's position. This
// will reposition the node as needed, and will assign it a node ID that is <=
// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
// IDs! The selection DAG must no longer depend on their uniqueness when this
// is used.
static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
if (N->getNodeId() == -1 ||
(SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
DAG.RepositionNode(Pos->getIterator(), N.getNode());
// Mark Node as invalid for pruning as after this it may be a successor to a
// selected node but otherwise be in the same position of Pos.
// Conservatively mark it with the same -abs(Id) to assure node id
// invariant is preserved.
N->setNodeId(Pos->getNodeId());
SelectionDAGISel::InvalidateNodeId(N.getNode());
}
}
// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
// safe. This allows us to convert the shift and and into an h-register
// extract and a scaled index. Returns false if the simplification is
// performed.
static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
uint64_t Mask,
SDValue Shift, SDValue X,
X86ISelAddressMode &AM) {
if (Shift.getOpcode() != ISD::SRL ||
!isa<ConstantSDNode>(Shift.getOperand(1)) ||
!Shift.hasOneUse())
return true;
int ScaleLog = 8 - Shift.getConstantOperandVal(1);
if (ScaleLog <= 0 || ScaleLog >= 4 ||
Mask != (0xffu << ScaleLog))
return true;
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
SDValue NewMask = DAG.getConstant(0xff, DL, VT);
SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, Eight);
insertDAGNode(DAG, N, Srl);
insertDAGNode(DAG, N, NewMask);
insertDAGNode(DAG, N, And);
insertDAGNode(DAG, N, ShlCount);
insertDAGNode(DAG, N, Shl);
DAG.ReplaceAllUsesWith(N, Shl);
DAG.RemoveDeadNode(N.getNode());
AM.IndexReg = And;
AM.Scale = (1 << ScaleLog);
return false;
}
// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
// allows us to fold the shift into this addressing mode. Returns false if the
// transform succeeded.
static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
X86ISelAddressMode &AM) {
SDValue Shift = N.getOperand(0);
// Use a signed mask so that shifting right will insert sign bits. These
// bits will be removed when we shift the result left so it doesn't matter
// what we use. This might allow a smaller immediate encoding.
int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
// If we have an any_extend feeding the AND, look through it to see if there
// is a shift behind it. But only if the AND doesn't use the extended bits.
// FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
bool FoundAnyExtend = false;
if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
isUInt<32>(Mask)) {
FoundAnyExtend = true;
Shift = Shift.getOperand(0);
}
if (Shift.getOpcode() != ISD::SHL ||
!isa<ConstantSDNode>(Shift.getOperand(1)))
return true;
SDValue X = Shift.getOperand(0);
// Not likely to be profitable if either the AND or SHIFT node has more
// than one use (unless all uses are for address computation). Besides,
// isel mechanism requires their node ids to be reused.
if (!N.hasOneUse() || !Shift.hasOneUse())
return true;
// Verify that the shift amount is something we can fold.
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
return true;
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
if (FoundAnyExtend) {
SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
insertDAGNode(DAG, N, NewX);
X = NewX;
}
SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, NewMask);
insertDAGNode(DAG, N, NewAnd);
insertDAGNode(DAG, N, NewShift);
DAG.ReplaceAllUsesWith(N, NewShift);
DAG.RemoveDeadNode(N.getNode());
AM.Scale = 1 << ShiftAmt;
AM.IndexReg = NewAnd;
return false;
}
// Implement some heroics to detect shifts of masked values where the mask can
// be replaced by extending the shift and undoing that in the addressing mode
// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
// the addressing mode. This results in code such as:
//
// int f(short *y, int *lookup_table) {
// ...
// return *y + lookup_table[*y >> 11];
// }
//
// Turning into:
// movzwl (%rdi), %eax
// movl %eax, %ecx
// shrl $11, %ecx
// addl (%rsi,%rcx,4), %eax
//
// Instead of:
// movzwl (%rdi), %eax
// movl %eax, %ecx
// shrl $9, %ecx
// andl $124, %rcx
// addl (%rsi,%rcx), %eax
//
// Note that this function assumes the mask is provided as a mask *after* the
// value is shifted. The input chain may or may not match that, but computing
// such a mask is trivial.
static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
uint64_t Mask,
SDValue Shift, SDValue X,
X86ISelAddressMode &AM) {
if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
!isa<ConstantSDNode>(Shift.getOperand(1)))
return true;
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
unsigned MaskLZ = countLeadingZeros(Mask);
unsigned MaskTZ = countTrailingZeros(Mask);
// The amount of shift we're trying to fit into the addressing mode is taken
// from the trailing zeros of the mask.
unsigned AMShiftAmt = MaskTZ;
// There is nothing we can do here unless the mask is removing some bits.
// Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
// We also need to ensure that mask is a continuous run of bits.
if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
// Scale the leading zero count down based on the actual size of the value.
// Also scale it down based on the size of the shift.
unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
if (MaskLZ < ScaleDown)
return true;
MaskLZ -= ScaleDown;
// The final check is to ensure that any masked out high bits of X are
// already known to be zero. Otherwise, the mask has a semantic impact
// other than masking out a couple of low bits. Unfortunately, because of
// the mask, zero extensions will be removed from operands in some cases.
// This code works extra hard to look through extensions because we can
// replace them with zero extensions cheaply if necessary.
bool ReplacingAnyExtend = false;
if (X.getOpcode() == ISD::ANY_EXTEND) {
unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
X.getOperand(0).getSimpleValueType().getSizeInBits();
// Assume that we'll replace the any-extend with a zero-extend, and
// narrow the search to the extended value.
X = X.getOperand(0);
MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
ReplacingAnyExtend = true;
}
APInt MaskedHighBits =
APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
KnownBits Known = DAG.computeKnownBits(X);
if (MaskedHighBits != Known.Zero) return true;
// We've identified a pattern that can be transformed into a single shift
// and an addressing mode. Make it so.
MVT VT = N.getSimpleValueType();
if (ReplacingAnyExtend) {
assert(X.getValueType() != VT);
// We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
insertDAGNode(DAG, N, NewX);
X = NewX;
}
SDLoc DL(N);
SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, NewSRLAmt);
insertDAGNode(DAG, N, NewSRL);
insertDAGNode(DAG, N, NewSHLAmt);
insertDAGNode(DAG, N, NewSHL);
DAG.ReplaceAllUsesWith(N, NewSHL);
DAG.RemoveDeadNode(N.getNode());
AM.Scale = 1 << AMShiftAmt;
AM.IndexReg = NewSRL;
return false;
}
// Transform "(X >> SHIFT) & (MASK << C1)" to
// "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
// matched to a BEXTR later. Returns false if the simplification is performed.
static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
uint64_t Mask,
SDValue Shift, SDValue X,
X86ISelAddressMode &AM,
const X86Subtarget &Subtarget) {
if (Shift.getOpcode() != ISD::SRL ||
!isa<ConstantSDNode>(Shift.getOperand(1)) ||
!Shift.hasOneUse() || !N.hasOneUse())
return true;
// Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
if (!Subtarget.hasTBM() &&
!(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
return true;
// We need to ensure that mask is a continuous run of bits.
if (!isShiftedMask_64(Mask)) return true;
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
// The amount of shift we're trying to fit into the addressing mode is taken
// from the trailing zeros of the mask.
unsigned AMShiftAmt = countTrailingZeros(Mask);
// There is nothing we can do here unless the mask is removing some bits.
// Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, NewSRLAmt);
insertDAGNode(DAG, N, NewSRL);
insertDAGNode(DAG, N, NewMask);
insertDAGNode(DAG, N, NewAnd);
insertDAGNode(DAG, N, NewSHLAmt);
insertDAGNode(DAG, N, NewSHL);
DAG.ReplaceAllUsesWith(N, NewSHL);
DAG.RemoveDeadNode(N.getNode());
AM.Scale = 1 << AMShiftAmt;
AM.IndexReg = NewAnd;
return false;
}
bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
unsigned Depth) {
SDLoc dl(N);
LLVM_DEBUG({
dbgs() << "MatchAddress: ";
AM.dump(CurDAG);
});
// Limit recursion.
if (Depth > 5)
return matchAddressBase(N, AM);
// If this is already a %rip relative address, we can only merge immediates
// into it. Instead of handling this in every case, we handle it here.
// RIP relative addressing: %rip + 32-bit displacement!
if (AM.isRIPRelative()) {
// FIXME: JumpTable and ExternalSymbol address currently don't like
// displacements. It isn't very important, but this should be fixed for
// consistency.
if (!(AM.ES || AM.MCSym) && AM.JT != -1)
return true;
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
return false;
return true;
}
switch (N.getOpcode()) {
default: break;
case ISD::LOCAL_RECOVER: {
if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
// Use the symbol and don't prefix it.
