| //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is part of the X86 Disassembler. |
| // It contains code to translate the data produced by the decoder into |
| // MCInsts. |
| // |
| // |
| // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and |
| // 64-bit X86 instruction sets. The main decode sequence for an assembly |
| // instruction in this disassembler is: |
| // |
| // 1. Read the prefix bytes and determine the attributes of the instruction. |
| // These attributes, recorded in enum attributeBits |
| // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM |
| // provides a mapping from bitmasks to contexts, which are represented by |
| // enum InstructionContext (ibid.). |
| // |
| // 2. Read the opcode, and determine what kind of opcode it is. The |
| // disassembler distinguishes four kinds of opcodes, which are enumerated in |
| // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte |
| // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a |
| // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. |
| // |
| // 3. Depending on the opcode type, look in one of four ClassDecision structures |
| // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which |
| // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get |
| // a ModRMDecision (ibid.). |
| // |
| // 4. Some instructions, such as escape opcodes or extended opcodes, or even |
| // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the |
| // ModR/M byte to complete decode. The ModRMDecision's type is an entry from |
| // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the |
| // ModR/M byte is required and how to interpret it. |
| // |
| // 5. After resolving the ModRMDecision, the disassembler has a unique ID |
| // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in |
| // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and |
| // meanings of its operands. |
| // |
| // 6. For each operand, its encoding is an entry from OperandEncoding |
| // (X86DisassemblerDecoderCommon.h) and its type is an entry from |
| // OperandType (ibid.). The encoding indicates how to read it from the |
| // instruction; the type indicates how to interpret the value once it has |
| // been read. For example, a register operand could be stored in the R/M |
| // field of the ModR/M byte, the REG field of the ModR/M byte, or added to |
| // the main opcode. This is orthogonal from its meaning (an GPR or an XMM |
| // register, for instance). Given this information, the operands can be |
| // extracted and interpreted. |
| // |
| // 7. As the last step, the disassembler translates the instruction information |
| // and operands into a format understandable by the client - in this case, an |
| // MCInst for use by the MC infrastructure. |
| // |
| // The disassembler is broken broadly into two parts: the table emitter that |
| // emits the instruction decode tables discussed above during compilation, and |
| // the disassembler itself. The table emitter is documented in more detail in |
| // utils/TableGen/X86DisassemblerEmitter.h. |
| // |
| // X86Disassembler.cpp contains the code responsible for step 7, and for |
| // invoking the decoder to execute steps 1-6. |
| // X86DisassemblerDecoderCommon.h contains the definitions needed by both the |
| // table emitter and the disassembler. |
| // X86DisassemblerDecoder.h contains the public interface of the decoder, |
| // factored out into C for possible use by other projects. |
| // X86DisassemblerDecoder.c contains the source code of the decoder, which is |
| // responsible for steps 1-6. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "MCTargetDesc/X86MCTargetDesc.h" |
| #include "TargetInfo/X86TargetInfo.h" |
| #include "X86DisassemblerDecoder.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDisassembler/MCDisassembler.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstrInfo.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace llvm::X86Disassembler; |
| |
| #define DEBUG_TYPE "x86-disassembler" |
| |
| #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); |
| |
| // Specifies whether a ModR/M byte is needed and (if so) which |
| // instruction each possible value of the ModR/M byte corresponds to. Once |
| // this information is known, we have narrowed down to a single instruction. |
| struct ModRMDecision { |
| uint8_t modrm_type; |
| uint16_t instructionIDs; |
| }; |
| |
| // Specifies which set of ModR/M->instruction tables to look at |
| // given a particular opcode. |
| struct OpcodeDecision { |
| ModRMDecision modRMDecisions[256]; |
| }; |
| |
| // Specifies which opcode->instruction tables to look at given |
| // a particular context (set of attributes). Since there are many possible |
| // contexts, the decoder first uses CONTEXTS_SYM to determine which context |
| // applies given a specific set of attributes. Hence there are only IC_max |
| // entries in this table, rather than 2^(ATTR_max). |
| struct ContextDecision { |
| OpcodeDecision opcodeDecisions[IC_max]; |
| }; |
| |
| #include "X86GenDisassemblerTables.inc" |
| |
| static InstrUID decode(OpcodeType type, InstructionContext insnContext, |
| uint8_t opcode, uint8_t modRM) { |
| const struct ModRMDecision *dec; |
| |
| switch (type) { |
| case ONEBYTE: |
| dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case TWOBYTE: |
| dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_38: |
| dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case THREEBYTE_3A: |
| dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case XOP8_MAP: |
| dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case XOP9_MAP: |
| dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case XOPA_MAP: |
| dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case THREEDNOW_MAP: |
| dec = |
| &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case MAP5: |
| dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| case MAP6: |
| dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
| break; |
| } |
| |
| switch (dec->modrm_type) { |
| default: |
| llvm_unreachable("Corrupt table! Unknown modrm_type"); |
| return 0; |
| case MODRM_ONEENTRY: |
| return modRMTable[dec->instructionIDs]; |
| case MODRM_SPLITRM: |
| if (modFromModRM(modRM) == 0x3) |
| return modRMTable[dec->instructionIDs + 1]; |
| return modRMTable[dec->instructionIDs]; |
| case MODRM_SPLITREG: |
| if (modFromModRM(modRM) == 0x3) |
| return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; |
| return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
| case MODRM_SPLITMISC: |
| if (modFromModRM(modRM) == 0x3) |
| return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; |
| return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
| case MODRM_FULL: |
| return modRMTable[dec->instructionIDs + modRM]; |
| } |
| } |
| |
| static bool peek(struct InternalInstruction *insn, uint8_t &byte) { |
| uint64_t offset = insn->readerCursor - insn->startLocation; |
| if (offset >= insn->bytes.size()) |
| return true; |
| byte = insn->bytes[offset]; |
| return false; |
| } |
| |
| template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { |
| auto r = insn->bytes; |
| uint64_t offset = insn->readerCursor - insn->startLocation; |
| if (offset + sizeof(T) > r.size()) |
| return true; |
| T ret = 0; |
| for (unsigned i = 0; i < sizeof(T); ++i) |
| ret |= (uint64_t)r[offset + i] << (i * 8); |
| ptr = ret; |
| insn->readerCursor += sizeof(T); |
| return false; |
| } |
| |
| static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { |
| return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; |
| } |
| |
| // Consumes all of an instruction's prefix bytes, and marks the |
| // instruction as having them. Also sets the instruction's default operand, |
| // address, and other relevant data sizes to report operands correctly. |
| // |
| // insn must not be empty. |
| static int readPrefixes(struct InternalInstruction *insn) { |
| bool isPrefix = true; |
| uint8_t byte = 0; |
| uint8_t nextByte; |
| |
| LLVM_DEBUG(dbgs() << "readPrefixes()"); |
| |
| while (isPrefix) { |
| // If we fail reading prefixes, just stop here and let the opcode reader |
| // deal with it. |
| if (consume(insn, byte)) |
| break; |
| |
| // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then |
| // break and let it be disassembled as a normal "instruction". |
| if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK |
| break; |
| |
| if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) { |
| // If the byte is 0xf2 or 0xf3, and any of the following conditions are |
| // met: |
| // - it is followed by a LOCK (0xf0) prefix |
| // - it is followed by an xchg instruction |
| // then it should be disassembled as a xacquire/xrelease not repne/rep. |
| if (((nextByte == 0xf0) || |
| ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { |
| insn->xAcquireRelease = true; |
| if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support |
| break; |
| } |
| // Also if the byte is 0xf3, and the following condition is met: |
| // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or |
| // "mov mem, imm" (opcode 0xc6/0xc7) instructions. |
