| //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains small standalone helper functions and enum definitions for |
| // the X86 target useful for the compiler back-end and the MC libraries. |
| // As such, it deliberately does not include references to LLVM core |
| // code gen types, passes, etc.. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H |
| #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H |
| |
| #include "X86MCTargetDesc.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Support/DataTypes.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| namespace llvm { |
| |
| namespace X86 { |
| // Enums for memory operand decoding. Each memory operand is represented with |
| // a 5 operand sequence in the form: |
| // [BaseReg, ScaleAmt, IndexReg, Disp, Segment] |
| // These enums help decode this. |
| enum { |
| AddrBaseReg = 0, |
| AddrScaleAmt = 1, |
| AddrIndexReg = 2, |
| AddrDisp = 3, |
| |
| /// AddrSegmentReg - The operand # of the segment in the memory operand. |
| AddrSegmentReg = 4, |
| |
| /// AddrNumOperands - Total number of operands in a memory reference. |
| AddrNumOperands = 5 |
| }; |
| |
| /// AVX512 static rounding constants. These need to match the values in |
| /// avx512fintrin.h. |
| enum STATIC_ROUNDING { |
| TO_NEAREST_INT = 0, |
| TO_NEG_INF = 1, |
| TO_POS_INF = 2, |
| TO_ZERO = 3, |
| CUR_DIRECTION = 4, |
| NO_EXC = 8 |
| }; |
| |
| /// The constants to describe instr prefixes if there are |
| enum IPREFIXES { |
| IP_NO_PREFIX = 0, |
| IP_HAS_OP_SIZE = 1U << 0, |
| IP_HAS_AD_SIZE = 1U << 1, |
| IP_HAS_REPEAT_NE = 1U << 2, |
| IP_HAS_REPEAT = 1U << 3, |
| IP_HAS_LOCK = 1U << 4, |
| IP_HAS_NOTRACK = 1U << 5, |
| IP_USE_VEX = 1U << 6, |
| IP_USE_VEX2 = 1U << 7, |
| IP_USE_VEX3 = 1U << 8, |
| IP_USE_EVEX = 1U << 9, |
| IP_USE_DISP8 = 1U << 10, |
| IP_USE_DISP32 = 1U << 11, |
| }; |
| |
| enum OperandType : unsigned { |
| /// AVX512 embedded rounding control. This should only have values 0-3. |
| OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, |
| OPERAND_COND_CODE, |
| }; |
| |
| // X86 specific condition code. These correspond to X86_*_COND in |
| // X86InstrInfo.td. They must be kept in synch. |
| enum CondCode { |
| COND_O = 0, |
| COND_NO = 1, |
| COND_B = 2, |
| COND_AE = 3, |
| COND_E = 4, |
| COND_NE = 5, |
| COND_BE = 6, |
| COND_A = 7, |
| COND_S = 8, |
| COND_NS = 9, |
| COND_P = 10, |
| COND_NP = 11, |
| COND_L = 12, |
| COND_GE = 13, |
| COND_LE = 14, |
| COND_G = 15, |
| LAST_VALID_COND = COND_G, |
| |
| // Artificial condition codes. These are used by analyzeBranch |
| // to indicate a block terminated with two conditional branches that together |
| // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, |
| // which can't be represented on x86 with a single condition. These |
| // are never used in MachineInstrs and are inverses of one another. |
| COND_NE_OR_P, |
| COND_E_AND_NP, |
| |
| COND_INVALID |
| }; |
| |
| // The classification for the first instruction in macro fusion. |
| enum class FirstMacroFusionInstKind { |
| // TEST |
| Test, |
| // CMP |
| Cmp, |
| // AND |
| And, |
| // FIXME: Zen 3 support branch fusion for OR/XOR. |
| // ADD, SUB |
| AddSub, |
| // INC, DEC |
| IncDec, |
| // Not valid as a first macro fusion instruction |
| Invalid |
| }; |
| |
| enum class SecondMacroFusionInstKind { |
| // JA, JB and variants. |
| AB, |
| // JE, JL, JG and variants. |
| ELG, |
| // JS, JP, JO and variants |
| SPO, |
| // Not a fusible jump. |
| Invalid, |
| }; |
| |
| /// \returns the type of the first instruction in macro-fusion. |
| inline FirstMacroFusionInstKind |
| classifyFirstOpcodeInMacroFusion(unsigned Opcode) { |
| switch (Opcode) { |
| default: |
| return FirstMacroFusionInstKind::Invalid; |
| // TEST |
| case X86::TEST16i16: |
| case X86::TEST16mr: |
| case X86::TEST16ri: |
| case X86::TEST16rr: |
| case X86::TEST32i32: |
| case X86::TEST32mr: |
| case X86::TEST32ri: |
| case X86::TEST32rr: |
| case X86::TEST64i32: |
| case X86::TEST64mr: |
| case X86::TEST64ri32: |
| case X86::TEST64rr: |
| case X86::TEST8i8: |
| case X86::TEST8mr: |
| case X86::TEST8ri: |
| case X86::TEST8rr: |
| return FirstMacroFusionInstKind::Test; |
| case X86::AND16i16: |
| case X86::AND16ri: |
| case X86::AND16ri8: |
| case X86::AND16rm: |
| case X86::AND16rr: |
| case X86::AND16rr_REV: |
| case X86::AND32i32: |
| case X86::AND32ri: |
| case X86::AND32ri8: |
| case X86::AND32rm: |
| case X86::AND32rr: |
| case X86::AND32rr_REV: |
| case X86::AND64i32: |
| case X86::AND64ri32: |
| case X86::AND64ri8: |
| case X86::AND64rm: |
| case X86::AND64rr: |
| case X86::AND64rr_REV: |
| case X86::AND8i8: |
| case X86::AND8ri: |
| case X86::AND8ri8: |
| case X86::AND8rm: |
| case X86::AND8rr: |
| case X86::AND8rr_REV: |
| return FirstMacroFusionInstKind::And; |
| // FIXME: Zen 3 support branch fusion for OR/XOR. |
| // CMP |
| case X86::CMP16i16: |
| case X86::CMP16mr: |
| case X86::CMP16ri: |
| case X86::CMP16ri8: |
| case X86::CMP16rm: |
| case X86::CMP16rr: |
| case X86::CMP16rr_REV: |
| case X86::CMP32i32: |
| case X86::CMP32mr: |
| case X86::CMP32ri: |
| case X86::CMP32ri8: |
| case X86::CMP32rm: |
| case X86::CMP32rr: |
| case X86::CMP32rr_REV: |
| case X86::CMP64i32: |