AM.MCSym = ESNode->getMCSymbol();
return false;
}
break;
}
case ISD::Constant: {
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
if (!foldOffsetIntoAddress(Val, AM))
return false;
break;
}
case X86ISD::Wrapper:
case X86ISD::WrapperRIP:
if (!matchWrapper(N, AM))
return false;
break;
case ISD::LOAD:
if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
return false;
break;
case ISD::FrameIndex:
if (AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr &&
(!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
return false;
}
break;
case ISD::SHL:
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
break;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
unsigned Val = CN->getZExtValue();
// Note that we handle x<<1 as (,x,2) rather than (x,x) here so
// that the base operand remains free for further matching. If
// the base doesn't end up getting used, a post-processing step
// in MatchAddress turns (,x,2) into (x,x), which is cheaper.
if (Val == 1 || Val == 2 || Val == 3) {
AM.Scale = 1 << Val;
SDValue ShVal = N.getOperand(0);
// Okay, we know that we have a scale by now. However, if the scaled
// value is an add of something and a constant, we can fold the
// constant into the disp field here.
if (CurDAG->isBaseWithConstantOffset(ShVal)) {
AM.IndexReg = ShVal.getOperand(0);
ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
if (!foldOffsetIntoAddress(Disp, AM))
return false;
}
AM.IndexReg = ShVal;
return false;
}
}
break;
case ISD::SRL: {
// Scale must not be used already.
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
// We only handle up to 64-bit values here as those are what matter for
// addressing mode optimizations.
assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
"Unexpected value size!");
SDValue And = N.getOperand(0);
if (And.getOpcode() != ISD::AND) break;
SDValue X = And.getOperand(0);
// The mask used for the transform is expected to be post-shift, but we
// found the shift first so just apply the shift to the mask before passing
// it down.
if (!isa<ConstantSDNode>(N.getOperand(1)) ||
!isa<ConstantSDNode>(And.getOperand(1)))
break;
uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
// Try to fold the mask and shift into the scale, and return false if we
// succeed.
if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
return false;
break;
}
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
// A mul_lohi where we need the low part can be folded as a plain multiply.
if (N.getResNo() != 0) break;
LLVM_FALLTHROUGH;
case ISD::MUL:
case X86ISD::MUL_IMM:
// X*[3,5,9] -> X+X*[2,4,8]
if (AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr &&
AM.IndexReg.getNode() == nullptr) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
CN->getZExtValue() == 9) {
AM.Scale = unsigned(CN->getZExtValue())-1;
SDValue MulVal = N.getOperand(0);
SDValue Reg;
// Okay, we know that we have a scale by now. However, if the scaled
// value is an add of something and a constant, we can fold the
// constant into the disp field here.
if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
isa<ConstantSDNode>(MulVal.getOperand(1))) {
Reg = MulVal.getOperand(0);
ConstantSDNode *AddVal =
cast<ConstantSDNode>(MulVal.getOperand(1));
uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
if (foldOffsetIntoAddress(Disp, AM))
Reg = N.getOperand(0);
} else {
Reg = N.getOperand(0);
}
AM.IndexReg = AM.Base_Reg = Reg;
return false;
}
}
break;
case ISD::SUB: {
// Given A-B, if A can be completely folded into the address and
// the index field with the index field unused, use -B as the index.
// This is a win if a has multiple parts that can be folded into
// the address. Also, this saves a mov if the base register has
// other uses, since it avoids a two-address sub instruction, however
// it costs an additional mov if the index register has other uses.
// Add an artificial use to this node so that we can keep track of
// it if it gets CSE'd with a different node.
HandleSDNode Handle(N);
// Test if the LHS of the sub can be folded.
X86ISelAddressMode Backup = AM;
if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
N = Handle.getValue();
AM = Backup;
break;
}
N = Handle.getValue();
// Test if the index field is free for use.
if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
AM = Backup;
break;
}
int Cost = 0;
SDValue RHS = N.getOperand(1);
// If the RHS involves a register with multiple uses, this
// transformation incurs an extra mov, due to the neg instruction
// clobbering its operand.
if (!RHS.getNode()->hasOneUse() ||
RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
(RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
RHS.getOperand(0).getValueType() == MVT::i32))
++Cost;
// If the base is a register with multiple uses, this
// transformation may save a mov.
if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
!AM.Base_Reg.getNode()->hasOneUse()) ||
AM.BaseType == X86ISelAddressMode::FrameIndexBase)
--Cost;
// If the folded LHS was interesting, this transformation saves
// address arithmetic.
if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
((AM.Disp != 0) && (Backup.Disp == 0)) +
(AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
--Cost;
// If it doesn't look like it may be an overall win, don't do it.
if (Cost >= 0) {
AM = Backup;
break;
}
// Ok, the transformation is legal and appears profitable. Go for it.
// Negation will be emitted later to avoid creating dangling nodes if this
// was an unprofitable LEA.
AM.IndexReg = RHS;
AM.NegateIndex = true;
AM.Scale = 1;
return false;
}
case ISD::ADD:
if (!matchAdd(N, AM, Depth))
return false;
break;
case ISD::OR:
// We want to look through a transform in InstCombine and DAGCombiner that
// turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
// Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
// An 'lea' can then be used to match the shift (multiply) and add:
// and $1, %esi
// lea (%rsi, %rdi, 8), %rax
if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
!matchAdd(N, AM, Depth))
return false;
break;
case ISD::AND: {
// Perform some heroic transforms on an and of a constant-count shift
// with a constant to enable use of the scaled offset field.