| // then it should be disassembled as an xrelease not rep. |
| if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || |
| nextByte == 0xc6 || nextByte == 0xc7)) { |
| insn->xAcquireRelease = true; |
| break; |
| } |
| if (isREX(insn, nextByte)) { |
| uint8_t nnextByte; |
| // Go to REX prefix after the current one |
| if (consume(insn, nnextByte)) |
| return -1; |
| // We should be able to read next byte after REX prefix |
| if (peek(insn, nnextByte)) |
| return -1; |
| --insn->readerCursor; |
| } |
| } |
| |
| switch (byte) { |
| case 0xf0: // LOCK |
| insn->hasLockPrefix = true; |
| break; |
| case 0xf2: // REPNE/REPNZ |
| case 0xf3: { // REP or REPE/REPZ |
| uint8_t nextByte; |
| if (peek(insn, nextByte)) |
| break; |
| // TODO: |
| // 1. There could be several 0x66 |
| // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then |
| // it's not mandatory prefix |
| // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need |
| // 0x0f exactly after it to be mandatory prefix |
| if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) |
| // The last of 0xf2 /0xf3 is mandatory prefix |
| insn->mandatoryPrefix = byte; |
| insn->repeatPrefix = byte; |
| break; |
| } |
| case 0x2e: // CS segment override -OR- Branch not taken |
| insn->segmentOverride = SEG_OVERRIDE_CS; |
| break; |
| case 0x36: // SS segment override -OR- Branch taken |
| insn->segmentOverride = SEG_OVERRIDE_SS; |
| break; |
| case 0x3e: // DS segment override |
| insn->segmentOverride = SEG_OVERRIDE_DS; |
| break; |
| case 0x26: // ES segment override |
| insn->segmentOverride = SEG_OVERRIDE_ES; |
| break; |
| case 0x64: // FS segment override |
| insn->segmentOverride = SEG_OVERRIDE_FS; |
| break; |
| case 0x65: // GS segment override |
| insn->segmentOverride = SEG_OVERRIDE_GS; |
| break; |
| case 0x66: { // Operand-size override { |
| uint8_t nextByte; |
| insn->hasOpSize = true; |
| if (peek(insn, nextByte)) |
| break; |
| // 0x66 can't overwrite existing mandatory prefix and should be ignored |
| if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) |
| insn->mandatoryPrefix = byte; |
| break; |
| } |
| case 0x67: // Address-size override |
| insn->hasAdSize = true; |
| break; |
| default: // Not a prefix byte |
| isPrefix = false; |
| break; |
| } |
| |
| if (isPrefix) |
| LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte)); |
| } |
| |
| insn->vectorExtensionType = TYPE_NO_VEX_XOP; |
| |
| if (byte == 0x62) { |
| uint8_t byte1, byte2; |
| if (consume(insn, byte1)) { |
| LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix"); |
| return -1; |
| } |
| |
| if (peek(insn, byte2)) { |
| LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); |
| return -1; |
| } |
| |
| if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && |
| ((~byte1 & 0x8) == 0x8) && ((byte2 & 0x4) == 0x4)) { |
| insn->vectorExtensionType = TYPE_EVEX; |
| } else { |
| --insn->readerCursor; // unconsume byte1 |
| --insn->readerCursor; // unconsume byte |
| } |
| |
| if (insn->vectorExtensionType == TYPE_EVEX) { |
| insn->vectorExtensionPrefix[0] = byte; |
| insn->vectorExtensionPrefix[1] = byte1; |
| if (consume(insn, insn->vectorExtensionPrefix[2])) { |
| LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); |
| return -1; |
| } |
| if (consume(insn, insn->vectorExtensionPrefix[3])) { |
| LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix"); |
| return -1; |
| } |
| |
| // We simulate the REX prefix for simplicity's sake |
| if (insn->mode == MODE_64BIT) { |
| insn->rexPrefix = 0x40 | |
| (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | |
| (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | |
| (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | |
| (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << format( |
| "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", |
| insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], |
| insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); |
| } |
| } else if (byte == 0xc4) { |
| uint8_t byte1; |
| if (peek(insn, byte1)) { |
| LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); |
| return -1; |
| } |
| |
| if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
| insn->vectorExtensionType = TYPE_VEX_3B; |
| else |
| --insn->readerCursor; |
| |
| if (insn->vectorExtensionType == TYPE_VEX_3B) { |
| insn->vectorExtensionPrefix[0] = byte; |
| consume(insn, insn->vectorExtensionPrefix[1]); |
| consume(insn, insn->vectorExtensionPrefix[2]); |
| |
| // We simulate the REX prefix for simplicity's sake |
| |
| if (insn->mode == MODE_64BIT) |
| insn->rexPrefix = 0x40 | |
| (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | |
| (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | |
| (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | |
| (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); |
| |
| LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", |
| insn->vectorExtensionPrefix[0], |
| insn->vectorExtensionPrefix[1], |
| insn->vectorExtensionPrefix[2])); |
| } |
| } else if (byte == 0xc5) { |
| uint8_t byte1; |
| if (peek(insn, byte1)) { |
| LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); |
| return -1; |
| } |
| |
| if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
| insn->vectorExtensionType = TYPE_VEX_2B; |
| else |
| --insn->readerCursor; |
| |
| if (insn->vectorExtensionType == TYPE_VEX_2B) { |
| insn->vectorExtensionPrefix[0] = byte; |
| consume(insn, insn->vectorExtensionPrefix[1]); |
| |
| if (insn->mode == MODE_64BIT) |
| insn->rexPrefix = |
| 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); |
| |
| switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
| default: |
| break; |
| case VEX_PREFIX_66: |
| insn->hasOpSize = true; |
| break; |
| } |
| |
| LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx", |
| insn->vectorExtensionPrefix[0], |
| insn->vectorExtensionPrefix[1])); |
| } |
| } else if (byte == 0x8f) { |
| uint8_t byte1; |
| if (peek(insn, byte1)) { |
| LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP"); |
| return -1; |
| } |
| |
| if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. |
| insn->vectorExtensionType = TYPE_XOP; |
| else |
| --insn->readerCursor; |
| |
| if (insn->vectorExtensionType == TYPE_XOP) { |
| insn->vectorExtensionPrefix[0] = byte; |
| consume(insn, insn->vectorExtensionPrefix[1]); |
| consume(insn, insn->vectorExtensionPrefix[2]); |
| |
| // We simulate the REX prefix for simplicity's sake |
| |
| if (insn->mode == MODE_64BIT) |
| insn->rexPrefix = 0x40 | |
| (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | |
| (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | |
| (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | |
| (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); |
| |
| switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
| default: |
| break; |
| case VEX_PREFIX_66: |
| insn->hasOpSize = true; |
| break; |
| } |
| |
| LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", |
| insn->vectorExtensionPrefix[0], |
| insn->vectorExtensionPrefix[1], |
| insn->vectorExtensionPrefix[2])); |
| } |
| } else if (isREX(insn, byte)) { |
| if (peek(insn, nextByte)) |
| return -1; |
| insn->rexPrefix = byte; |
| LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte)); |
| } else |
| --insn->readerCursor; |
| |
| if (insn->mode == MODE_16BIT) { |
| insn->registerSize = (insn->hasOpSize ? 4 : 2); |
| insn->addressSize = (insn->hasAdSize ? 4 : 2); |
| insn->displacementSize = (insn->hasAdSize ? 4 : 2); |
| insn->immediateSize = (insn->hasOpSize ? 4 : 2); |
| } else if (insn->mode == MODE_32BIT) { |
| insn->registerSize = (insn->hasOpSize ? 2 : 4); |
| insn->addressSize = (insn->hasAdSize ? 2 : 4); |
| insn->displacementSize = (insn->hasAdSize ? 2 : 4); |
| insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
| } else if (insn->mode == MODE_64BIT) { |
| if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { |
| insn->registerSize = 8; |
| insn->addressSize = (insn->hasAdSize ? 4 : 8); |
| insn->displacementSize = 4; |
| insn->immediateSize = 4; |
| insn->hasOpSize = false; |
| } else { |
| insn->registerSize = (insn->hasOpSize ? 2 : 4); |
| insn->addressSize = (insn->hasAdSize ? 4 : 8); |
| insn->displacementSize = (insn->hasOpSize ? 2 : 4); |
| insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Consumes the SIB byte to determine addressing information. |
| static int readSIB(struct InternalInstruction *insn) { |
| SIBBase sibBaseBase = SIB_BASE_NONE; |
| uint8_t index, base; |
| |
| LLVM_DEBUG(dbgs() << "readSIB()"); |
| switch (insn->addressSize) { |
| case 2: |
| default: |
| llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode"); |
| case 4: |
| insn->sibIndexBase = SIB_INDEX_EAX; |
| sibBaseBase = SIB_BASE_EAX; |
| break; |
| case 8: |
| insn->sibIndexBase = SIB_INDEX_RAX; |
| sibBaseBase = SIB_BASE_RAX; |
| break; |
| } |
| |
| if (consume(insn, insn->sib)) |
| return -1; |
| |
| index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); |
| |
| if (index == 0x4) { |
| insn->sibIndex = SIB_INDEX_NONE; |
| } else { |
| insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); |
