| //===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "NVPTXTargetTransformInfo.h" |
| #include "NVPTXUtilities.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/BasicTTIImpl.h" |
| #include "llvm/CodeGen/CostTable.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "NVPTXtti" |
| |
| // Whether the given intrinsic reads threadIdx.x/y/z. |
| static bool readsThreadIndex(const IntrinsicInst *II) { |
| switch (II->getIntrinsicID()) { |
| default: return false; |
| case Intrinsic::nvvm_read_ptx_sreg_tid_x: |
| case Intrinsic::nvvm_read_ptx_sreg_tid_y: |
| case Intrinsic::nvvm_read_ptx_sreg_tid_z: |
| return true; |
| } |
| } |
| |
| static bool readsLaneId(const IntrinsicInst *II) { |
| return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid; |
| } |
| |
| // Whether the given intrinsic is an atomic instruction in PTX. |
| static bool isNVVMAtomic(const IntrinsicInst *II) { |
| switch (II->getIntrinsicID()) { |
| default: return false; |
| case Intrinsic::nvvm_atomic_load_inc_32: |
| case Intrinsic::nvvm_atomic_load_dec_32: |
| |
| case Intrinsic::nvvm_atomic_add_gen_f_cta: |
| case Intrinsic::nvvm_atomic_add_gen_f_sys: |
| case Intrinsic::nvvm_atomic_add_gen_i_cta: |
| case Intrinsic::nvvm_atomic_add_gen_i_sys: |
| case Intrinsic::nvvm_atomic_and_gen_i_cta: |
| case Intrinsic::nvvm_atomic_and_gen_i_sys: |
| case Intrinsic::nvvm_atomic_cas_gen_i_cta: |
| case Intrinsic::nvvm_atomic_cas_gen_i_sys: |
| case Intrinsic::nvvm_atomic_dec_gen_i_cta: |
| case Intrinsic::nvvm_atomic_dec_gen_i_sys: |
| case Intrinsic::nvvm_atomic_inc_gen_i_cta: |
| case Intrinsic::nvvm_atomic_inc_gen_i_sys: |
| case Intrinsic::nvvm_atomic_max_gen_i_cta: |
| case Intrinsic::nvvm_atomic_max_gen_i_sys: |
| case Intrinsic::nvvm_atomic_min_gen_i_cta: |
| case Intrinsic::nvvm_atomic_min_gen_i_sys: |
| case Intrinsic::nvvm_atomic_or_gen_i_cta: |
| case Intrinsic::nvvm_atomic_or_gen_i_sys: |
| case Intrinsic::nvvm_atomic_exch_gen_i_cta: |
| case Intrinsic::nvvm_atomic_exch_gen_i_sys: |
| case Intrinsic::nvvm_atomic_xor_gen_i_cta: |
| case Intrinsic::nvvm_atomic_xor_gen_i_sys: |
| return true; |
| } |
| } |
| |
| bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) { |
| // Without inter-procedural analysis, we conservatively assume that arguments |
| // to __device__ functions are divergent. |
| if (const Argument *Arg = dyn_cast<Argument>(V)) |
| return !isKernelFunction(*Arg->getParent()); |
| |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| // Without pointer analysis, we conservatively assume values loaded from |
| // generic or local address space are divergent. |
| if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| unsigned AS = LI->getPointerAddressSpace(); |
| return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL; |
| } |
| // Atomic instructions may cause divergence. Atomic instructions are |
| // executed sequentially across all threads in a warp. Therefore, an earlier |
| // executed thread may see different memory inputs than a later executed |
| // thread. For example, suppose *a = 0 initially. |
| // |
| // atom.global.add.s32 d, [a], 1 |
| // |
| // returns 0 for the first thread that enters the critical region, and 1 for |
| // the second thread. |
| if (I->isAtomic()) |
| return true; |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| // Instructions that read threadIdx are obviously divergent. |
| if (readsThreadIndex(II) || readsLaneId(II)) |
| return true; |
| // Handle the NVPTX atomic instrinsics that cannot be represented as an |
| // atomic IR instruction. |
| if (isNVVMAtomic(II)) |
| return true; |
| } |
| // Conservatively consider the return value of function calls as divergent. |
| // We could analyze callees with bodies more precisely using |
| // inter-procedural analysis. |
| if (isa<CallInst>(I)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Convert NVVM intrinsics to target-generic LLVM code where possible. |
