| //===- MipsLegalizerInfo.cpp ------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the Machinelegalizer class for Mips. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "MipsLegalizerInfo.h" |
| #include "MipsTargetMachine.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" |
| #include "llvm/IR/IntrinsicsMips.h" |
| |
| using namespace llvm; |
| |
| struct TypesAndMemOps { |
| LLT ValTy; |
| LLT PtrTy; |
| unsigned MemSize; |
| bool SystemSupportsUnalignedAccess; |
| }; |
| |
| // Assumes power of 2 memory size. Subtargets that have only naturally-aligned |
| // memory access need to perform additional legalization here. |
| static bool isUnalignedMemmoryAccess(uint64_t MemSize, uint64_t AlignInBits) { |
| assert(isPowerOf2_64(MemSize) && "Expected power of 2 memory size"); |
| assert(isPowerOf2_64(AlignInBits) && "Expected power of 2 align"); |
| if (MemSize > AlignInBits) |
| return true; |
| return false; |
| } |
| |
| static bool |
| CheckTy0Ty1MemSizeAlign(const LegalityQuery &Query, |
| std::initializer_list<TypesAndMemOps> SupportedValues) { |
| unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits(); |
| |
| // Non power of two memory access is never legal. |
| if (!isPowerOf2_64(QueryMemSize)) |
| return false; |
| |
| for (auto &Val : SupportedValues) { |
| if (Val.ValTy != Query.Types[0]) |
| continue; |
| if (Val.PtrTy != Query.Types[1]) |
| continue; |
| if (Val.MemSize != QueryMemSize) |
| continue; |
| if (!Val.SystemSupportsUnalignedAccess && |
| isUnalignedMemmoryAccess(QueryMemSize, Query.MMODescrs[0].AlignInBits)) |
| return false; |
| return true; |
| } |
| return false; |
| } |
| |
| static bool CheckTyN(unsigned N, const LegalityQuery &Query, |
| std::initializer_list<LLT> SupportedValues) { |
| return llvm::is_contained(SupportedValues, Query.Types[N]); |
| } |
| |
| MipsLegalizerInfo::MipsLegalizerInfo(const MipsSubtarget &ST) { |
| using namespace TargetOpcode; |
| |
| const LLT s1 = LLT::scalar(1); |
| const LLT s8 = LLT::scalar(8); |
| const LLT s16 = LLT::scalar(16); |
| const LLT s32 = LLT::scalar(32); |
| const LLT s64 = LLT::scalar(64); |
| const LLT v16s8 = LLT::fixed_vector(16, 8); |
| const LLT v8s16 = LLT::fixed_vector(8, 16); |
| const LLT v4s32 = LLT::fixed_vector(4, 32); |
| const LLT v2s64 = LLT::fixed_vector(2, 64); |
| const LLT p0 = LLT::pointer(0, 32); |
| |
| getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) |
| .legalIf([=, &ST](const LegalityQuery &Query) { |
| if (CheckTyN(0, Query, {s32})) |
| return true; |
| if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64})) |
| return true; |
| return false; |
| }) |
| .clampScalar(0, s32, s32); |
| |
| getActionDefinitionsBuilder({G_UADDO, G_UADDE, G_USUBO, G_USUBE, G_UMULO}) |
| .lowerFor({{s32, s1}}); |
| |
| getActionDefinitionsBuilder(G_UMULH) |
| .legalFor({s32}) |
| .maxScalar(0, s32); |
| |
| // MIPS32r6 does not have alignment restrictions for memory access. |
| // For MIPS32r5 and older memory access must be naturally-aligned i.e. aligned |
| // to at least a multiple of its own size. There is however a two instruction |
| // combination that performs 4 byte unaligned access (lwr/lwl and swl/swr) |
| // therefore 4 byte load and store are legal and will use NoAlignRequirements. |
| bool NoAlignRequirements = true; |
| |
| getActionDefinitionsBuilder({G_LOAD, G_STORE}) |
| .legalIf([=, &ST](const LegalityQuery &Query) { |
| if (CheckTy0Ty1MemSizeAlign( |
| Query, {{s32, p0, 8, NoAlignRequirements}, |
| {s32, p0, 16, ST.systemSupportsUnalignedAccess()}, |