| case X86::CMP64mr: |
| case X86::CMP64ri32: |
| case X86::CMP64ri8: |
| case X86::CMP64rm: |
| case X86::CMP64rr: |
| case X86::CMP64rr_REV: |
| case X86::CMP8i8: |
| case X86::CMP8mr: |
| case X86::CMP8ri: |
| case X86::CMP8ri8: |
| case X86::CMP8rm: |
| case X86::CMP8rr: |
| case X86::CMP8rr_REV: |
| return FirstMacroFusionInstKind::Cmp; |
| // ADD |
| case X86::ADD16i16: |
| case X86::ADD16ri: |
| case X86::ADD16ri8: |
| case X86::ADD16rm: |
| case X86::ADD16rr: |
| case X86::ADD16rr_REV: |
| case X86::ADD32i32: |
| case X86::ADD32ri: |
| case X86::ADD32ri8: |
| case X86::ADD32rm: |
| case X86::ADD32rr: |
| case X86::ADD32rr_REV: |
| case X86::ADD64i32: |
| case X86::ADD64ri32: |
| case X86::ADD64ri8: |
| case X86::ADD64rm: |
| case X86::ADD64rr: |
| case X86::ADD64rr_REV: |
| case X86::ADD8i8: |
| case X86::ADD8ri: |
| case X86::ADD8ri8: |
| case X86::ADD8rm: |
| case X86::ADD8rr: |
| case X86::ADD8rr_REV: |
| // SUB |
| case X86::SUB16i16: |
| case X86::SUB16ri: |
| case X86::SUB16ri8: |
| case X86::SUB16rm: |
| case X86::SUB16rr: |
| case X86::SUB16rr_REV: |
| case X86::SUB32i32: |
| case X86::SUB32ri: |
| case X86::SUB32ri8: |
| case X86::SUB32rm: |
| case X86::SUB32rr: |
| case X86::SUB32rr_REV: |
| case X86::SUB64i32: |
| case X86::SUB64ri32: |
| case X86::SUB64ri8: |
| case X86::SUB64rm: |
| case X86::SUB64rr: |
| case X86::SUB64rr_REV: |
| case X86::SUB8i8: |
| case X86::SUB8ri: |
| case X86::SUB8ri8: |
| case X86::SUB8rm: |
| case X86::SUB8rr: |
| case X86::SUB8rr_REV: |
| return FirstMacroFusionInstKind::AddSub; |
| // INC |
| case X86::INC16r: |
| case X86::INC16r_alt: |
| case X86::INC32r: |
| case X86::INC32r_alt: |
| case X86::INC64r: |
| case X86::INC8r: |
| // DEC |
| case X86::DEC16r: |
| case X86::DEC16r_alt: |
| case X86::DEC32r: |
| case X86::DEC32r_alt: |
| case X86::DEC64r: |
| case X86::DEC8r: |
| return FirstMacroFusionInstKind::IncDec; |
| } |
| } |
| |
| /// \returns the type of the second instruction in macro-fusion. |
| inline SecondMacroFusionInstKind |
| classifySecondCondCodeInMacroFusion(X86::CondCode CC) { |
| if (CC == X86::COND_INVALID) |
| return SecondMacroFusionInstKind::Invalid; |
| |
| switch (CC) { |
| default: |
| return SecondMacroFusionInstKind::Invalid; |
| // JE,JZ |
| case X86::COND_E: |
| // JNE,JNZ |
| case X86::COND_NE: |
| // JL,JNGE |
| case X86::COND_L: |
| // JLE,JNG |
| case X86::COND_LE: |
| // JG,JNLE |
| case X86::COND_G: |
| // JGE,JNL |
| case X86::COND_GE: |
| return SecondMacroFusionInstKind::ELG; |
| // JB,JC |
| case X86::COND_B: |
| // JNA,JBE |
| case X86::COND_BE: |
| // JA,JNBE |
| case X86::COND_A: |
| // JAE,JNC,JNB |
| case X86::COND_AE: |
| return SecondMacroFusionInstKind::AB; |
| // JS |
| case X86::COND_S: |
| // JNS |
| case X86::COND_NS: |
| // JP,JPE |
| case X86::COND_P: |
| // JNP,JPO |
| case X86::COND_NP: |
| // JO |
| case X86::COND_O: |
| // JNO |
| case X86::COND_NO: |
| return SecondMacroFusionInstKind::SPO; |
| } |
| } |
| |
| /// \param FirstKind kind of the first instruction in macro fusion. |
| /// \param SecondKind kind of the second instruction in macro fusion. |
| /// |
| /// \returns true if the two instruction can be macro fused. |
| inline bool isMacroFused(FirstMacroFusionInstKind FirstKind, |
| SecondMacroFusionInstKind SecondKind) { |
| switch (FirstKind) { |
| case X86::FirstMacroFusionInstKind::Test: |
| case X86::FirstMacroFusionInstKind::And: |
| return true; |
| case X86::FirstMacroFusionInstKind::Cmp: |
| case X86::FirstMacroFusionInstKind::AddSub: |
| return SecondKind == X86::SecondMacroFusionInstKind::AB || |
| SecondKind == X86::SecondMacroFusionInstKind::ELG; |
| case X86::FirstMacroFusionInstKind::IncDec: |
| return SecondKind == X86::SecondMacroFusionInstKind::ELG; |
| case X86::FirstMacroFusionInstKind::Invalid: |
| return false; |
| } |
| llvm_unreachable("unknown fusion type"); |
| } |
| |
| /// Defines the possible values of the branch boundary alignment mask. |
| enum AlignBranchBoundaryKind : uint8_t { |
| AlignBranchNone = 0, |
| AlignBranchFused = 1U << 0, |
| AlignBranchJcc = 1U << 1, |
| AlignBranchJmp = 1U << 2, |
| AlignBranchCall = 1U << 3, |
| AlignBranchRet = 1U << 4, |
| AlignBranchIndirect = 1U << 5 |
| }; |
| |
| /// Defines the encoding values for segment override prefix. |
| enum EncodingOfSegmentOverridePrefix : uint8_t { |
| CS_Encoding = 0x2E, |
| DS_Encoding = 0x3E, |
| ES_Encoding = 0x26, |
| FS_Encoding = 0x64, |
| GS_Encoding = 0x65, |
| SS_Encoding = 0x36 |
| }; |
| |
| /// Given a segment register, return the encoding of the segment override |
| /// prefix for it. |
| inline EncodingOfSegmentOverridePrefix |
| getSegmentOverridePrefixForReg(unsigned Reg) { |
| switch (Reg) { |
| default: |
| llvm_unreachable("Unknown segment register!"); |
| case X86::CS: |
| return CS_Encoding; |
| case X86::DS: |
| return DS_Encoding; |
| case X86::ES: |
| return ES_Encoding; |
| case X86::FS: |
| return FS_Encoding; |
| case X86::GS: |
| return GS_Encoding; |
| case X86::SS: |
| return SS_Encoding; |
| } |
| } |
| |
| } // end namespace X86; |
| |
| /// X86II - This namespace holds all of the target specific flags that |
| /// instruction info tracks. |
| /// |
| namespace X86II { |
| /// Target Operand Flag enum. |
