blob: 466aa7130216974a2d5a65ed12ee0ed4d7c93d7e [file] [log] [blame]
//===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "NVPTXTargetTransformInfo.h"
#include "NVPTXUtilities.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "NVPTXtti"
// Whether the given intrinsic reads threadIdx.x/y/z.
static bool readsThreadIndex(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::nvvm_read_ptx_sreg_tid_x:
case Intrinsic::nvvm_read_ptx_sreg_tid_y:
case Intrinsic::nvvm_read_ptx_sreg_tid_z:
return true;
}
}
static bool readsLaneId(const IntrinsicInst *II) {
return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid;
}
// Whether the given intrinsic is an atomic instruction in PTX.
static bool isNVVMAtomic(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::nvvm_atomic_load_inc_32:
case Intrinsic::nvvm_atomic_load_dec_32:
case Intrinsic::nvvm_atomic_add_gen_f_cta:
case Intrinsic::nvvm_atomic_add_gen_f_sys:
case Intrinsic::nvvm_atomic_add_gen_i_cta:
case Intrinsic::nvvm_atomic_add_gen_i_sys:
case Intrinsic::nvvm_atomic_and_gen_i_cta:
case Intrinsic::nvvm_atomic_and_gen_i_sys:
case Intrinsic::nvvm_atomic_cas_gen_i_cta:
case Intrinsic::nvvm_atomic_cas_gen_i_sys:
case Intrinsic::nvvm_atomic_dec_gen_i_cta:
case Intrinsic::nvvm_atomic_dec_gen_i_sys:
case Intrinsic::nvvm_atomic_inc_gen_i_cta:
case Intrinsic::nvvm_atomic_inc_gen_i_sys:
case Intrinsic::nvvm_atomic_max_gen_i_cta:
case Intrinsic::nvvm_atomic_max_gen_i_sys:
case Intrinsic::nvvm_atomic_min_gen_i_cta:
case Intrinsic::nvvm_atomic_min_gen_i_sys:
case Intrinsic::nvvm_atomic_or_gen_i_cta:
case Intrinsic::nvvm_atomic_or_gen_i_sys:
case Intrinsic::nvvm_atomic_exch_gen_i_cta:
case Intrinsic::nvvm_atomic_exch_gen_i_sys:
case Intrinsic::nvvm_atomic_xor_gen_i_cta:
case Intrinsic::nvvm_atomic_xor_gen_i_sys:
return true;
}
}
bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) {
// Without inter-procedural analysis, we conservatively assume that arguments
// to __device__ functions are divergent.
if (const Argument *Arg = dyn_cast<Argument>(V))
return !isKernelFunction(*Arg->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V)) {
// Without pointer analysis, we conservatively assume values loaded from
// generic or local address space are divergent.
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
unsigned AS = LI->getPointerAddressSpace();
return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
}
// Atomic instructions may cause divergence. Atomic instructions are
// executed sequentially across all threads in a warp. Therefore, an earlier
// executed thread may see different memory inputs than a later executed
// thread. For example, suppose *a = 0 initially.
//
// atom.global.add.s32 d, [a], 1
//
// returns 0 for the first thread that enters the critical region, and 1 for
// the second thread.
if (I->isAtomic())
return true;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
// Instructions that read threadIdx are obviously divergent.
if (readsThreadIndex(II) || readsLaneId(II))
return true;
// Handle the NVPTX atomic instrinsics that cannot be represented as an
// atomic IR instruction.
if (isNVVMAtomic(II))
return true;
}
// Conservatively consider the return value of function calls as divergent.
// We could analyze callees with bodies more precisely using
// inter-procedural analysis.
if (isa<CallInst>(I))
return true;
}
return false;
}
// Convert NVVM intrinsics to target-generic LLVM code where possible.
static Instruction *simplifyNvvmIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
// Each NVVM intrinsic we can simplify can be replaced with one of:
//
// * an LLVM intrinsic,
// * an LLVM cast operation,
// * an LLVM binary operation, or
// * ad-hoc LLVM IR for the particular operation.
// Some transformations are only valid when the module's
// flush-denormals-to-zero (ftz) setting is true/false, whereas other
// transformations are valid regardless of the module's ftz setting.
enum FtzRequirementTy {
FTZ_Any, // Any ftz setting is ok.
FTZ_MustBeOn, // Transformation is valid only if ftz is on.
FTZ_MustBeOff, // Transformation is valid only if ftz is off.
};
// Classes of NVVM intrinsics that can't be replaced one-to-one with a
// target-generic intrinsic, cast op, or binary op but that we can nonetheless
// simplify.
enum SpecialCase {
SPC_Reciprocal,
};
// SimplifyAction is a poor-man's variant (plus an additional flag) that
// represents how to replace an NVVM intrinsic with target-generic LLVM IR.
struct SimplifyAction {
// Invariant: At most one of these Optionals has a value.