| {s32, p0, 32, NoAlignRequirements}, |
| {p0, p0, 32, NoAlignRequirements}, |
| {s64, p0, 64, ST.systemSupportsUnalignedAccess()}})) |
| return true; |
| if (ST.hasMSA() && CheckTy0Ty1MemSizeAlign( |
| Query, {{v16s8, p0, 128, NoAlignRequirements}, |
| {v8s16, p0, 128, NoAlignRequirements}, |
| {v4s32, p0, 128, NoAlignRequirements}, |
| {v2s64, p0, 128, NoAlignRequirements}})) |
| return true; |
| return false; |
| }) |
| // Custom lower scalar memory access, up to 8 bytes, for: |
| // - non-power-of-2 MemSizes |
| // - unaligned 2 or 8 byte MemSizes for MIPS32r5 and older |
| .customIf([=, &ST](const LegalityQuery &Query) { |
| if (!Query.Types[0].isScalar() || Query.Types[1] != p0 || |
| Query.Types[0] == s1) |
| return false; |
| |
| unsigned Size = Query.Types[0].getSizeInBits(); |
| unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits(); |
| assert(QueryMemSize <= Size && "Scalar can't hold MemSize"); |
| |
| if (Size > 64 || QueryMemSize > 64) |
| return false; |
| |
| if (!isPowerOf2_64(Query.MMODescrs[0].MemoryTy.getSizeInBits())) |
| return true; |
| |
| if (!ST.systemSupportsUnalignedAccess() && |
| isUnalignedMemmoryAccess(QueryMemSize, |
| Query.MMODescrs[0].AlignInBits)) { |
| assert(QueryMemSize != 32 && "4 byte load and store are legal"); |
| return true; |
| } |
| |
| return false; |
| }) |
| .minScalar(0, s32) |
| .lower(); |
| |
| getActionDefinitionsBuilder(G_IMPLICIT_DEF) |
| .legalFor({s32, s64}); |
| |
| getActionDefinitionsBuilder(G_UNMERGE_VALUES) |
| .legalFor({{s32, s64}}); |
| |
| getActionDefinitionsBuilder(G_MERGE_VALUES) |
| .legalFor({{s64, s32}}); |
| |
| getActionDefinitionsBuilder({G_ZEXTLOAD, G_SEXTLOAD}) |
| .legalForTypesWithMemDesc({{s32, p0, s8, 8}, |
| {s32, p0, s16, 8}}) |
| .clampScalar(0, s32, s32); |
| |
| getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT}) |
| .legalIf([](const LegalityQuery &Query) { return false; }) |
| .maxScalar(0, s32); |
| |
| getActionDefinitionsBuilder(G_TRUNC) |
| .legalIf([](const LegalityQuery &Query) { return false; }) |
| .maxScalar(1, s32); |
| |
| getActionDefinitionsBuilder(G_SELECT) |
| .legalForCartesianProduct({p0, s32, s64}, {s32}) |
| .minScalar(0, s32) |
| .minScalar(1, s32); |
| |
| getActionDefinitionsBuilder(G_BRCOND) |
| .legalFor({s32}) |
| .minScalar(0, s32); |
| |
| getActionDefinitionsBuilder(G_BRJT) |
| .legalFor({{p0, s32}}); |
| |
| getActionDefinitionsBuilder(G_BRINDIRECT) |
| .legalFor({p0}); |
| |
| getActionDefinitionsBuilder(G_PHI) |
| .legalFor({p0, s32, s64}) |
| .minScalar(0, s32); |
| |
| getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) |
| .legalFor({s32}) |
| .clampScalar(0, s32, s32); |
| |
| getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM}) |
| .legalIf([=, &ST](const LegalityQuery &Query) { |
| if (CheckTyN(0, Query, {s32})) |
| return true; |
| if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64})) |
| return true; |
| return false; |
| }) |
| .minScalar(0, s32) |
| .libcallFor({s64}); |
| |
| getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR}) |
| .legalFor({{s32, s32}}) |
| .clampScalar(1, s32, s32) |
| .clampScalar(0, s32, s32); |
| |
| getActionDefinitionsBuilder(G_ICMP) |
| .legalForCartesianProduct({s32}, {s32, p0}) |
| .clampScalar(1, s32, s32) |
| .minScalar(0, s32); |
| |
| getActionDefinitionsBuilder(G_CONSTANT) |
| .legalFor({s32}) |
| .clampScalar(0, s32, s32); |
| |
| getActionDefinitionsBuilder({G_PTR_ADD, G_INTTOPTR}) |
| .legalFor({{p0, s32}}); |
| |
| getActionDefinitionsBuilder(G_PTRTOINT) |
| .legalFor({{s32, p0}}); |
| |