| enum TOF { |
| //===------------------------------------------------------------------===// |
| // X86 Specific MachineOperand flags. |
| |
| MO_NO_FLAG, |
| |
| /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a |
| /// relocation of: |
| /// SYMBOL_LABEL + [. - PICBASELABEL] |
| MO_GOT_ABSOLUTE_ADDRESS, |
| |
| /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the |
| /// immediate should get the value of the symbol minus the PIC base label: |
| /// SYMBOL_LABEL - PICBASELABEL |
| MO_PIC_BASE_OFFSET, |
| |
| /// MO_GOT - On a symbol operand this indicates that the immediate is the |
| /// offset to the GOT entry for the symbol name from the base of the GOT. |
| /// |
| /// See the X86-64 ELF ABI supplement for more details. |
| /// SYMBOL_LABEL @GOT |
| MO_GOT, |
| |
| /// MO_GOTOFF - On a symbol operand this indicates that the immediate is |
| /// the offset to the location of the symbol name from the base of the GOT. |
| /// |
| /// See the X86-64 ELF ABI supplement for more details. |
| /// SYMBOL_LABEL @GOTOFF |
| MO_GOTOFF, |
| |
| /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is |
| /// offset to the GOT entry for the symbol name from the current code |
| /// location. |
| /// |
| /// See the X86-64 ELF ABI supplement for more details. |
| /// SYMBOL_LABEL @GOTPCREL |
| MO_GOTPCREL, |
| |
| /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL |
| /// relocations are guaranteed to be emitted by the integrated assembler |
| /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations. |
| MO_GOTPCREL_NORELAX, |
| |
| /// MO_PLT - On a symbol operand this indicates that the immediate is |
| /// offset to the PLT entry of symbol name from the current code location. |
| /// |
| /// See the X86-64 ELF ABI supplement for more details. |
| /// SYMBOL_LABEL @PLT |
| MO_PLT, |
| |
| /// MO_TLSGD - On a symbol operand this indicates that the immediate is |
| /// the offset of the GOT entry with the TLS index structure that contains |
| /// the module number and variable offset for the symbol. Used in the |
| /// general dynamic TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @TLSGD |
| MO_TLSGD, |
| |
| /// MO_TLSLD - On a symbol operand this indicates that the immediate is |
| /// the offset of the GOT entry with the TLS index for the module that |
| /// contains the symbol. When this index is passed to a call to |
| /// __tls_get_addr, the function will return the base address of the TLS |
| /// block for the symbol. Used in the x86-64 local dynamic TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @TLSLD |
| MO_TLSLD, |
| |
| /// MO_TLSLDM - On a symbol operand this indicates that the immediate is |
| /// the offset of the GOT entry with the TLS index for the module that |
| /// contains the symbol. When this index is passed to a call to |
| /// ___tls_get_addr, the function will return the base address of the TLS |
| /// block for the symbol. Used in the IA32 local dynamic TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @TLSLDM |
| MO_TLSLDM, |
| |
| /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is |
| /// the offset of the GOT entry with the thread-pointer offset for the |
| /// symbol. Used in the x86-64 initial exec TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @GOTTPOFF |
| MO_GOTTPOFF, |
| |
| /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is |
| /// the absolute address of the GOT entry with the negative thread-pointer |
| /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access |
| /// model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @INDNTPOFF |
| MO_INDNTPOFF, |
| |
| /// MO_TPOFF - On a symbol operand this indicates that the immediate is |
| /// the thread-pointer offset for the symbol. Used in the x86-64 local |
| /// exec TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @TPOFF |
| MO_TPOFF, |
| |
| /// MO_DTPOFF - On a symbol operand this indicates that the immediate is |
| /// the offset of the GOT entry with the TLS offset of the symbol. Used |
| /// in the local dynamic TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @DTPOFF |
| MO_DTPOFF, |
| |
| /// MO_NTPOFF - On a symbol operand this indicates that the immediate is |
| /// the negative thread-pointer offset for the symbol. Used in the IA32 |
| /// local exec TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @NTPOFF |
| MO_NTPOFF, |
| |
| /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is |
| /// the offset of the GOT entry with the negative thread-pointer offset for |
| /// the symbol. Used in the PIC IA32 initial exec TLS access model. |
| /// |
| /// See 'ELF Handling for Thread-Local Storage' for more details. |
| /// SYMBOL_LABEL @GOTNTPOFF |
| MO_GOTNTPOFF, |
| |
| /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the |
| /// reference is actually to the "__imp_FOO" symbol. This is used for |
| /// dllimport linkage on windows. |
| MO_DLLIMPORT, |
| |
| /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the |
| /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a |
| /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. |
| MO_DARWIN_NONLAZY, |
| |
| /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates |
| /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is |