Optional<Intrinsic::ID> IID;
Optional<Instruction::CastOps> CastOp;
Optional<Instruction::BinaryOps> BinaryOp;
Optional<SpecialCase> Special;
FtzRequirementTy FtzRequirement = FTZ_Any;
SimplifyAction() = default;
SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
: IID(IID), FtzRequirement(FtzReq) {}
// Cast operations don't have anything to do with FTZ, so we skip that
// argument.
SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
: BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
: Special(Special), FtzRequirement(FtzReq) {}
};
// Try to generate a SimplifyAction describing how to replace our
// IntrinsicInstr with target-generic LLVM IR.
const SimplifyAction Action = [II]() -> SimplifyAction {
switch (II->getIntrinsicID()) {
// NVVM intrinsics that map directly to LLVM intrinsics.
case Intrinsic::nvvm_ceil_d:
return {Intrinsic::ceil, FTZ_Any};
case Intrinsic::nvvm_ceil_f:
return {Intrinsic::ceil, FTZ_MustBeOff};
case Intrinsic::nvvm_ceil_ftz_f:
return {Intrinsic::ceil, FTZ_MustBeOn};
case Intrinsic::nvvm_fabs_d:
return {Intrinsic::fabs, FTZ_Any};
case Intrinsic::nvvm_fabs_f:
return {Intrinsic::fabs, FTZ_MustBeOff};
case Intrinsic::nvvm_fabs_ftz_f:
return {Intrinsic::fabs, FTZ_MustBeOn};
case Intrinsic::nvvm_floor_d:
return {Intrinsic::floor, FTZ_Any};
case Intrinsic::nvvm_floor_f:
return {Intrinsic::floor, FTZ_MustBeOff};
case Intrinsic::nvvm_floor_ftz_f:
return {Intrinsic::floor, FTZ_MustBeOn};
case Intrinsic::nvvm_fma_rn_d:
return {Intrinsic::fma, FTZ_Any};
case Intrinsic::nvvm_fma_rn_f:
return {Intrinsic::fma, FTZ_MustBeOff};
case Intrinsic::nvvm_fma_rn_ftz_f:
return {Intrinsic::fma, FTZ_MustBeOn};
case Intrinsic::nvvm_fmax_d:
return {Intrinsic::maxnum, FTZ_Any};
case Intrinsic::nvvm_fmax_f:
return {Intrinsic::maxnum, FTZ_MustBeOff};
case Intrinsic::nvvm_fmax_ftz_f:
return {Intrinsic::maxnum, FTZ_MustBeOn};
case Intrinsic::nvvm_fmin_d:
return {Intrinsic::minnum, FTZ_Any};
case Intrinsic::nvvm_fmin_f:
return {Intrinsic::minnum, FTZ_MustBeOff};
case Intrinsic::nvvm_fmin_ftz_f:
return {Intrinsic::minnum, FTZ_MustBeOn};
case Intrinsic::nvvm_round_d:
return {Intrinsic::round, FTZ_Any};
case Intrinsic::nvvm_round_f:
return {Intrinsic::round, FTZ_MustBeOff};
case Intrinsic::nvvm_round_ftz_f:
return {Intrinsic::round, FTZ_MustBeOn};
case Intrinsic::nvvm_sqrt_rn_d:
return {Intrinsic::sqrt, FTZ_Any};
case Intrinsic::nvvm_sqrt_f:
// nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
// ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
// the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
// the versions with explicit ftz-ness.
return {Intrinsic::sqrt, FTZ_Any};
case Intrinsic::nvvm_sqrt_rn_f:
return {Intrinsic::sqrt, FTZ_MustBeOff};
case Intrinsic::nvvm_sqrt_rn_ftz_f:
return {Intrinsic::sqrt, FTZ_MustBeOn};
case Intrinsic::nvvm_trunc_d:
return {Intrinsic::trunc, FTZ_Any};
case Intrinsic::nvvm_trunc_f:
return {Intrinsic::trunc, FTZ_MustBeOff};
case Intrinsic::nvvm_trunc_ftz_f:
return {Intrinsic::trunc, FTZ_MustBeOn};
// NVVM intrinsics that map to LLVM cast operations.
//
// Note that llvm's target-generic conversion operators correspond to the rz
// (round to zero) versions of the nvvm conversion intrinsics, even though
// most everything else here uses the rn (round to nearest even) nvvm ops.
case Intrinsic::nvvm_d2i_rz:
case Intrinsic::nvvm_f2i_rz:
case Intrinsic::nvvm_d2ll_rz:
case Intrinsic::nvvm_f2ll_rz:
return {Instruction::FPToSI};
case Intrinsic::nvvm_d2ui_rz:
case Intrinsic::nvvm_f2ui_rz:
case Intrinsic::nvvm_d2ull_rz:
case Intrinsic::nvvm_f2ull_rz:
return {Instruction::FPToUI};
case Intrinsic::nvvm_i2d_rz:
case Intrinsic::nvvm_i2f_rz:
case Intrinsic::nvvm_ll2d_rz:
case Intrinsic::nvvm_ll2f_rz:
return {Instruction::SIToFP};
case Intrinsic::nvvm_ui2d_rz:
case Intrinsic::nvvm_ui2f_rz:
case Intrinsic::nvvm_ull2d_rz:
case Intrinsic::nvvm_ull2f_rz:
return {Instruction::UIToFP};
// NVVM intrinsics that map to LLVM binary ops.