| } |
| |
| insn->sibScale = 1 << scaleFromSIB(insn->sib); |
| |
| base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); |
| |
| switch (base) { |
| case 0x5: |
| case 0xd: |
| switch (modFromModRM(insn->modRM)) { |
| case 0x0: |
| insn->eaDisplacement = EA_DISP_32; |
| insn->sibBase = SIB_BASE_NONE; |
| break; |
| case 0x1: |
| insn->eaDisplacement = EA_DISP_8; |
| insn->sibBase = (SIBBase)(sibBaseBase + base); |
| break; |
| case 0x2: |
| insn->eaDisplacement = EA_DISP_32; |
| insn->sibBase = (SIBBase)(sibBaseBase + base); |
| break; |
| default: |
| llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte"); |
| } |
| break; |
| default: |
| insn->sibBase = (SIBBase)(sibBaseBase + base); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int readDisplacement(struct InternalInstruction *insn) { |
| int8_t d8; |
| int16_t d16; |
| int32_t d32; |
| LLVM_DEBUG(dbgs() << "readDisplacement()"); |
| |
| insn->displacementOffset = insn->readerCursor - insn->startLocation; |
| switch (insn->eaDisplacement) { |
| case EA_DISP_NONE: |
| break; |
| case EA_DISP_8: |
| if (consume(insn, d8)) |
| return -1; |
| insn->displacement = d8; |
| break; |
| case EA_DISP_16: |
| if (consume(insn, d16)) |
| return -1; |
| insn->displacement = d16; |
| break; |
| case EA_DISP_32: |
| if (consume(insn, d32)) |
| return -1; |
| insn->displacement = d32; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. |
| static int readModRM(struct InternalInstruction *insn) { |
| uint8_t mod, rm, reg, evexrm; |
| LLVM_DEBUG(dbgs() << "readModRM()"); |
| |
| if (insn->consumedModRM) |
| return 0; |
| |
| if (consume(insn, insn->modRM)) |
| return -1; |
| insn->consumedModRM = true; |
| |
| mod = modFromModRM(insn->modRM); |
| rm = rmFromModRM(insn->modRM); |
| reg = regFromModRM(insn->modRM); |
| |
| // This goes by insn->registerSize to pick the correct register, which messes |
| // up if we're using (say) XMM or 8-bit register operands. That gets fixed in |
| // fixupReg(). |
| switch (insn->registerSize) { |
| case 2: |
| insn->regBase = MODRM_REG_AX; |
| insn->eaRegBase = EA_REG_AX; |
| break; |
| case 4: |
| insn->regBase = MODRM_REG_EAX; |
| insn->eaRegBase = EA_REG_EAX; |
| break; |
| case 8: |
| insn->regBase = MODRM_REG_RAX; |
| insn->eaRegBase = EA_REG_RAX; |
| break; |
| } |
| |
| reg |= rFromREX(insn->rexPrefix) << 3; |
| rm |= bFromREX(insn->rexPrefix) << 3; |
| |
| evexrm = 0; |
| if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) { |
| reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
| evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
| } |
| |
| insn->reg = (Reg)(insn->regBase + reg); |
| |
| switch (insn->addressSize) { |
| case 2: { |
| EABase eaBaseBase = EA_BASE_BX_SI; |
| |
| switch (mod) { |
| case 0x0: |
| if (rm == 0x6) { |
| insn->eaBase = EA_BASE_NONE; |
| insn->eaDisplacement = EA_DISP_16; |
| if (readDisplacement(insn)) |
| return -1; |
| } else { |
| insn->eaBase = (EABase)(eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_NONE; |
| } |
| break; |
| case 0x1: |
| insn->eaBase = (EABase)(eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_8; |
| insn->displacementSize = 1; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x2: |
| insn->eaBase = (EABase)(eaBaseBase + rm); |
| insn->eaDisplacement = EA_DISP_16; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x3: |
| insn->eaBase = (EABase)(insn->eaRegBase + rm); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| } |
| break; |
| } |
| case 4: |
| case 8: { |
| EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); |
| |
| switch (mod) { |
| case 0x0: |
| insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this |
| // In determining whether RIP-relative mode is used (rm=5), |
| // or whether a SIB byte is present (rm=4), |
| // the extension bits (REX.b and EVEX.x) are ignored. |
| switch (rm & 7) { |
| case 0x4: // SIB byte is present |
| insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); |
| if (readSIB(insn) || readDisplacement(insn)) |
| return -1; |
| break; |
| case 0x5: // RIP-relative |
| insn->eaBase = EA_BASE_NONE; |
| insn->eaDisplacement = EA_DISP_32; |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| default: |
| insn->eaBase = (EABase)(eaBaseBase + rm); |
| break; |
| } |
| break; |
| case 0x1: |
| insn->displacementSize = 1; |
| LLVM_FALLTHROUGH; |
| case 0x2: |
| insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); |
| switch (rm & 7) { |
| case 0x4: // SIB byte is present |
| insn->eaBase = EA_BASE_sib; |
| if (readSIB(insn) || readDisplacement(insn)) |
| return -1; |
| break; |
| default: |
| insn->eaBase = (EABase)(eaBaseBase + rm); |
| if (readDisplacement(insn)) |
| return -1; |
| break; |
| } |
| break; |
| case 0x3: |
| insn->eaDisplacement = EA_DISP_NONE; |
| insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); |
| break; |
| } |
| break; |
| } |
| } // switch (insn->addressSize) |
| |
| return 0; |
| } |
| |
| #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \ |
| static uint16_t name(struct InternalInstruction *insn, OperandType type, \ |
| uint8_t index, uint8_t *valid) { \ |
| *valid = 1; \ |
| switch (type) { \ |
| default: \ |
| debug("Unhandled register type"); \ |
| *valid = 0; \ |
| return 0; \ |
| case TYPE_Rv: \ |
| return base + index; \ |
| case TYPE_R8: \ |
| index &= mask; \ |
| if (index > 0xf) \ |
| *valid = 0; \ |
| if (insn->rexPrefix && index >= 4 && index <= 7) { \ |
| return prefix##_SPL + (index - 4); \ |
| } else { \ |
| return prefix##_AL + index; \ |
| } \ |
| case TYPE_R16: \ |
| index &= mask; \ |
| if (index > 0xf) \ |
| *valid = 0; \ |
| return prefix##_AX + index; \ |
| case TYPE_R32: \ |
| index &= mask; \ |
| if (index > 0xf) \ |
| *valid = 0; \ |
| return prefix##_EAX + index; \ |
| case TYPE_R64: \ |
| index &= mask; \ |
| if (index > 0xf) \ |
| *valid = 0; \ |
| return prefix##_RAX + index; \ |
| case TYPE_ZMM: \ |
| return prefix##_ZMM0 + index; \ |
| case TYPE_YMM: \ |
| return prefix##_YMM0 + index; \ |
| case TYPE_XMM: \ |
| return prefix##_XMM0 + index; \ |
| case TYPE_TMM: \ |
| if (index > 7) \ |
| *valid = 0; \ |
| return prefix##_TMM0 + index; \ |
| case TYPE_VK: \ |
| index &= 0xf; \ |
| if (index > 7) \ |
| *valid = 0; \ |
| return prefix##_K0 + index; \ |
| case TYPE_VK_PAIR: \ |
| if (index > 7) \ |
| *valid = 0; \ |
| return prefix##_K0_K1 + (index / 2); \ |
| case TYPE_MM64: \ |
| return prefix##_MM0 + (index & 0x7); \ |
| case TYPE_SEGMENTREG: \ |
| if ((index & 7) > 5) \ |
| *valid = 0; \ |
| return prefix##_ES + (index & 7); \ |
| case TYPE_DEBUGREG: \ |
| return prefix##_DR0 + index; \ |
| case TYPE_CONTROLREG: \ |
| return prefix##_CR0 + index; \ |
| case TYPE_MVSIBX: \ |
| return prefix##_XMM0 + index; \ |
| case TYPE_MVSIBY: \ |
| return prefix##_YMM0 + index; \ |
| case TYPE_MVSIBZ: \ |
| return prefix##_ZMM0 + index; \ |
| } \ |
| } |
| |
| // Consult an operand type to determine the meaning of the reg or R/M field. If |
| // the operand is an XMM operand, for example, an operand would be XMM0 instead |
| // of AX, which readModRM() would otherwise misinterpret it as. |
| // |
| // @param insn - The instruction containing the operand. |
| // @param type - The operand type. |
| // @param index - The existing value of the field as reported by readModRM(). |
| // @param valid - The address of a uint8_t. The target is set to 1 if the |
| // field is valid for the register class; 0 if not. |
| // @return - The proper value. |
| GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f) |
| GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf) |
| |
| // Consult an operand specifier to determine which of the fixup*Value functions |
| // to use in correcting readModRM()'ss interpretation. |
| // |
| // @param insn - See fixup*Value(). |
| // @param op - The operand specifier. |
| // @return - 0 if fixup was successful; -1 if the register returned was |
| // invalid for its class. |
| static int fixupReg(struct InternalInstruction *insn, |
| const struct OperandSpecifier *op) { |
| uint8_t valid; |
| LLVM_DEBUG(dbgs() << "fixupReg()"); |
| |
| switch ((OperandEncoding)op->encoding) { |
| default: |
| debug("Expected a REG or R/M encoding in fixupReg"); |
| return -1; |
| case ENCODING_VVVV: |
| insn->vvvv = |
| (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid); |
| if (!valid) |
| return -1; |
| break; |
| case ENCODING_REG: |
| insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, |
| insn->reg - insn->regBase, &valid); |
| if (!valid) |
| return -1; |
| break; |
| case ENCODING_SIB: |
| CASE_ENCODING_RM: |
| if (insn->eaBase >= insn->eaRegBase) { |
| insn->eaBase = (EABase)fixupRMValue( |
| insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid); |
| if (!valid) |
| return -1; |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| // Read the opcode (except the ModR/M byte in the case of extended or escape |
| // opcodes). |
| static bool readOpcode(struct InternalInstruction *insn) { |
| uint8_t current; |
| LLVM_DEBUG(dbgs() << "readOpcode()"); |
| |
| insn->opcodeType = ONEBYTE; |
| if (insn->vectorExtensionType == TYPE_EVEX) { |
| switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { |
| default: |
| LLVM_DEBUG( |
| dbgs() << format("Unhandled mmm field for instruction (0x%hhx)", |
| mmmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); |
| return true; |
| case VEX_LOB_0F: |
| insn->opcodeType = TWOBYTE; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_0F38: |
| insn->opcodeType = THREEBYTE_38; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_0F3A: |
| insn->opcodeType = THREEBYTE_3A; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_MAP5: |
| insn->opcodeType = MAP5; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_MAP6: |
| insn->opcodeType = MAP6; |
| return consume(insn, insn->opcode); |
| } |
| } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
| switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { |
| default: |
| LLVM_DEBUG( |
| dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", |
| mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); |
| return true; |
| case VEX_LOB_0F: |
| insn->opcodeType = TWOBYTE; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_0F38: |
| insn->opcodeType = THREEBYTE_38; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_0F3A: |
| insn->opcodeType = THREEBYTE_3A; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_MAP5: |
| insn->opcodeType = MAP5; |
| return consume(insn, insn->opcode); |
| case VEX_LOB_MAP6: |
| insn->opcodeType = MAP6; |
| return consume(insn, insn->opcode); |
| } |
| } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
| insn->opcodeType = TWOBYTE; |
| return consume(insn, insn->opcode); |
| } else if (insn->vectorExtensionType == TYPE_XOP) { |
| switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { |
| default: |
| LLVM_DEBUG( |
| dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", |
| mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); |
| return true; |
| case XOP_MAP_SELECT_8: |
| insn->opcodeType = XOP8_MAP; |
| return consume(insn, insn->opcode); |
| case XOP_MAP_SELECT_9: |
| insn->opcodeType = XOP9_MAP; |
| return consume(insn, insn->opcode); |
| case XOP_MAP_SELECT_A: |
| insn->opcodeType = XOPA_MAP; |
| return consume(insn, insn->opcode); |
| } |
| } |
| |
| if (consume(insn, current)) |
| return true; |
| |
| if (current == 0x0f) { |
| LLVM_DEBUG( |
| dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current)); |
| if (consume(insn, current)) |
| return true; |
| |
| if (current == 0x38) { |
| LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", |
| current)); |
| if (consume(insn, current)) |
| return true; |
| |
| insn->opcodeType = THREEBYTE_38; |
| } else if (current == 0x3a) { |
| LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", |
| current)); |
| if (consume(insn, current)) |
| return true; |
| |
| insn->opcodeType = THREEBYTE_3A; |
| } else if (current == 0x0f) { |
| LLVM_DEBUG( |
| dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current)); |
| |
| // Consume operands before the opcode to comply with the 3DNow encoding |
| if (readModRM(insn)) |
| return true; |
| |
| if (consume(insn, current)) |
| return true; |
| |
| insn->opcodeType = THREEDNOW_MAP; |
| } else { |
| LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix"); |
| insn->opcodeType = TWOBYTE; |
| } |
| } else if (insn->mandatoryPrefix) |
| // The opcode with mandatory prefix must start with opcode escape. |
| // If not it's legacy repeat prefix |
| insn->mandatoryPrefix = 0; |
| |
| // At this point we have consumed the full opcode. |
| // Anything we consume from here on must be unconsumed. |
| insn->opcode = current; |
| |
| return false; |
| } |
| |
| // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). |
| static bool is16BitEquivalent(const char *orig, const char *equiv) { |
| for (int i = 0;; i++) { |
| if (orig[i] == '\0' && equiv[i] == '\0') |
| return true; |
| if (orig[i] == '\0' || equiv[i] == '\0') |
| return false; |
| if (orig[i] != equiv[i]) { |
| if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') |
| continue; |
| if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') |
| continue; |
| if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') |
| continue; |
| return false; |
| } |
| } |
| } |
| |
| // Determine whether this instruction is a 64-bit instruction. |
| static bool is64Bit(const char *name) { |
| for (int i = 0;; ++i) { |
| if (name[i] == '\0') |
| return false; |
| if (name[i] == '6' && name[i + 1] == '4') |
| return true; |
| } |
| } |
| |
| // Determine the ID of an instruction, consuming the ModR/M byte as appropriate |
| // for extended and escape opcodes, and using a supplied attribute mask. |
| static int getInstructionIDWithAttrMask(uint16_t *instructionID, |
| struct InternalInstruction *insn, |
| uint16_t attrMask) { |
| auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); |
| const ContextDecision *decision; |
| switch (insn->opcodeType) { |
| case ONEBYTE: |
| decision = &ONEBYTE_SYM; |
| break; |
| case TWOBYTE: |
| decision = &TWOBYTE_SYM; |
| break; |
| case THREEBYTE_38: |
| decision = &THREEBYTE38_SYM; |
| break; |
| case THREEBYTE_3A: |
| decision = &THREEBYTE3A_SYM; |
| break; |
| case XOP8_MAP: |
| decision = &XOP8_MAP_SYM; |
| break; |
| case XOP9_MAP: |
| decision = &XOP9_MAP_SYM; |
| break; |
| case XOPA_MAP: |
| decision = &XOPA_MAP_SYM; |
| break; |
| case THREEDNOW_MAP: |
| decision = &THREEDNOW_MAP_SYM; |
| break; |
| case MAP5: |
| decision = &MAP5_SYM; |
| break; |
| case MAP6: |
| decision = &MAP6_SYM; |
| break; |
| } |
| |
| if (decision->opcodeDecisions[insnCtx] |
| .modRMDecisions[insn->opcode] |
| .modrm_type != MODRM_ONEENTRY) { |
| if (readModRM(insn)) |
| return -1; |
| *instructionID = |
| decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM); |
| } else { |
| *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0); |
| } |
| |
| return 0; |
| } |
| |
| // Determine the ID of an instruction, consuming the ModR/M byte as appropriate |
| // for extended and escape opcodes. Determines the attributes and context for |
| // the instruction before doing so. |
| static int getInstructionID(struct InternalInstruction *insn, |
| const MCInstrInfo *mii) { |
| uint16_t attrMask; |
| uint16_t instructionID; |
| |
| LLVM_DEBUG(dbgs() << "getID()"); |
| |
| attrMask = ATTR_NONE; |
| |
| if (insn->mode == MODE_64BIT) |
| attrMask |= ATTR_64BIT; |
| |
| if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
| attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; |
| |
| if (insn->vectorExtensionType == TYPE_EVEX) { |
| switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXKZ; |
| if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXB; |
| if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXK; |
| if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_VEXL; |
| if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| attrMask |= ATTR_EVEXL2; |
| } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
| switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) |
| attrMask |= ATTR_VEXL; |
| } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
| switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| if (insn->hasAdSize) |
| attrMask |= ATTR_ADSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) |
| attrMask |= ATTR_VEXL; |
| } else if (insn->vectorExtensionType == TYPE_XOP) { |
| switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
| case VEX_PREFIX_66: |
| attrMask |= ATTR_OPSIZE; |
| break; |
| case VEX_PREFIX_F3: |
| attrMask |= ATTR_XS; |
| break; |
| case VEX_PREFIX_F2: |
| attrMask |= ATTR_XD; |
| break; |
| } |
| |
| if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) |
| attrMask |= ATTR_VEXL; |
| } else { |
| return -1; |
| } |
| } else if (!insn->mandatoryPrefix) { |
| // If we don't have mandatory prefix we should use legacy prefixes here |
| if (insn->hasOpSize && (insn->mode != MODE_16BIT)) |
| attrMask |= ATTR_OPSIZE; |
| if (insn->hasAdSize) |
| attrMask |= ATTR_ADSIZE; |
| if (insn->opcodeType == ONEBYTE) { |
| if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) |
| // Special support for PAUSE |
| attrMask |= ATTR_XS; |
| } else { |
| if (insn->repeatPrefix == 0xf2) |
| attrMask |= ATTR_XD; |
| else if (insn->repeatPrefix == 0xf3) |
| attrMask |= ATTR_XS; |
| } |
| } else { |
| switch (insn->mandatoryPrefix) { |
| case 0xf2: |
| attrMask |= ATTR_XD; |
| break; |
| case 0xf3: |
| attrMask |= ATTR_XS; |
| break; |
| case 0x66: |
| if (insn->mode != MODE_16BIT) |
| attrMask |= ATTR_OPSIZE; |
| if (insn->hasAdSize) |
| attrMask |= ATTR_ADSIZE; |
| break; |
| case 0x67: |
| attrMask |= ATTR_ADSIZE; |
| break; |
| } |
| } |
| |
| if (insn->rexPrefix & 0x08) { |
| attrMask |= ATTR_REXW; |
| attrMask &= ~ATTR_ADSIZE; |
| } |
| |
| if (insn->mode == MODE_16BIT) { |
| // JCXZ/JECXZ need special handling for 16-bit mode because the meaning |
| // of the AdSize prefix is inverted w.r.t. 32-bit mode. |
| if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) |
| attrMask ^= ATTR_ADSIZE; |
| // If we're in 16-bit mode and this is one of the relative jumps and opsize |
| // prefix isn't present, we need to force the opsize attribute since the |