| /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. |
| MO_DARWIN_NONLAZY_PIC_BASE, |
| |
| /// MO_TLVP - On a symbol operand this indicates that the immediate is |
| /// some TLS offset. |
| /// |
| /// This is the TLS offset for the Darwin TLS mechanism. |
| MO_TLVP, |
| |
| /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate |
| /// is some TLS offset from the picbase. |
| /// |
| /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. |
| MO_TLVP_PIC_BASE, |
| |
| /// MO_SECREL - On a symbol operand this indicates that the immediate is |
| /// the offset from beginning of section. |
| /// |
| /// This is the TLS offset for the COFF/Windows TLS mechanism. |
| MO_SECREL, |
| |
| /// MO_ABS8 - On a symbol operand this indicates that the symbol is known |
| /// to be an absolute symbol in range [0,128), so we can use the @ABS8 |
| /// symbol modifier. |
| MO_ABS8, |
| |
| /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the |
| /// reference is actually to the ".refptr.FOO" symbol. This is used for |
| /// stub symbols on windows. |
| MO_COFFSTUB, |
| }; |
| |
| enum : uint64_t { |
| //===------------------------------------------------------------------===// |
| // Instruction encodings. These are the standard/most common forms for X86 |
| // instructions. |
| // |
| |
| // PseudoFrm - This represents an instruction that is a pseudo instruction |
| // or one that has not been implemented yet. It is illegal to code generate |
| // it, but tolerated for intermediate implementation stages. |
| Pseudo = 0, |
| |
| /// Raw - This form is for instructions that don't have any operands, so |
| /// they are just a fixed opcode value, like 'leave'. |
| RawFrm = 1, |
| |
| /// AddRegFrm - This form is used for instructions like 'push r32' that have |
| /// their one register operand added to their opcode. |
| AddRegFrm = 2, |
| |
| /// RawFrmMemOffs - This form is for instructions that store an absolute |
| /// memory offset as an immediate with a possible segment override. |
| RawFrmMemOffs = 3, |
| |
| /// RawFrmSrc - This form is for instructions that use the source index |
| /// register SI/ESI/RSI with a possible segment override. |
| RawFrmSrc = 4, |
| |
| /// RawFrmDst - This form is for instructions that use the destination index |
| /// register DI/EDI/RDI. |
| RawFrmDst = 5, |
| |
| /// RawFrmDstSrc - This form is for instructions that use the source index |
| /// register SI/ESI/RSI with a possible segment override, and also the |
| /// destination index register DI/EDI/RDI. |
| RawFrmDstSrc = 6, |
| |
| /// RawFrmImm8 - This is used for the ENTER instruction, which has two |
| /// immediates, the first of which is a 16-bit immediate (specified by |
| /// the imm encoding) and the second is a 8-bit fixed value. |
| RawFrmImm8 = 7, |
| |
| /// RawFrmImm16 - This is used for CALL FAR instructions, which have two |
| /// immediates, the first of which is a 16 or 32-bit immediate (specified by |
| /// the imm encoding) and the second is a 16-bit fixed value. In the AMD |
| /// manual, this operand is described as pntr16:32 and pntr16:16 |
| RawFrmImm16 = 8, |
| |
| /// AddCCFrm - This form is used for Jcc that encode the condition code |
| /// in the lower 4 bits of the opcode. |
| AddCCFrm = 9, |
| |
| /// PrefixByte - This form is used for instructions that represent a prefix |
| /// byte like data16 or rep. |
| PrefixByte = 10, |
| |
| /// MRM[0-7][rm] - These forms are used to represent instructions that use |
| /// a Mod/RM byte, and use the middle field to hold extended opcode |
| /// information. In the intel manual these are represented as /0, /1, ... |
| /// |
| |
| // Instructions operate on a register Reg/Opcode operand not the r/m field. |
| MRMr0 = 21, |
| |
| /// MRMSrcMem - But force to use the SIB field. |
| MRMSrcMemFSIB = 22, |
| |
| /// MRMDestMem - But force to use the SIB field. |
| MRMDestMemFSIB = 23, |
| |
| /// MRMDestMem - This form is used for instructions that use the Mod/RM byte |
| /// to specify a destination, which in this case is memory. |
| /// |
| MRMDestMem = 24, |
| |
| /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte |
| /// to specify a source, which in this case is memory. |
| /// |
| MRMSrcMem = 25, |
| |
| /// MRMSrcMem4VOp3 - This form is used for instructions that encode |
| /// operand 3 with VEX.VVVV and load from memory. |
| /// |
| MRMSrcMem4VOp3 = 26, |
| |
| /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM |
| /// byte to specify the fourth source, which in this case is memory. |
| /// |
| MRMSrcMemOp4 = 27, |
| |
| /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM |
| /// byte to specify the operands and also encodes a condition code. |
| /// |
| MRMSrcMemCC = 28, |
| |
| /// MRMXm - This form is used for instructions that use the Mod/RM byte |
| /// to specify a memory source, but doesn't use the middle field. And has |
| /// a condition code. |
| /// |
| MRMXmCC = 30, |
| |
| /// MRMXm - This form is used for instructions that use the Mod/RM byte |
| /// to specify a memory source, but doesn't use the middle field. |
| /// |
| MRMXm = 31, |
| |
| // Next, instructions that operate on a memory r/m operand... |