// Scale must not be used already.
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
// We only handle up to 64-bit values here as those are what matter for
// addressing mode optimizations.
assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
"Unexpected value size!");
if (!isa<ConstantSDNode>(N.getOperand(1)))
break;
if (N.getOperand(0).getOpcode() == ISD::SRL) {
SDValue Shift = N.getOperand(0);
SDValue X = Shift.getOperand(0);
uint64_t Mask = N.getConstantOperandVal(1);
// Try to fold the mask and shift into an extract and scale.
if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
return false;
// Try to fold the mask and shift directly into the scale.
if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
return false;
// Try to fold the mask and shift into BEXTR and scale.
if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
return false;
}
// Try to swap the mask and shift to place shifts which can be done as
// a scale on the outside of the mask.
if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
return false;
break;
}
case ISD::ZERO_EXTEND: {
// Try to widen a zexted shift left to the same size as its use, so we can
// match the shift as a scale factor.
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
break;
if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
break;
// Give up if the shift is not a valid scale factor [1,2,3].
SDValue Shl = N.getOperand(0);
auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
if (!ShAmtC || ShAmtC->getZExtValue() > 3)
break;
// The narrow shift must only shift out zero bits (it must be 'nuw').
// That makes it safe to widen to the destination type.
APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
ShAmtC->getZExtValue());
if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
break;
// zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
// Convert the shift to scale factor.
AM.Scale = 1 << ShAmtC->getZExtValue();
AM.IndexReg = Zext;
insertDAGNode(*CurDAG, N, Zext);
insertDAGNode(*CurDAG, N, NewShl);
CurDAG->ReplaceAllUsesWith(N, NewShl);
CurDAG->RemoveDeadNode(N.getNode());
return false;
}
}
return matchAddressBase(N, AM);
}
/// Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
// Is the base register already occupied?
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
// If so, check to see if the scale index register is set.
if (!AM.IndexReg.getNode()) {
AM.IndexReg = N;
AM.Scale = 1;
return false;
}
// Otherwise, we cannot select it.
return true;
}
// Default, generate it as a register.
AM.BaseType = X86ISelAddressMode::RegBase;
AM.Base_Reg = N;
return false;
}
bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
X86ISelAddressMode &AM,
unsigned Depth) {
SDLoc dl(N);
LLVM_DEBUG({
dbgs() << "MatchVectorAddress: ";
AM.dump(CurDAG);
});
// Limit recursion.
if (Depth > 5)
return matchAddressBase(N, AM);
// TODO: Support other operations.
switch (N.getOpcode()) {
case ISD::Constant: {
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
if (!foldOffsetIntoAddress(Val, AM))
return false;
break;
}
case X86ISD::Wrapper:
if (!matchWrapper(N, AM))
return false;
break;
case ISD::ADD: {
// Add an artificial use to this node so that we can keep track of
// it if it gets CSE'd with a different node.
HandleSDNode Handle(N);
X86ISelAddressMode Backup = AM;
if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
Depth + 1))
return false;
AM = Backup;
// Try again after commuting the operands.
if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
Depth + 1) &&
!matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
Depth + 1))
return false;
AM = Backup;
N = Handle.getValue();
break;
}
}
return matchAddressBase(N, AM);
}
/// Helper for selectVectorAddr. Handles things that can be folded into a
/// gather/scatter address. The index register and scale should have already
/// been handled.
bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
return matchVectorAddressRecursively(N, AM, 0);
}
bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
SDValue IndexOp, SDValue ScaleOp,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
X86ISelAddressMode AM;
AM.IndexReg = IndexOp;
AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
if (AddrSpace == X86AS::GS)
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
if (AddrSpace == X86AS::FS)
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
if (AddrSpace == X86AS::SS)
AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
SDLoc DL(BasePtr);
MVT VT = BasePtr.getSimpleValueType();
// Try to match into the base and displacement fields.
if (matchVectorAddress(BasePtr, AM))
return false;
getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
return true;
}
/// Returns true if it is able to pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
///
/// Parent is the parent node of the addr operand that is being matched. It
/// is always a load, store, atomic node, or null. It is only null when
/// checking memory operands for inline asm nodes.
bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment) {
X86ISelAddressMode AM;
if (Parent &&
// This list of opcodes are all the nodes that have an "addr:$ptr" operand
// that are not a MemSDNode, and thus don't have proper addrspace info.
Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
unsigned AddrSpace =
cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
if (AddrSpace == X86AS::GS)
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
if (AddrSpace == X86AS::FS)
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
if (