| static Instruction *simplifyNvvmIntrinsic(IntrinsicInst *II, InstCombiner &IC) { |
| // Each NVVM intrinsic we can simplify can be replaced with one of: |
| // |
| // * an LLVM intrinsic, |
| // * an LLVM cast operation, |
| // * an LLVM binary operation, or |
| // * ad-hoc LLVM IR for the particular operation. |
| |
| // Some transformations are only valid when the module's |
| // flush-denormals-to-zero (ftz) setting is true/false, whereas other |
| // transformations are valid regardless of the module's ftz setting. |
| enum FtzRequirementTy { |
| FTZ_Any, // Any ftz setting is ok. |
| FTZ_MustBeOn, // Transformation is valid only if ftz is on. |
| FTZ_MustBeOff, // Transformation is valid only if ftz is off. |
| }; |
| // Classes of NVVM intrinsics that can't be replaced one-to-one with a |
| // target-generic intrinsic, cast op, or binary op but that we can nonetheless |
| // simplify. |
| enum SpecialCase { |
| SPC_Reciprocal, |
| }; |
| |
| // SimplifyAction is a poor-man's variant (plus an additional flag) that |
| // represents how to replace an NVVM intrinsic with target-generic LLVM IR. |
| struct SimplifyAction { |
| // Invariant: At most one of these Optionals has a value. |
| Optional<Intrinsic::ID> IID; |
| Optional<Instruction::CastOps> CastOp; |
| Optional<Instruction::BinaryOps> BinaryOp; |
| Optional<SpecialCase> Special; |
| |
| FtzRequirementTy FtzRequirement = FTZ_Any; |
| |
| SimplifyAction() = default; |
| |
| SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq) |
| : IID(IID), FtzRequirement(FtzReq) {} |
| |
| // Cast operations don't have anything to do with FTZ, so we skip that |
| // argument. |
| SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} |
| |
| SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) |
| : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} |
| |
| SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) |
| : Special(Special), FtzRequirement(FtzReq) {} |
| }; |
| |
| // Try to generate a SimplifyAction describing how to replace our |
| // IntrinsicInstr with target-generic LLVM IR. |
| const SimplifyAction Action = [II]() -> SimplifyAction { |
| switch (II->getIntrinsicID()) { |
| // NVVM intrinsics that map directly to LLVM intrinsics. |
| case Intrinsic::nvvm_ceil_d: |
| return {Intrinsic::ceil, FTZ_Any}; |
| case Intrinsic::nvvm_ceil_f: |
| return {Intrinsic::ceil, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_ceil_ftz_f: |
| return {Intrinsic::ceil, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_fabs_d: |
| return {Intrinsic::fabs, FTZ_Any}; |
| case Intrinsic::nvvm_fabs_f: |
| return {Intrinsic::fabs, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_fabs_ftz_f: |
| return {Intrinsic::fabs, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_floor_d: |
| return {Intrinsic::floor, FTZ_Any}; |
| case Intrinsic::nvvm_floor_f: |
| return {Intrinsic::floor, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_floor_ftz_f: |
| return {Intrinsic::floor, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_fma_rn_d: |
| return {Intrinsic::fma, FTZ_Any}; |
| case Intrinsic::nvvm_fma_rn_f: |
| return {Intrinsic::fma, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_fma_rn_ftz_f: |
| return {Intrinsic::fma, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_fmax_d: |
| return {Intrinsic::maxnum, FTZ_Any}; |
| case Intrinsic::nvvm_fmax_f: |
| return {Intrinsic::maxnum, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_fmax_ftz_f: |
| return {Intrinsic::maxnum, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_fmin_d: |
| return {Intrinsic::minnum, FTZ_Any}; |
| case Intrinsic::nvvm_fmin_f: |
| return {Intrinsic::minnum, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_fmin_ftz_f: |
| return {Intrinsic::minnum, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_round_d: |
| return {Intrinsic::round, FTZ_Any}; |