| MRM0m = 32, MRM1m = 33, MRM2m = 34, MRM3m = 35, // Format /0 /1 /2 /3 |
| MRM4m = 36, MRM5m = 37, MRM6m = 38, MRM7m = 39, // Format /4 /5 /6 /7 |
| |
| /// MRMDestReg - This form is used for instructions that use the Mod/RM byte |
| /// to specify a destination, which in this case is a register. |
| /// |
| MRMDestReg = 40, |
| |
| /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte |
| /// to specify a source, which in this case is a register. |
| /// |
| MRMSrcReg = 41, |
| |
| /// MRMSrcReg4VOp3 - This form is used for instructions that encode |
| /// operand 3 with VEX.VVVV and do not load from memory. |
| /// |
| MRMSrcReg4VOp3 = 42, |
| |
| /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM |
| /// byte to specify the fourth source, which in this case is a register. |
| /// |
| MRMSrcRegOp4 = 43, |
| |
| /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM |
| /// byte to specify the operands and also encodes a condition code |
| /// |
| MRMSrcRegCC = 44, |
| |
| /// MRMXCCr - This form is used for instructions that use the Mod/RM byte |
| /// to specify a register source, but doesn't use the middle field. And has |
| /// a condition code. |
| /// |
| MRMXrCC = 46, |
| |
| /// MRMXr - This form is used for instructions that use the Mod/RM byte |
| /// to specify a register source, but doesn't use the middle field. |
| /// |
| MRMXr = 47, |
| |
| // Instructions that operate on a register r/m operand... |
| MRM0r = 48, MRM1r = 49, MRM2r = 50, MRM3r = 51, // Format /0 /1 /2 /3 |
| MRM4r = 52, MRM5r = 53, MRM6r = 54, MRM7r = 55, // Format /4 /5 /6 /7 |
| |
| // Instructions that operate that have mod=11 and an opcode but ignore r/m. |
| MRM0X = 56, MRM1X = 57, MRM2X = 58, MRM3X = 59, // Format /0 /1 /2 /3 |
| MRM4X = 60, MRM5X = 61, MRM6X = 62, MRM7X = 63, // Format /4 /5 /6 /7 |
| |
| /// MRM_XX - A mod/rm byte of exactly 0xXX. |
| MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67, |
| MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71, |
| MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75, |
| MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79, |
| MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83, |
| MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87, |
| MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91, |
| MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95, |
| MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99, |
| MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103, |
| MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107, |
| MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111, |
| MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115, |
| MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119, |
| MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123, |
| MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127, |
| |
| FormMask = 127, |
| |
| //===------------------------------------------------------------------===// |
| // Actual flags... |
| |
| // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. |
| // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in |
| // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 |
| // prefix in 16-bit mode. |
| OpSizeShift = 7, |
| OpSizeMask = 0x3 << OpSizeShift, |
| |
| OpSizeFixed = 0 << OpSizeShift, |
| OpSize16 = 1 << OpSizeShift, |
| OpSize32 = 2 << OpSizeShift, |
| |
| // AsSize - AdSizeX implies this instruction determines its need of 0x67 |
| // prefix from a normal ModRM memory operand. The other types indicate that |
| // an operand is encoded with a specific width and a prefix is needed if |
| // it differs from the current mode. |
| AdSizeShift = OpSizeShift + 2, |
| AdSizeMask = 0x3 << AdSizeShift, |
| |
| AdSizeX = 0 << AdSizeShift, |
| AdSize16 = 1 << AdSizeShift, |
| AdSize32 = 2 << AdSizeShift, |
| AdSize64 = 3 << AdSizeShift, |
| |
| //===------------------------------------------------------------------===// |
| // OpPrefix - There are several prefix bytes that are used as opcode |
| // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is |
| // no prefix. |
| // |
| OpPrefixShift = AdSizeShift + 2, |
| OpPrefixMask = 0x3 << OpPrefixShift, |
| |
| // PD - Prefix code for packed double precision vector floating point |
| // operations performed in the SSE registers. |
| PD = 1 << OpPrefixShift, |
| |
| // XS, XD - These prefix codes are for single and double precision scalar |
| // floating point operations performed in the SSE registers. |
| XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift, |
| |
| //===------------------------------------------------------------------===// |
| // OpMap - This field determines which opcode map this instruction |
| // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. |
| // |
| OpMapShift = OpPrefixShift + 2, |
| OpMapMask = 0xF << OpMapShift, |
| |
| // OB - OneByte - Set if this instruction has a one byte opcode. |
| OB = 0 << OpMapShift, |
| |
| // TB - TwoByte - Set if this instruction has a two byte opcode, which |
| // starts with a 0x0F byte before the real opcode. |
| TB = 1 << OpMapShift, |
| |
| // T8, TA - Prefix after the 0x0F prefix. |
| T8 = 2 << OpMapShift, TA = 3 << OpMapShift, |
| |
| // XOP8 - Prefix to include use of imm byte. |