case Intrinsic::nvvm_add_rn_d:
return {Instruction::FAdd, FTZ_Any};
case Intrinsic::nvvm_add_rn_f:
return {Instruction::FAdd, FTZ_MustBeOff};
case Intrinsic::nvvm_add_rn_ftz_f:
return {Instruction::FAdd, FTZ_MustBeOn};
case Intrinsic::nvvm_mul_rn_d:
return {Instruction::FMul, FTZ_Any};
case Intrinsic::nvvm_mul_rn_f:
return {Instruction::FMul, FTZ_MustBeOff};
case Intrinsic::nvvm_mul_rn_ftz_f:
return {Instruction::FMul, FTZ_MustBeOn};
case Intrinsic::nvvm_div_rn_d:
return {Instruction::FDiv, FTZ_Any};
case Intrinsic::nvvm_div_rn_f:
return {Instruction::FDiv, FTZ_MustBeOff};
case Intrinsic::nvvm_div_rn_ftz_f:
return {Instruction::FDiv, FTZ_MustBeOn};
// The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
// need special handling.
//
// We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
// as well.
case Intrinsic::nvvm_rcp_rn_d:
return {SPC_Reciprocal, FTZ_Any};
case Intrinsic::nvvm_rcp_rn_f:
return {SPC_Reciprocal, FTZ_MustBeOff};
case Intrinsic::nvvm_rcp_rn_ftz_f:
return {SPC_Reciprocal, FTZ_MustBeOn};
// We do not currently simplify intrinsics that give an approximate
// answer. These include:
//
// - nvvm_cos_approx_{f,ftz_f}
// - nvvm_ex2_approx_{d,f,ftz_f}
// - nvvm_lg2_approx_{d,f,ftz_f}
// - nvvm_sin_approx_{f,ftz_f}
// - nvvm_sqrt_approx_{f,ftz_f}
// - nvvm_rsqrt_approx_{d,f,ftz_f}
// - nvvm_div_approx_{ftz_d,ftz_f,f}
// - nvvm_rcp_approx_ftz_d
//
// Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
// means that fastmath is enabled in the intrinsic. Unfortunately only
// binary operators (currently) have a fastmath bit in SelectionDAG, so
// this information gets lost and we can't select on it.
//
// TODO: div and rcp are lowered to a binary op, so these we could in
// theory lower them to "fast fdiv".
default:
return {};
}
}();
// If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
// can bail out now. (Notice that in the case that IID is not an NVVM
// intrinsic, we don't have to look up any module metadata, as
// FtzRequirementTy will be FTZ_Any.)
if (Action.FtzRequirement != FTZ_Any) {
StringRef Attr = II->getFunction()
->getFnAttribute("denormal-fp-math-f32")
.getValueAsString();
DenormalMode Mode = parseDenormalFPAttribute(Attr);
bool FtzEnabled = Mode.Output != DenormalMode::IEEE;
if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
return nullptr;
}
// Simplify to target-generic intrinsic.
if (Action.IID) {
SmallVector<Value *, 4> Args(II->args());
// All the target-generic intrinsics currently of interest to us have one
// type argument, equal to that of the nvvm intrinsic's argument.
Type *Tys[] = {II->getArgOperand(0)->getType()};
return CallInst::Create(
Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
}
// Simplify to target-generic binary op.
if (Action.BinaryOp)
return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
II->getArgOperand(1), II->getName());
// Simplify to target-generic cast op.
if (Action.CastOp)
return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
II->getName());
// All that's left are the special cases.
if (!Action.Special)
return nullptr;
switch (*Action.Special) {
case SPC_Reciprocal:
// Simplify reciprocal.
return BinaryOperator::Create(
Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
II->getArgOperand(0), II->getName());
}
llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
}
Optional<Instruction *>
NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
if (Instruction *I = simplifyNvvmIntrinsic(&II, IC)) {
return I;
}
return None;
}
InstructionCost NVPTXTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI) {
// Legalize the type.
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
switch (ISD) {
default:
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
Opd2Info,
Opd1PropInfo, Opd2PropInfo);
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
// The machine code (SASS) simulates an i64 with two i32. Therefore, we
// estimate that arithmetic operations on i64 are twice as expensive as
// those on types that can fit into one machine register.
if (LT.second.SimpleTy == MVT::i64)
return 2 * LT.first;
// Delegate other cases to the basic TTI.
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
Opd2Info,
Opd1PropInfo, Opd2PropInfo);
}
}
void NVPTXTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
BaseT::getUnrollingPreferences(L, SE, UP, ORE);
// Enable partial unrolling and runtime unrolling, but reduce the
// threshold. This partially unrolls small loops which are often
// unrolled by the PTX to SASS compiler and unrolling earlier can be
// beneficial.
UP.Partial = UP.Runtime = true;
UP.PartialThreshold = UP.Threshold / 4;
}
void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}