| case Intrinsic::nvvm_round_f: |
| return {Intrinsic::round, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_round_ftz_f: |
| return {Intrinsic::round, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_sqrt_rn_d: |
| return {Intrinsic::sqrt, FTZ_Any}; |
| case Intrinsic::nvvm_sqrt_f: |
| // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the |
| // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts |
| // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are |
| // the versions with explicit ftz-ness. |
| return {Intrinsic::sqrt, FTZ_Any}; |
| case Intrinsic::nvvm_sqrt_rn_f: |
| return {Intrinsic::sqrt, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_sqrt_rn_ftz_f: |
| return {Intrinsic::sqrt, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_trunc_d: |
| return {Intrinsic::trunc, FTZ_Any}; |
| case Intrinsic::nvvm_trunc_f: |
| return {Intrinsic::trunc, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_trunc_ftz_f: |
| return {Intrinsic::trunc, FTZ_MustBeOn}; |
| |
| // NVVM intrinsics that map to LLVM cast operations. |
| // |
| // Note that llvm's target-generic conversion operators correspond to the rz |
| // (round to zero) versions of the nvvm conversion intrinsics, even though |
| // most everything else here uses the rn (round to nearest even) nvvm ops. |
| case Intrinsic::nvvm_d2i_rz: |
| case Intrinsic::nvvm_f2i_rz: |
| case Intrinsic::nvvm_d2ll_rz: |
| case Intrinsic::nvvm_f2ll_rz: |
| return {Instruction::FPToSI}; |
| case Intrinsic::nvvm_d2ui_rz: |
| case Intrinsic::nvvm_f2ui_rz: |
| case Intrinsic::nvvm_d2ull_rz: |
| case Intrinsic::nvvm_f2ull_rz: |
| return {Instruction::FPToUI}; |
| case Intrinsic::nvvm_i2d_rz: |
| case Intrinsic::nvvm_i2f_rz: |
| case Intrinsic::nvvm_ll2d_rz: |
| case Intrinsic::nvvm_ll2f_rz: |
| return {Instruction::SIToFP}; |
| case Intrinsic::nvvm_ui2d_rz: |
| case Intrinsic::nvvm_ui2f_rz: |
| case Intrinsic::nvvm_ull2d_rz: |
| case Intrinsic::nvvm_ull2f_rz: |
| return {Instruction::UIToFP}; |
| |
| // NVVM intrinsics that map to LLVM binary ops. |
| case Intrinsic::nvvm_add_rn_d: |
| return {Instruction::FAdd, FTZ_Any}; |
| case Intrinsic::nvvm_add_rn_f: |
| return {Instruction::FAdd, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_add_rn_ftz_f: |
| return {Instruction::FAdd, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_mul_rn_d: |
| return {Instruction::FMul, FTZ_Any}; |
| case Intrinsic::nvvm_mul_rn_f: |
| return {Instruction::FMul, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_mul_rn_ftz_f: |
| return {Instruction::FMul, FTZ_MustBeOn}; |
| case Intrinsic::nvvm_div_rn_d: |
| return {Instruction::FDiv, FTZ_Any}; |
| case Intrinsic::nvvm_div_rn_f: |
| return {Instruction::FDiv, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_div_rn_ftz_f: |
| return {Instruction::FDiv, FTZ_MustBeOn}; |
| |
| // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but |
| // need special handling. |
| // |
| // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just |
| // as well. |
| case Intrinsic::nvvm_rcp_rn_d: |
| return {SPC_Reciprocal, FTZ_Any}; |
| case Intrinsic::nvvm_rcp_rn_f: |
| return {SPC_Reciprocal, FTZ_MustBeOff}; |
| case Intrinsic::nvvm_rcp_rn_ftz_f: |
| return {SPC_Reciprocal, FTZ_MustBeOn}; |
| |
| // We do not currently simplify intrinsics that give an approximate |
| // answer. These include: |
| // |
| // - nvvm_cos_approx_{f,ftz_f} |
| // - nvvm_ex2_approx_{d,f,ftz_f} |
| // - nvvm_lg2_approx_{d,f,ftz_f} |
| // - nvvm_sin_approx_{f,ftz_f} |
| // - nvvm_sqrt_approx_{f,ftz_f} |
| // - nvvm_rsqrt_approx_{d,f,ftz_f} |
| // - nvvm_div_approx_{ftz_d,ftz_f,f} |
| // - nvvm_rcp_approx_ftz_d |
| // |
| // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" |
| // means that fastmath is enabled in the intrinsic. Unfortunately only |
| // binary operators (currently) have a fastmath bit in SelectionDAG, so |
| // this information gets lost and we can't select on it. |