| XOP8 = 4 << OpMapShift, |
| |
| // XOP9 - Prefix to exclude use of imm byte. |
| XOP9 = 5 << OpMapShift, |
| |
| // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. |
| XOPA = 6 << OpMapShift, |
| |
| /// ThreeDNow - This indicates that the instruction uses the |
| /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents |
| /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction |
| /// storing a classifier in the imm8 field. To simplify our implementation, |
| /// we handle this by storeing the classifier in the opcode field and using |
| /// this flag to indicate that the encoder should do the wacky 3DNow! thing. |
| ThreeDNow = 7 << OpMapShift, |
| |
| // MAP5, MAP6 - Prefix after the 0x0F prefix. |
| T_MAP5 = 8 << OpMapShift, |
| T_MAP6 = 9 << OpMapShift, |
| |
| //===------------------------------------------------------------------===// |
| // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. |
| // They are used to specify GPRs and SSE registers, 64-bit operand size, |
| // etc. We only cares about REX.W and REX.R bits and only the former is |
| // statically determined. |
| // |
| REXShift = OpMapShift + 4, |
| REX_W = 1 << REXShift, |
| |
| //===------------------------------------------------------------------===// |
| // This three-bit field describes the size of an immediate operand. Zero is |
| // unused so that we can tell if we forgot to set a value. |
| ImmShift = REXShift + 1, |
| ImmMask = 15 << ImmShift, |
| Imm8 = 1 << ImmShift, |
| Imm8PCRel = 2 << ImmShift, |
| Imm8Reg = 3 << ImmShift, |
| Imm16 = 4 << ImmShift, |
| Imm16PCRel = 5 << ImmShift, |
| Imm32 = 6 << ImmShift, |
| Imm32PCRel = 7 << ImmShift, |
| Imm32S = 8 << ImmShift, |
| Imm64 = 9 << ImmShift, |
| |
| //===------------------------------------------------------------------===// |
| // FP Instruction Classification... Zero is non-fp instruction. |
| |
| // FPTypeMask - Mask for all of the FP types... |
| FPTypeShift = ImmShift + 4, |
| FPTypeMask = 7 << FPTypeShift, |
| |
| // NotFP - The default, set for instructions that do not use FP registers. |
| NotFP = 0 << FPTypeShift, |
| |
| // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 |
| ZeroArgFP = 1 << FPTypeShift, |
| |
| // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst |
| OneArgFP = 2 << FPTypeShift, |
| |
| // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a |
| // result back to ST(0). For example, fcos, fsqrt, etc. |
| // |
| OneArgFPRW = 3 << FPTypeShift, |
| |
| // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an |
| // explicit argument, storing the result to either ST(0) or the implicit |
| // argument. For example: fadd, fsub, fmul, etc... |
| TwoArgFP = 4 << FPTypeShift, |
| |
| // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an |
| // explicit argument, but have no destination. Example: fucom, fucomi, ... |
| CompareFP = 5 << FPTypeShift, |
| |
| // CondMovFP - "2 operand" floating point conditional move instructions. |
| CondMovFP = 6 << FPTypeShift, |
| |
| // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. |
| SpecialFP = 7 << FPTypeShift, |
| |
| // Lock prefix |
| LOCKShift = FPTypeShift + 3, |
| LOCK = 1 << LOCKShift, |
| |
| // REP prefix |
| REPShift = LOCKShift + 1, |
| REP = 1 << REPShift, |
| |
| // Execution domain for SSE instructions. |
| // 0 means normal, non-SSE instruction. |
| SSEDomainShift = REPShift + 1, |
| |
| // Encoding |
| EncodingShift = SSEDomainShift + 2, |
| EncodingMask = 0x3 << EncodingShift, |
| |
| // VEX - encoding using 0xC4/0xC5 |
| VEX = 1 << EncodingShift, |
| |
| /// XOP - Opcode prefix used by XOP instructions. |
| XOP = 2 << EncodingShift, |
| |
| // VEX_EVEX - Specifies that this instruction use EVEX form which provides |
| // syntax support up to 32 512-bit register operands and up to 7 16-bit |
| // mask operands as well as source operand data swizzling/memory operand |
| // conversion, eviction hint, and rounding mode. |
| EVEX = 3 << EncodingShift, |
| |
| // Opcode |
| OpcodeShift = EncodingShift + 2, |
| |
| /// VEX_W - Has a opcode specific functionality, but is used in the same |
| /// way as REX_W is for regular SSE instructions. |
| VEX_WShift = OpcodeShift + 8, |
| VEX_W = 1ULL << VEX_WShift, |
| |
| /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 |
| /// address instructions in SSE are represented as 3 address ones in AVX |
| /// and the additional register is encoded in VEX_VVVV prefix. |
| VEX_4VShift = VEX_WShift + 1, |
| VEX_4V = 1ULL << VEX_4VShift, |
| |
| /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current |
| /// instruction uses 256-bit wide registers. This is usually auto detected |
| /// if a VR256 register is used, but some AVX instructions also have this |
| /// field marked when using a f256 memory references. |
| VEX_LShift = VEX_4VShift + 1, |
| VEX_L = 1ULL << VEX_LShift, |
| |
| // EVEX_K - Set if this instruction requires masking |
| EVEX_KShift = VEX_LShift + 1, |
| EVEX_K = 1ULL << EVEX_KShift, |
| |
| // EVEX_Z - Set if this instruction has EVEX.Z field set. |
| EVEX_ZShift = EVEX_KShift + 1, |
| EVEX_Z = 1ULL << EVEX_ZShift, |
| |
| // EVEX_L2 - Set if this instruction has EVEX.L' field set. |
| EVEX_L2Shift = EVEX_ZShift + 1, |