| // prefix is inverted relative to 32-bit mode. |
| if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && |
| (insn->opcode == 0xE8 || insn->opcode == 0xE9)) |
| attrMask |= ATTR_OPSIZE; |
| |
| if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && |
| insn->opcode >= 0x80 && insn->opcode <= 0x8F) |
| attrMask |= ATTR_OPSIZE; |
| } |
| |
| |
| if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) |
| return -1; |
| |
| // The following clauses compensate for limitations of the tables. |
| |
| if (insn->mode != MODE_64BIT && |
| insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
| // The tables can't distinquish between cases where the W-bit is used to |
| // select register size and cases where its a required part of the opcode. |
| if ((insn->vectorExtensionType == TYPE_EVEX && |
| wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || |
| (insn->vectorExtensionType == TYPE_VEX_3B && |
| wFromVEX3of3(insn->vectorExtensionPrefix[2])) || |
| (insn->vectorExtensionType == TYPE_XOP && |
| wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { |
| |
| uint16_t instructionIDWithREXW; |
| if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn, |
| attrMask | ATTR_REXW)) { |
| insn->instructionID = instructionID; |
| insn->spec = &INSTRUCTIONS_SYM[instructionID]; |
| return 0; |
| } |
| |
| auto SpecName = mii->getName(instructionIDWithREXW); |
| // If not a 64-bit instruction. Switch the opcode. |
| if (!is64Bit(SpecName.data())) { |
| insn->instructionID = instructionIDWithREXW; |
| insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; |
| return 0; |
| } |
| } |
| } |
| |
| // Absolute moves, umonitor, and movdir64b need special handling. |
| // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are |
| // inverted w.r.t. |
| // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in |
| // any position. |
| if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || |
| (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || |
| (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { |
| // Make sure we observed the prefixes in any position. |
| if (insn->hasAdSize) |
| attrMask |= ATTR_ADSIZE; |
| if (insn->hasOpSize) |
| attrMask |= ATTR_OPSIZE; |
| |
| // In 16-bit, invert the attributes. |
| if (insn->mode == MODE_16BIT) { |
| attrMask ^= ATTR_ADSIZE; |
| |
| // The OpSize attribute is only valid with the absolute moves. |
| if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) |
| attrMask ^= ATTR_OPSIZE; |
| } |
| |
| if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) |
| return -1; |
| |
| insn->instructionID = instructionID; |
| insn->spec = &INSTRUCTIONS_SYM[instructionID]; |
| return 0; |
| } |
| |
| if ((insn->mode == MODE_16BIT || insn->hasOpSize) && |
| !(attrMask & ATTR_OPSIZE)) { |
| // The instruction tables make no distinction between instructions that |
| // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a |
| // particular spot (i.e., many MMX operations). In general we're |
| // conservative, but in the specific case where OpSize is present but not in |
| // the right place we check if there's a 16-bit operation. |
| const struct InstructionSpecifier *spec; |
| uint16_t instructionIDWithOpsize; |
| llvm::StringRef specName, specWithOpSizeName; |
| |
| spec = &INSTRUCTIONS_SYM[instructionID]; |
| |
| if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn, |
| attrMask | ATTR_OPSIZE)) { |
| // ModRM required with OpSize but not present. Give up and return the |
| // version without OpSize set. |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| return 0; |
| } |
| |
| specName = mii->getName(instructionID); |
| specWithOpSizeName = mii->getName(instructionIDWithOpsize); |
| |
| if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && |
| (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { |
| insn->instructionID = instructionIDWithOpsize; |
| insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; |
| } else { |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| } |
| return 0; |
| } |
| |
| if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && |
| insn->rexPrefix & 0x01) { |
| // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode |
| // as XCHG %r8, %eax. |
| const struct InstructionSpecifier *spec; |
| uint16_t instructionIDWithNewOpcode; |
| const struct InstructionSpecifier *specWithNewOpcode; |
| |
| spec = &INSTRUCTIONS_SYM[instructionID]; |
| |
| // Borrow opcode from one of the other XCHGar opcodes |
| insn->opcode = 0x91; |
| |
| if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn, |
| attrMask)) { |
| insn->opcode = 0x90; |
| |
| insn->instructionID = instructionID; |
| insn->spec = spec; |
| return 0; |
| } |
| |
| specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; |
| |
| // Change back |
| insn->opcode = 0x90; |
| |
| insn->instructionID = instructionIDWithNewOpcode; |
| insn->spec = specWithNewOpcode; |
| |
| return 0; |
| } |
| |
| insn->instructionID = instructionID; |
| insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; |
| |
| return 0; |
| } |
| |
| // Read an operand from the opcode field of an instruction and interprets it |
| // appropriately given the operand width. Handles AddRegFrm instructions. |
| // |
| // @param insn - the instruction whose opcode field is to be read. |
| // @param size - The width (in bytes) of the register being specified. |
| // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means |
| // RAX. |
| // @return - 0 on success; nonzero otherwise. |
| static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { |
| LLVM_DEBUG(dbgs() << "readOpcodeRegister()"); |
| |
| if (size == 0) |
| size = insn->registerSize; |
| |
| switch (size) { |
| case 1: |
| insn->opcodeRegister = (Reg)( |
| MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); |
| if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && |
| insn->opcodeRegister < MODRM_REG_AL + 0x8) { |
| insn->opcodeRegister = |
| (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); |
| } |
| |
| break; |
| case 2: |
| insn->opcodeRegister = (Reg)( |
| MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); |
| break; |
| case 4: |
| insn->opcodeRegister = |
| (Reg)(MODRM_REG_EAX + |
| ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); |
| break; |
| case 8: |
| insn->opcodeRegister = |
| (Reg)(MODRM_REG_RAX + |
| ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| // Consume an immediate operand from an instruction, given the desired operand |
| // size. |
| // |
| // @param insn - The instruction whose operand is to be read. |
| // @param size - The width (in bytes) of the operand. |
| // @return - 0 if the immediate was successfully consumed; nonzero |
| // otherwise. |
| static int readImmediate(struct InternalInstruction *insn, uint8_t size) { |
| uint8_t imm8; |
| uint16_t imm16; |
| uint32_t imm32; |
| uint64_t imm64; |
| |
| LLVM_DEBUG(dbgs() << "readImmediate()"); |
| |
| assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates"); |
| |
| insn->immediateSize = size; |
| insn->immediateOffset = insn->readerCursor - insn->startLocation; |
| |
| switch (size) { |
| case 1: |
| if (consume(insn, imm8)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm8; |
| break; |
| case 2: |
| if (consume(insn, imm16)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm16; |
| break; |
| case 4: |
| if (consume(insn, imm32)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm32; |
| break; |
| case 8: |
| if (consume(insn, imm64)) |
| return -1; |
| insn->immediates[insn->numImmediatesConsumed] = imm64; |
| break; |
| default: |
| llvm_unreachable("invalid size"); |
| } |
| |
| insn->numImmediatesConsumed++; |
| |
| return 0; |
| } |
| |
| // Consume vvvv from an instruction if it has a VEX prefix. |
| static int readVVVV(struct InternalInstruction *insn) { |
| LLVM_DEBUG(dbgs() << "readVVVV()"); |
| |
| int vvvv; |
| if (insn->vectorExtensionType == TYPE_EVEX) |
| vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | |
| vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); |
| else if (insn->vectorExtensionType == TYPE_VEX_3B) |
| vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); |
| else if (insn->vectorExtensionType == TYPE_VEX_2B) |
| vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); |
| else if (insn->vectorExtensionType == TYPE_XOP) |
| vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); |
| else |
| return -1; |
| |
| if (insn->mode != MODE_64BIT) |
| vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. |
| |
| insn->vvvv = static_cast<Reg>(vvvv); |
| return 0; |
| } |
| |
| // Read an mask register from the opcode field of an instruction. |
| // |
| // @param insn - The instruction whose opcode field is to be read. |
| // @return - 0 on success; nonzero otherwise. |
| static int readMaskRegister(struct InternalInstruction *insn) { |
| LLVM_DEBUG(dbgs() << "readMaskRegister()"); |
| |
| if (insn->vectorExtensionType != TYPE_EVEX) |
| return -1; |
| |
| insn->writemask = |
| static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); |
| return 0; |
| } |
| |
| // Consults the specifier for an instruction and consumes all |