| // |
| // TODO: div and rcp are lowered to a binary op, so these we could in |
| // theory lower them to "fast fdiv". |
| |
| default: |
| return {}; |
| } |
| }(); |
| |
| // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we |
| // can bail out now. (Notice that in the case that IID is not an NVVM |
| // intrinsic, we don't have to look up any module metadata, as |
| // FtzRequirementTy will be FTZ_Any.) |
| if (Action.FtzRequirement != FTZ_Any) { |
| StringRef Attr = II->getFunction() |
| ->getFnAttribute("denormal-fp-math-f32") |
| .getValueAsString(); |
| DenormalMode Mode = parseDenormalFPAttribute(Attr); |
| bool FtzEnabled = Mode.Output != DenormalMode::IEEE; |
| |
| if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) |
| return nullptr; |
| } |
| |
| // Simplify to target-generic intrinsic. |
| if (Action.IID) { |
| SmallVector<Value *, 4> Args(II->args()); |
| // All the target-generic intrinsics currently of interest to us have one |
| // type argument, equal to that of the nvvm intrinsic's argument. |
| Type *Tys[] = {II->getArgOperand(0)->getType()}; |
| return CallInst::Create( |
| Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args); |
| } |
| |
| // Simplify to target-generic binary op. |
| if (Action.BinaryOp) |
| return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0), |
| II->getArgOperand(1), II->getName()); |
| |
| // Simplify to target-generic cast op. |
| if (Action.CastOp) |
| return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(), |
| II->getName()); |
| |
| // All that's left are the special cases. |
| if (!Action.Special) |
| return nullptr; |
| |
| switch (*Action.Special) { |
| case SPC_Reciprocal: |
| // Simplify reciprocal. |
| return BinaryOperator::Create( |
| Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1), |
| II->getArgOperand(0), II->getName()); |
| } |
| llvm_unreachable("All SpecialCase enumerators should be handled in switch."); |
| } |
| |
| Optional<Instruction *> |
| NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
| if (Instruction *I = simplifyNvvmIntrinsic(&II, IC)) { |
| return I; |
| } |
| return None; |
| } |
| |
| InstructionCost NVPTXTTIImpl::getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
| TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, |
| TTI::OperandValueProperties Opd1PropInfo, |
| TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, |
| const Instruction *CxtI) { |
| // Legalize the type. |
| std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); |
| |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| |
| switch (ISD) { |
| default: |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, |
| Opd2Info, |
| Opd1PropInfo, Opd2PropInfo); |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::XOR: |
| case ISD::OR: |
| case ISD::AND: |
| // The machine code (SASS) simulates an i64 with two i32. Therefore, we |
| // estimate that arithmetic operations on i64 are twice as expensive as |
| // those on types that can fit into one machine register. |
| if (LT.second.SimpleTy == MVT::i64) |
| return 2 * LT.first; |
| // Delegate other cases to the basic TTI. |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, |
| Opd2Info, |
| Opd1PropInfo, Opd2PropInfo); |
| } |
| } |
| |
| void NVPTXTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::UnrollingPreferences &UP, |
| OptimizationRemarkEmitter *ORE) { |
| BaseT::getUnrollingPreferences(L, SE, UP, ORE); |
| |
| // Enable partial unrolling and runtime unrolling, but reduce the |
| // threshold. This partially unrolls small loops which are often |
| // unrolled by the PTX to SASS compiler and unrolling earlier can be |
| // beneficial. |
| UP.Partial = UP.Runtime = true; |
| UP.PartialThreshold = UP.Threshold / 4; |
| } |
| |
| void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::PeelingPreferences &PP) { |
| BaseT::getPeelingPreferences(L, SE, PP); |
| } |