| EVEX_L2 = 1ULL << EVEX_L2Shift, |
| |
| // EVEX_B - Set if this instruction has EVEX.B field set. |
| EVEX_BShift = EVEX_L2Shift + 1, |
| EVEX_B = 1ULL << EVEX_BShift, |
| |
| // The scaling factor for the AVX512's 8-bit compressed displacement. |
| CD8_Scale_Shift = EVEX_BShift + 1, |
| CD8_Scale_Mask = 127ULL << CD8_Scale_Shift, |
| |
| /// Explicitly specified rounding control |
| EVEX_RCShift = CD8_Scale_Shift + 7, |
| EVEX_RC = 1ULL << EVEX_RCShift, |
| |
| // NOTRACK prefix |
| NoTrackShift = EVEX_RCShift + 1, |
| NOTRACK = 1ULL << NoTrackShift, |
| |
| // Force VEX encoding |
| ExplicitVEXShift = NoTrackShift + 1, |
| ExplicitVEXPrefix = 1ULL << ExplicitVEXShift |
| }; |
| |
| /// \returns true if the instruction with given opcode is a prefix. |
| inline bool isPrefix(uint64_t TSFlags) { |
| return (TSFlags & X86II::FormMask) == PrefixByte; |
| } |
| |
| /// \returns true if the instruction with given opcode is a pseudo. |
| inline bool isPseudo(uint64_t TSFlags) { |
| return (TSFlags & X86II::FormMask) == Pseudo; |
| } |
| |
| /// \returns the "base" X86 opcode for the specified machine |
| /// instruction. |
| inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { |
| return TSFlags >> X86II::OpcodeShift; |
| } |
| |
| inline bool hasImm(uint64_t TSFlags) { |
| return (TSFlags & X86II::ImmMask) != 0; |
| } |
| |
| /// Decode the "size of immediate" field from the TSFlags field of the |
| /// specified instruction. |
| inline unsigned getSizeOfImm(uint64_t TSFlags) { |
| switch (TSFlags & X86II::ImmMask) { |
| default: llvm_unreachable("Unknown immediate size"); |
| case X86II::Imm8: |
| case X86II::Imm8PCRel: |
| case X86II::Imm8Reg: return 1; |
| case X86II::Imm16: |
| case X86II::Imm16PCRel: return 2; |
| case X86II::Imm32: |
| case X86II::Imm32S: |
| case X86II::Imm32PCRel: return 4; |
| case X86II::Imm64: return 8; |
| } |
| } |
| |
| /// \returns true if the immediate of the specified instruction's TSFlags |
| /// indicates that it is pc relative. |
| inline bool isImmPCRel(uint64_t TSFlags) { |
| switch (TSFlags & X86II::ImmMask) { |
| default: llvm_unreachable("Unknown immediate size"); |
| case X86II::Imm8PCRel: |
| case X86II::Imm16PCRel: |
| case X86II::Imm32PCRel: |
| return true; |
| case X86II::Imm8: |
| case X86II::Imm8Reg: |
| case X86II::Imm16: |
| case X86II::Imm32: |
| case X86II::Imm32S: |
| case X86II::Imm64: |
| return false; |
| } |
| } |
| |
| /// \returns true if the immediate of the specified instruction's |
| /// TSFlags indicates that it is signed. |
| inline bool isImmSigned(uint64_t TSFlags) { |
| switch (TSFlags & X86II::ImmMask) { |
| default: llvm_unreachable("Unknown immediate signedness"); |
| case X86II::Imm32S: |
| return true; |
| case X86II::Imm8: |
| case X86II::Imm8PCRel: |
| case X86II::Imm8Reg: |
| case X86II::Imm16: |
| case X86II::Imm16PCRel: |
| case X86II::Imm32: |
| case X86II::Imm32PCRel: |
| case X86II::Imm64: |
| return false; |
| } |
| } |
| |
| /// Compute whether all of the def operands are repeated in the uses and |
| /// therefore should be skipped. |
| /// This determines the start of the unique operand list. We need to determine |
| /// if all of the defs have a corresponding tied operand in the uses. |
| /// Unfortunately, the tied operand information is encoded in the uses not |
| /// the defs so we have to use some heuristics to find which operands to |
| /// query. |
| inline unsigned getOperandBias(const MCInstrDesc& Desc) { |
| unsigned NumDefs = Desc.getNumDefs(); |
| unsigned NumOps = Desc.getNumOperands(); |
| switch (NumDefs) { |
| default: llvm_unreachable("Unexpected number of defs"); |
| case 0: |
| return 0; |
| case 1: |
| // Common two addr case. |
| if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) |
| return 1; |
| // Check for AVX-512 scatter which has a TIED_TO in the second to last |
| // operand. |
| if (NumOps == 8 && |
| Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0) |
| return 1; |
| return 0; |
| case 2: |
| // XCHG/XADD have two destinations and two sources. |
| if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && |
| Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) |
| return 2; |
| // Check for gather. AVX-512 has the second tied operand early. AVX2 |
| // has it as the last op. |
| if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && |
| (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 || |
| Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1)) |
| return 2; |
| return 0; |
| } |
| } |
| |
| /// The function returns the MCInst operand # for the first field of the |
| /// memory operand. If the instruction doesn't have a |
| /// memory operand, this returns -1. |
| /// |
| /// Note that this ignores tied operands. If there is a tied register which |
| /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only |
| /// counted as one operand. |
| /// |
| inline int getMemoryOperandNo(uint64_t TSFlags) { |
| bool HasVEX_4V = TSFlags & X86II::VEX_4V; |
| bool HasEVEX_K = TSFlags & X86II::EVEX_K; |
| |
| switch (TSFlags & X86II::FormMask) { |
| default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); |
| case X86II::Pseudo: |
| case X86II::RawFrm: |
| case X86II::AddRegFrm: |
| case X86II::RawFrmImm8: |