| // operands for that instruction, interpreting them as it goes. |
| static int readOperands(struct InternalInstruction *insn) { |
| int hasVVVV, needVVVV; |
| int sawRegImm = 0; |
| |
| LLVM_DEBUG(dbgs() << "readOperands()"); |
| |
| // If non-zero vvvv specified, make sure one of the operands uses it. |
| hasVVVV = !readVVVV(insn); |
| needVVVV = hasVVVV && (insn->vvvv != 0); |
| |
| for (const auto &Op : x86OperandSets[insn->spec->operands]) { |
| switch (Op.encoding) { |
| case ENCODING_NONE: |
| case ENCODING_SI: |
| case ENCODING_DI: |
| break; |
| CASE_ENCODING_VSIB: |
| // VSIB can use the V2 bit so check only the other bits. |
| if (needVVVV) |
| needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); |
| if (readModRM(insn)) |
| return -1; |
| |
| // Reject if SIB wasn't used. |
| if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) |
| return -1; |
| |
| // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. |
| if (insn->sibIndex == SIB_INDEX_NONE) |
| insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); |
| |
| // If EVEX.v2 is set this is one of the 16-31 registers. |
| if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && |
| v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
| insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); |
| |
| // Adjust the index register to the correct size. |
| switch ((OperandType)Op.type) { |
| default: |
| debug("Unhandled VSIB index type"); |
| return -1; |
| case TYPE_MVSIBX: |
| insn->sibIndex = |
| (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); |
| break; |
| case TYPE_MVSIBY: |
| insn->sibIndex = |
| (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); |
| break; |
| case TYPE_MVSIBZ: |
| insn->sibIndex = |
| (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); |
| break; |
| } |
| |
| // Apply the AVX512 compressed displacement scaling factor. |
| if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) |
| insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); |
| break; |
| case ENCODING_SIB: |
| // Reject if SIB wasn't used. |
| if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) |
| return -1; |
| if (readModRM(insn)) |
| return -1; |
| if (fixupReg(insn, &Op)) |
| return -1; |
| break; |
| case ENCODING_REG: |
| CASE_ENCODING_RM: |
| if (readModRM(insn)) |
| return -1; |
| if (fixupReg(insn, &Op)) |
| return -1; |
| // Apply the AVX512 compressed displacement scaling factor. |
| if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) |
| insn->displacement *= 1 << (Op.encoding - ENCODING_RM); |
| break; |
| case ENCODING_IB: |
| if (sawRegImm) { |
| // Saw a register immediate so don't read again and instead split the |
| // previous immediate. FIXME: This is a hack. |
| insn->immediates[insn->numImmediatesConsumed] = |
| insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; |
| ++insn->numImmediatesConsumed; |
| break; |
| } |
| if (readImmediate(insn, 1)) |
| return -1; |
| if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) |
| sawRegImm = 1; |
| break; |
| case ENCODING_IW: |
| if (readImmediate(insn, 2)) |
| return -1; |
| break; |
| case ENCODING_ID: |
| if (readImmediate(insn, 4)) |
| return -1; |
| break; |
| case ENCODING_IO: |
| if (readImmediate(insn, 8)) |
| return -1; |
| break; |
| case ENCODING_Iv: |
| if (readImmediate(insn, insn->immediateSize)) |
| return -1; |
| break; |
| case ENCODING_Ia: |
| if (readImmediate(insn, insn->addressSize)) |
| return -1; |
| break; |
| case ENCODING_IRC: |
| insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | |
| lFromEVEX4of4(insn->vectorExtensionPrefix[3]); |
| break; |
| case ENCODING_RB: |
| if (readOpcodeRegister(insn, 1)) |
| return -1; |
| break; |
| case ENCODING_RW: |
| if (readOpcodeRegister(insn, 2)) |
| return -1; |
| break; |
| case ENCODING_RD: |
| if (readOpcodeRegister(insn, 4)) |
| return -1; |
| break; |
| case ENCODING_RO: |
| if (readOpcodeRegister(insn, 8)) |
| return -1; |
| break; |
| case ENCODING_Rv: |
| if (readOpcodeRegister(insn, 0)) |
| return -1; |
| break; |
| case ENCODING_CC: |
| insn->immediates[1] = insn->opcode & 0xf; |
| break; |
| case ENCODING_FP: |
| break; |
| case ENCODING_VVVV: |
| needVVVV = 0; // Mark that we have found a VVVV operand. |
| if (!hasVVVV) |
| return -1; |
| if (insn->mode != MODE_64BIT) |
| insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); |
| if (fixupReg(insn, &Op)) |
| return -1; |
| break; |
| case ENCODING_WRITEMASK: |
| if (readMaskRegister(insn)) |
| return -1; |
| break; |
| case ENCODING_DUP: |
| break; |
| default: |
| LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding."); |
| return -1; |
| } |
| } |
| |
| // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail |
| if (needVVVV) |
| return -1; |
| |
| return 0; |
| } |
| |
| namespace llvm { |
| |
| // Fill-ins to make the compiler happy. These constants are never actually |
| // assigned; they are just filler to make an automatically-generated switch |
| // statement work. |
| namespace X86 { |
| enum { |
| BX_SI = 500, |
| BX_DI = 501, |
| BP_SI = 502, |
| BP_DI = 503, |
| sib = 504, |
| sib64 = 505 |
| }; |
| } // namespace X86 |
| |
| } // namespace llvm |
| |
| static bool translateInstruction(MCInst &target, |
| InternalInstruction &source, |
| const MCDisassembler *Dis); |
| |
| namespace { |
| |
| /// Generic disassembler for all X86 platforms. All each platform class should |
| /// have to do is subclass the constructor, and provide a different |
| /// disassemblerMode value. |
| class X86GenericDisassembler : public MCDisassembler { |
| std::unique_ptr<const MCInstrInfo> MII; |
| public: |
| X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, |
| std::unique_ptr<const MCInstrInfo> MII); |
| public: |
| DecodeStatus getInstruction(MCInst &instr, uint64_t &size, |
| ArrayRef<uint8_t> Bytes, uint64_t Address, |
| raw_ostream &cStream) const override; |
| |
| private: |
| DisassemblerMode fMode; |
| }; |
| |
| } // namespace |
| |
| X86GenericDisassembler::X86GenericDisassembler( |
| const MCSubtargetInfo &STI, |
| MCContext &Ctx, |
| std::unique_ptr<const MCInstrInfo> MII) |
| : MCDisassembler(STI, Ctx), MII(std::move(MII)) { |
| const FeatureBitset &FB = STI.getFeatureBits(); |
| if (FB[X86::Mode16Bit]) { |
| fMode = MODE_16BIT; |
| return; |
| } else if (FB[X86::Mode32Bit]) { |
| fMode = MODE_32BIT; |
| return; |
| } else if (FB[X86::Mode64Bit]) { |
| fMode = MODE_64BIT; |
| return; |
| } |
| |
| llvm_unreachable("Invalid CPU mode"); |
| } |
| |
| MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( |
| MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, |
| raw_ostream &CStream) const { |
| CommentStream = &CStream; |
| |
| InternalInstruction Insn; |
| memset(&Insn, 0, sizeof(InternalInstruction)); |
| Insn.bytes = Bytes; |
| Insn.startLocation = Address; |
| Insn.readerCursor = Address; |
| Insn.mode = fMode; |
| |
| if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) || |
| getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 || |
| readOperands(&Insn)) { |
| Size = Insn.readerCursor - Address; |
| return Fail; |
| } |
| |
| Insn.operands = x86OperandSets[Insn.spec->operands]; |
| Insn.length = Insn.readerCursor - Insn.startLocation; |
| Size = Insn.length; |
| if (Size > 15) |
| LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit"); |
| |
| bool Ret = translateInstruction(Instr, Insn, this); |
| if (!Ret) { |
| unsigned Flags = X86::IP_NO_PREFIX; |
| if (Insn.hasAdSize) |
| Flags |= X86::IP_HAS_AD_SIZE; |
| if (!Insn.mandatoryPrefix) { |
| if (Insn.hasOpSize) |
| Flags |= X86::IP_HAS_OP_SIZE; |
| if (Insn.repeatPrefix == 0xf2) |
| Flags |= X86::IP_HAS_REPEAT_NE; |
| else if (Insn.repeatPrefix == 0xf3 && |
| // It should not be 'pause' f3 90 |
| Insn.opcode != 0x90) |
| Flags |= X86::IP_HAS_REPEAT; |
| if (Insn.hasLockPrefix) |
| Flags |= X86::IP_HAS_LOCK; |
| } |
| Instr.setFlags(Flags); |
| } |
| return (!Ret) ? Success : Fail; |
| } |
| |
| // |
| // Private code that translates from struct InternalInstructions to MCInsts. |
| // |
| |
| /// translateRegister - Translates an internal register to the appropriate LLVM |
| /// register, and appends it as an operand to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param reg - The Reg to append. |
| static void translateRegister(MCInst &mcInst, Reg reg) { |
| #define ENTRY(x) X86::x, |
| static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; |
| #undef ENTRY |
| |
| MCPhysReg llvmRegnum = llvmRegnums[reg]; |
| mcInst.addOperand(MCOperand::createReg(llvmRegnum)); |
| } |
| |
| /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the |
| /// immediate Value in the MCInst. |
| /// |
| /// @param Value - The immediate Value, has had any PC adjustment made by |
| /// the caller. |
| /// @param isBranch - If the instruction is a branch instruction |
| /// @param Address - The starting address of the instruction |
| /// @param Offset - The byte offset to this immediate in the instruction |
| /// @param Width - The byte width of this immediate in the instruction |
| /// |
| /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was |