| case X86II::RawFrmImm16: |
| case X86II::RawFrmMemOffs: |
| case X86II::RawFrmSrc: |
| case X86II::RawFrmDst: |
| case X86II::RawFrmDstSrc: |
| case X86II::AddCCFrm: |
| case X86II::PrefixByte: |
| return -1; |
| case X86II::MRMDestMem: |
| case X86II::MRMDestMemFSIB: |
| return 0; |
| case X86II::MRMSrcMem: |
| case X86II::MRMSrcMemFSIB: |
| // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a |
| // mask register. |
| return 1 + HasVEX_4V + HasEVEX_K; |
| case X86II::MRMSrcMem4VOp3: |
| // Skip registers encoded in reg. |
| return 1 + HasEVEX_K; |
| case X86II::MRMSrcMemOp4: |
| // Skip registers encoded in reg, VEX_VVVV, and I8IMM. |
| return 3; |
| case X86II::MRMSrcMemCC: |
| // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a |
| // mask register. |
| return 1; |
| case X86II::MRMDestReg: |
| case X86II::MRMSrcReg: |
| case X86II::MRMSrcReg4VOp3: |
| case X86II::MRMSrcRegOp4: |
| case X86II::MRMSrcRegCC: |
| case X86II::MRMXrCC: |
| case X86II::MRMr0: |
| case X86II::MRMXr: |
| case X86II::MRM0r: case X86II::MRM1r: |
| case X86II::MRM2r: case X86II::MRM3r: |
| case X86II::MRM4r: case X86II::MRM5r: |
| case X86II::MRM6r: case X86II::MRM7r: |
| return -1; |
| case X86II::MRM0X: case X86II::MRM1X: |
| case X86II::MRM2X: case X86II::MRM3X: |
| case X86II::MRM4X: case X86II::MRM5X: |
| case X86II::MRM6X: case X86II::MRM7X: |
| return -1; |
| case X86II::MRMXmCC: |
| case X86II::MRMXm: |
| case X86II::MRM0m: case X86II::MRM1m: |
| case X86II::MRM2m: case X86II::MRM3m: |
| case X86II::MRM4m: case X86II::MRM5m: |
| case X86II::MRM6m: case X86II::MRM7m: |
| // Start from 0, skip registers encoded in VEX_VVVV or a mask register. |
| return 0 + HasVEX_4V + HasEVEX_K; |
| case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: |
| case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: |
| case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: |
| case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: |
| case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: |
| case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: |
| case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: |
| case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: |
| case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: |
| case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: |
| case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: |
| case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: |
| case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: |
| case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: |
| case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: |
| case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: |
| case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: |
| case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: |
| case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: |
| case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: |
| case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: |
| case X86II::MRM_FF: |
| return -1; |
| } |
| } |
| |
| /// \returns true if the MachineOperand is a x86-64 extended (r8 or |
| /// higher) register, e.g. r8, xmm8, xmm13, etc. |
| inline bool isX86_64ExtendedReg(unsigned RegNo) { |
| if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) || |
| (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) || |
| (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) |
| return true; |
| |
| switch (RegNo) { |
| default: break; |
| case X86::R8: case X86::R9: case X86::R10: case X86::R11: |
| case X86::R12: case X86::R13: case X86::R14: case X86::R15: |
| case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: |
| case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: |
| case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: |
| case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: |
| case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: |
| case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: |
| case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: |
| case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: |
| case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11: |
| case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15: |
| return true; |
| } |
| return false; |
| } |
| |
| /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher) |
| /// registers, e.g. zmm21, etc. |
| static inline bool is32ExtendedReg(unsigned RegNo) { |
| return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || |
| (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || |
| (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); |
| } |
| |
| |
| inline bool isX86_64NonExtLowByteReg(unsigned reg) { |
| return (reg == X86::SPL || reg == X86::BPL || |
| reg == X86::SIL || reg == X86::DIL); |
| } |
| |
| /// \returns true if this is a masked instruction. |
| inline bool isKMasked(uint64_t TSFlags) { |
| return (TSFlags & X86II::EVEX_K) != 0; |
| } |
| |
| /// \returns true if this is a merge masked instruction. |
| inline bool isKMergeMasked(uint64_t TSFlags) { |
| return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; |
| } |
| } |
| |
| } // end namespace llvm; |
| |
| #endif |