| /// called then that function is called to get any symbolic information for the |
| /// immediate in the instruction using the Address, Offset and Width. If that |
| /// returns non-zero then the symbolic information it returns is used to create |
| /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() |
| /// returns zero and isBranch is true then a symbol look up for immediate Value |
| /// is done and if a symbol is found an MCExpr is created with that, else |
| /// an MCExpr with the immediate Value is created. This function returns true |
| /// if it adds an operand to the MCInst and false otherwise. |
| static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, |
| uint64_t Address, uint64_t Offset, |
| uint64_t Width, MCInst &MI, |
| const MCDisassembler *Dis) { |
| return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, |
| Offset, Width); |
| } |
| |
| /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being |
| /// referenced by a load instruction with the base register that is the rip. |
| /// These can often be addresses in a literal pool. The Address of the |
| /// instruction and its immediate Value are used to determine the address |
| /// being referenced in the literal pool entry. The SymbolLookUp call back will |
| /// return a pointer to a literal 'C' string if the referenced address is an |
| /// address into a section with 'C' string literals. |
| static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, |
| const void *Decoder) { |
| const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); |
| Dis->tryAddingPcLoadReferenceComment(Value, Address); |
| } |
| |
| static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { |
| 0, // SEG_OVERRIDE_NONE |
| X86::CS, |
| X86::SS, |
| X86::DS, |
| X86::ES, |
| X86::FS, |
| X86::GS |
| }; |
| |
| /// translateSrcIndex - Appends a source index operand to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param insn - The internal instruction. |
| static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { |
| unsigned baseRegNo; |
| |
| if (insn.mode == MODE_64BIT) |
| baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; |
| else if (insn.mode == MODE_32BIT) |
| baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; |
| else { |
| assert(insn.mode == MODE_16BIT); |
| baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; |
| } |
| MCOperand baseReg = MCOperand::createReg(baseRegNo); |
| mcInst.addOperand(baseReg); |
| |
| MCOperand segmentReg; |
| segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); |
| mcInst.addOperand(segmentReg); |
| return false; |
| } |
| |
| /// translateDstIndex - Appends a destination index operand to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param insn - The internal instruction. |
| |
| static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { |
| unsigned baseRegNo; |
| |
| if (insn.mode == MODE_64BIT) |
| baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; |
| else if (insn.mode == MODE_32BIT) |
| baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; |
| else { |
| assert(insn.mode == MODE_16BIT); |
| baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; |
| } |
| MCOperand baseReg = MCOperand::createReg(baseRegNo); |
| mcInst.addOperand(baseReg); |
| return false; |
| } |
| |
| /// translateImmediate - Appends an immediate operand to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param immediate - The immediate value to append. |
| /// @param operand - The operand, as stored in the descriptor table. |
| /// @param insn - The internal instruction. |
| static void translateImmediate(MCInst &mcInst, uint64_t immediate, |
| const OperandSpecifier &operand, |
| InternalInstruction &insn, |
| const MCDisassembler *Dis) { |
| // Sign-extend the immediate if necessary. |
| |
| OperandType type = (OperandType)operand.type; |
| |
| bool isBranch = false; |
| uint64_t pcrel = 0; |
| if (type == TYPE_REL) { |
| isBranch = true; |
| pcrel = insn.startLocation + |
| insn.immediateOffset + insn.immediateSize; |
| switch (operand.encoding) { |
| default: |
| break; |
| case ENCODING_Iv: |
| switch (insn.displacementSize) { |
| default: |
| break; |
| case 1: |
| if(immediate & 0x80) |
| immediate |= ~(0xffull); |
| break; |
| case 2: |
| if(immediate & 0x8000) |
| immediate |= ~(0xffffull); |
| break; |
| case 4: |
| if(immediate & 0x80000000) |
| immediate |= ~(0xffffffffull); |
| break; |
| case 8: |
| break; |
| } |
| break; |
| case ENCODING_IB: |
| if(immediate & 0x80) |
| immediate |= ~(0xffull); |
| break; |
| case ENCODING_IW: |
| if(immediate & 0x8000) |
| immediate |= ~(0xffffull); |
| break; |
| case ENCODING_ID: |
| if(immediate & 0x80000000) |
| immediate |= ~(0xffffffffull); |
| break; |
| } |
| } |
| // By default sign-extend all X86 immediates based on their encoding. |
| else if (type == TYPE_IMM) { |
| switch (operand.encoding) { |
| default: |
| break; |
| case ENCODING_IB: |
| if(immediate & 0x80) |
| immediate |= ~(0xffull); |
| break; |
| case ENCODING_IW: |
| if(immediate & 0x8000) |
| immediate |= ~(0xffffull); |
| break; |
| case ENCODING_ID: |
| if(immediate & 0x80000000) |
| immediate |= ~(0xffffffffull); |
| break; |
| case ENCODING_IO: |
| break; |
| } |
| } |
| |
| switch (type) { |
| case TYPE_XMM: |
| mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); |
| return; |
| case TYPE_YMM: |
| mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); |
| return; |
| case TYPE_ZMM: |
| mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); |
| return; |
| default: |
| // operand is 64 bits wide. Do nothing. |
| break; |
| } |
| |
| if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, |
| insn.immediateOffset, insn.immediateSize, |
| mcInst, Dis)) |
| mcInst.addOperand(MCOperand::createImm(immediate)); |
| |
| if (type == TYPE_MOFFS) { |
| MCOperand segmentReg; |
| segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); |
| mcInst.addOperand(segmentReg); |
| } |
| } |
| |
| /// translateRMRegister - Translates a register stored in the R/M field of the |
| /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. |
| /// @param mcInst - The MCInst to append to. |
| /// @param insn - The internal instruction to extract the R/M field |
| /// from. |
| /// @return - 0 on success; -1 otherwise |
| static bool translateRMRegister(MCInst &mcInst, |
| InternalInstruction &insn) { |
| if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { |
| debug("A R/M register operand may not have a SIB byte"); |
| return true; |
| } |
| |
| switch (insn.eaBase) { |
| default: |
| debug("Unexpected EA base register"); |
| return true; |
| case EA_BASE_NONE: |
| debug("EA_BASE_NONE for ModR/M base"); |
| return true; |
| #define ENTRY(x) case EA_BASE_##x: |
| ALL_EA_BASES |
| #undef ENTRY |
| debug("A R/M register operand may not have a base; " |
| "the operand must be a register."); |
| return true; |
| #define ENTRY(x) \ |
| case EA_REG_##x: \ |
| mcInst.addOperand(MCOperand::createReg(X86::x)); break; |
| ALL_REGS |
| #undef ENTRY |
| } |
| |
| return false; |
| } |
| |
| /// translateRMMemory - Translates a memory operand stored in the Mod and R/M |
| /// fields of an internal instruction (and possibly its SIB byte) to a memory |
| /// operand in LLVM's format, and appends it to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param insn - The instruction to extract Mod, R/M, and SIB fields |
| /// from. |
| /// @param ForceSIB - The instruction must use SIB. |
| /// @return - 0 on success; nonzero otherwise |
| static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, |
| const MCDisassembler *Dis, |
| bool ForceSIB = false) { |
| // Addresses in an MCInst are represented as five operands: |
| // 1. basereg (register) The R/M base, or (if there is a SIB) the |
| // SIB base |
| // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified |
| // scale amount |
| // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) |
| // the index (which is multiplied by the |
| // scale amount) |
| // 4. displacement (immediate) 0, or the displacement if there is one |
| // 5. segmentreg (register) x86_registerNONE for now, but could be set |
| // if we have segment overrides |
| |
| MCOperand baseReg; |
| MCOperand scaleAmount; |
| MCOperand indexReg; |
| MCOperand displacement; |
| MCOperand segmentReg; |
| uint64_t pcrel = 0; |
| |
| if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { |
| if (insn.sibBase != SIB_BASE_NONE) { |
| switch (insn.sibBase) { |
| default: |
| debug("Unexpected sibBase"); |
| return true; |
| #define ENTRY(x) \ |
| case SIB_BASE_##x: \ |
| baseReg = MCOperand::createReg(X86::x); break; |
| ALL_SIB_BASES |
| #undef ENTRY |
| } |
| } else { |
| baseReg = MCOperand::createReg(X86::NoRegister); |
| } |
| |
| if (insn.sibIndex != SIB_INDEX_NONE) { |
| switch (insn.sibIndex) { |
| default: |
| debug("Unexpected sibIndex"); |
| return true; |
| #define ENTRY(x) \ |
| case SIB_INDEX_##x: \ |
| indexReg = MCOperand::createReg(X86::x); break; |
| EA_BASES_32BIT |
| EA_BASES_64BIT |
| REGS_XMM |
| REGS_YMM |
| REGS_ZMM |
| #undef ENTRY |
| } |
| } else { |
| // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, |
| // but no index is used and modrm alone should have been enough. |
| // -No base register in 32-bit mode. In 64-bit mode this is used to |
| // avoid rip-relative addressing. |
| // -Any base register used other than ESP/RSP/R12D/R12. Using these as a |
| // base always requires a SIB byte. |
| // -A scale other than 1 is used. |
| if (!ForceSIB && |
| (insn.sibScale != 1 || |
| (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || |
| (insn.sibBase != SIB_BASE_NONE && |
| insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && |
| insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) { |
| indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : |
| X86::RIZ); |
| } else |
| indexReg = MCOperand::createReg(X86::NoRegister); |
| } |
| |
| scaleAmount = MCOperand::createImm(insn.sibScale); |
| } else { |
| switch (insn.eaBase) { |
| case EA_BASE_NONE: |
| if (insn.eaDisplacement == EA_DISP_NONE) { |
| debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); |
| return true; |
| } |
| if (insn.mode == MODE_64BIT){ |
| pcrel = insn.startLocation + |
| insn.displacementOffset + insn.displacementSize; |
| tryAddingPcLoadReferenceComment(insn.startLocation + |
| insn.displacementOffset, |
| insn.displacement + pcrel, Dis); |
| // Section 2.2.1.6 |
| baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : |
| X86::RIP); |
| } |
| else |
| baseReg = MCOperand::createReg(X86::NoRegister); |
| |
| indexReg = MCOperand::createReg(X86::NoRegister); |
| break; |
| case EA_BASE_BX_SI: |
| baseReg = MCOperand::createReg(X86::BX); |
| indexReg = MCOperand::createReg(X86::SI); |
| break; |
| case EA_BASE_BX_DI: |
| baseReg = MCOperand::createReg(X86::BX); |
| indexReg = MCOperand::createReg(X86::DI); |
| break; |
| case EA_BASE_BP_SI: |
| baseReg = MCOperand::createReg(X86::BP); |
| indexReg = MCOperand::createReg(X86::SI); |
| break; |
| case EA_BASE_BP_DI: |
| baseReg = MCOperand::createReg(X86::BP); |
| indexReg = MCOperand::createReg(X86::DI); |
| break; |
| default: |
| indexReg = MCOperand::createReg(X86::NoRegister); |
| switch (insn.eaBase) { |
| default: |
| debug("Unexpected eaBase"); |
| return true; |
| // Here, we will use the fill-ins defined above. However, |
| // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and |
| // sib and sib64 were handled in the top-level if, so they're only |
| // placeholders to keep the compiler happy. |
| #define ENTRY(x) \ |
| case EA_BASE_##x: \ |
| baseReg = MCOperand::createReg(X86::x); break; |
| ALL_EA_BASES |
| #undef ENTRY |
| #define ENTRY(x) case EA_REG_##x: |
| ALL_REGS |
| #undef ENTRY |
| debug("A R/M memory operand may not be a register; " |
| "the base field must be a base."); |
| return true; |
| } |
| } |
| |
| scaleAmount = MCOperand::createImm(1); |
| } |
| |
| displacement = MCOperand::createImm(insn.displacement); |
| |
| segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); |
| |
| mcInst.addOperand(baseReg); |
| mcInst.addOperand(scaleAmount); |
| mcInst.addOperand(indexReg); |
| if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, |
| insn.startLocation, insn.displacementOffset, |
| insn.displacementSize, mcInst, Dis)) |
| mcInst.addOperand(displacement); |
| mcInst.addOperand(segmentReg); |
| return false; |
| } |
| |
| /// translateRM - Translates an operand stored in the R/M (and possibly SIB) |
| /// byte of an instruction to LLVM form, and appends it to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param operand - The operand, as stored in the descriptor table. |
| /// @param insn - The instruction to extract Mod, R/M, and SIB fields |
| /// from. |
| /// @return - 0 on success; nonzero otherwise |
| static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, |
| InternalInstruction &insn, const MCDisassembler *Dis) { |
| switch (operand.type) { |
| default: |
| debug("Unexpected type for a R/M operand"); |
| return true; |
| case TYPE_R8: |
| case TYPE_R16: |
| case TYPE_R32: |
| case TYPE_R64: |
| case TYPE_Rv: |
| case TYPE_MM64: |
| case TYPE_XMM: |
| case TYPE_YMM: |
| case TYPE_ZMM: |
| case TYPE_TMM: |
| case TYPE_VK_PAIR: |
| case TYPE_VK: |
| case TYPE_DEBUGREG: |
| case TYPE_CONTROLREG: |
| case TYPE_BNDR: |
| return translateRMRegister(mcInst, insn); |
| case TYPE_M: |
| case TYPE_MVSIBX: |
| case TYPE_MVSIBY: |
| case TYPE_MVSIBZ: |
| return translateRMMemory(mcInst, insn, Dis); |
| case TYPE_MSIB: |
| return translateRMMemory(mcInst, insn, Dis, true); |
| } |
| } |
| |
| /// translateFPRegister - Translates a stack position on the FPU stack to its |
| /// LLVM form, and appends it to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param stackPos - The stack position to translate. |
| static void translateFPRegister(MCInst &mcInst, |
| uint8_t stackPos) { |
| mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); |
| } |
| |
| /// translateMaskRegister - Translates a 3-bit mask register number to |
| /// LLVM form, and appends it to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param maskRegNum - Number of mask register from 0 to 7. |
| /// @return - false on success; true otherwise. |
| static bool translateMaskRegister(MCInst &mcInst, |
| uint8_t maskRegNum) { |
| if (maskRegNum >= 8) { |
| debug("Invalid mask register number"); |
| return true; |
| } |
| |
| mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); |
| return false; |
| } |
| |
| /// translateOperand - Translates an operand stored in an internal instruction |
| /// to LLVM's format and appends it to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to append to. |
| /// @param operand - The operand, as stored in the descriptor table. |
| /// @param insn - The internal instruction. |
| /// @return - false on success; true otherwise. |
| static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, |
| InternalInstruction &insn, |
| const MCDisassembler *Dis) { |
| switch (operand.encoding) { |
| default: |
| debug("Unhandled operand encoding during translation"); |
| return true; |
| case ENCODING_REG: |
| translateRegister(mcInst, insn.reg); |
| return false; |
| case ENCODING_WRITEMASK: |
| return translateMaskRegister(mcInst, insn.writemask); |
| case ENCODING_SIB: |
| CASE_ENCODING_RM: |
| CASE_ENCODING_VSIB: |
| return translateRM(mcInst, operand, insn, Dis); |
| case ENCODING_IB: |
| case ENCODING_IW: |
| case ENCODING_ID: |
| case ENCODING_IO: |
| case ENCODING_Iv: |
| case ENCODING_Ia: |
| translateImmediate(mcInst, |
| insn.immediates[insn.numImmediatesTranslated++], |
| operand, |
| insn, |
| Dis); |
| return false; |
| case ENCODING_IRC: |
| mcInst.addOperand(MCOperand::createImm(insn.RC)); |
| return false; |
| case ENCODING_SI: |
| return translateSrcIndex(mcInst, insn); |
| case ENCODING_DI: |
| return translateDstIndex(mcInst, insn); |
| case ENCODING_RB: |
| case ENCODING_RW: |
| case ENCODING_RD: |
| case ENCODING_RO: |
| case ENCODING_Rv: |
| translateRegister(mcInst, insn.opcodeRegister); |
| return false; |
| case ENCODING_CC: |
| mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); |
| return false; |
| case ENCODING_FP: |
| translateFPRegister(mcInst, insn.modRM & 7); |
| return false; |
| case ENCODING_VVVV: |
| translateRegister(mcInst, insn.vvvv); |
| return false; |
| case ENCODING_DUP: |
| return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], |
| insn, Dis); |
| } |
| } |
| |
| /// translateInstruction - Translates an internal instruction and all its |
| /// operands to an MCInst. |
| /// |
| /// @param mcInst - The MCInst to populate with the instruction's data. |
| /// @param insn - The internal instruction. |
| /// @return - false on success; true otherwise. |
| static bool translateInstruction(MCInst &mcInst, |
| InternalInstruction &insn, |
| const MCDisassembler *Dis) { |
| if (!insn.spec) { |
| debug("Instruction has no specification"); |
| return true; |
| } |
| |
| mcInst.clear(); |
| mcInst.setOpcode(insn.instructionID); |
| // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 |
| // prefix bytes should be disassembled as xrelease and xacquire then set the |
| // opcode to those instead of the rep and repne opcodes. |
| if (insn.xAcquireRelease) { |
| if(mcInst.getOpcode() == X86::REP_PREFIX) |
| mcInst.setOpcode(X86::XRELEASE_PREFIX); |
| else if(mcInst.getOpcode() == X86::REPNE_PREFIX) |
| mcInst.setOpcode(X86::XACQUIRE_PREFIX); |
| } |
| |
| insn.numImmediatesTranslated = 0; |
| |
| for (const auto &Op : insn.operands) { |
| if (Op.encoding != ENCODING_NONE) { |
| if (translateOperand(mcInst, Op, insn, Dis)) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static MCDisassembler *createX86Disassembler(const Target &T, |
| const MCSubtargetInfo &STI, |
| MCContext &Ctx) { |
| std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); |
| return new X86GenericDisassembler(STI, Ctx, std::move(MII)); |
| } |
| |
| extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() { |
| // Register the disassembler. |
| TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), |
| createX86Disassembler); |
| TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), |
| createX86Disassembler); |
| } |