| getActionDefinitionsBuilder(G_FRAME_INDEX) |
| .legalFor({p0}); |
| |
| getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE}) |
| .legalFor({p0}); |
| |
| getActionDefinitionsBuilder(G_DYN_STACKALLOC) |
| .lowerFor({{p0, s32}}); |
| |
| getActionDefinitionsBuilder(G_VASTART) |
| .legalFor({p0}); |
| |
| getActionDefinitionsBuilder(G_BSWAP) |
| .legalIf([=, &ST](const LegalityQuery &Query) { |
| if (ST.hasMips32r2() && CheckTyN(0, Query, {s32})) |
| return true; |
| return false; |
| }) |
| .lowerIf([=, &ST](const LegalityQuery &Query) { |
| if (!ST.hasMips32r2() && CheckTyN(0, Query, {s32})) |
| return true; |
| return false; |
| }) |
| .maxScalar(0, s32); |
| |
| getActionDefinitionsBuilder(G_BITREVERSE) |
| .lowerFor({s32}) |
| .maxScalar(0, s32); |
| |
| getActionDefinitionsBuilder(G_CTLZ) |
| .legalFor({{s32, s32}}) |
| .maxScalar(0, s32) |
| .maxScalar(1, s32); |
| getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF) |
| .lowerFor({{s32, s32}}); |
| |
| getActionDefinitionsBuilder(G_CTTZ) |
| .lowerFor({{s32, s32}}) |
| .maxScalar(0, s32) |
| .maxScalar(1, s32); |
| getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF) |
| .lowerFor({{s32, s32}, {s64, s64}}); |
| |
| getActionDefinitionsBuilder(G_CTPOP) |
| .lowerFor({{s32, s32}}) |
| .clampScalar(0, s32, s32) |
| .clampScalar(1, s32, s32); |
| |
| // FP instructions |
| getActionDefinitionsBuilder(G_FCONSTANT) |
| .legalFor({s32, s64}); |
| |
| getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FABS, G_FSQRT}) |
| .legalIf([=, &ST](const LegalityQuery &Query) { |
| if (CheckTyN(0, Query, {s32, s64})) |
| return true; |
| if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64})) |
| return true; |
| return false; |
| }); |
| |
| getActionDefinitionsBuilder(G_FCMP) |
| .legalFor({{s32, s32}, {s32, s64}}) |
| .minScalar(0, s32); |
| |
| getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR}) |
| .libcallFor({s32, s64}); |
| |
| getActionDefinitionsBuilder(G_FPEXT) |
| .legalFor({{s64, s32}}); |
| |
| getActionDefinitionsBuilder(G_FPTRUNC) |
| .legalFor({{s32, s64}}); |
| |
| // FP to int conversion instructions |
| getActionDefinitionsBuilder(G_FPTOSI) |
| .legalForCartesianProduct({s32}, {s64, s32}) |
| .libcallForCartesianProduct({s64}, {s64, s32}) |
| .minScalar(0, s32); |
| |
| getActionDefinitionsBuilder(G_FPTOUI) |
| .libcallForCartesianProduct({s64}, {s64, s32}) |
| .lowerForCartesianProduct({s32}, {s64, s32}) |
| .minScalar(0, s32); |
| |
| // Int to FP conversion instructions |
| getActionDefinitionsBuilder(G_SITOFP) |
| .legalForCartesianProduct({s64, s32}, {s32}) |
| .libcallForCartesianProduct({s64, s32}, {s64}) |
| .minScalar(1, s32); |
| |
| getActionDefinitionsBuilder(G_UITOFP) |
| .libcallForCartesianProduct({s64, s32}, {s64}) |
| .customForCartesianProduct({s64, s32}, {s32}) |
| .minScalar(1, s32); |
| |
| getActionDefinitionsBuilder(G_SEXT_INREG).lower(); |
| |
| getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall(); |
| |
| getLegacyLegalizerInfo().computeTables(); |
| verify(*ST.getInstrInfo()); |
| } |
| |
| bool MipsLegalizerInfo::legalizeCustom(LegalizerHelper &Helper, |
| MachineInstr &MI) const { |
| using namespace TargetOpcode; |
| |
| MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; |
| MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| |
| const LLT s32 = LLT::scalar(32); |
| const LLT s64 = LLT::scalar(64); |
| |
| switch (MI.getOpcode()) { |
| case G_LOAD: |
| case G_STORE: { |
| unsigned MemSize = (**MI.memoperands_begin()).getSize(); |
| Register Val = MI.getOperand(0).getReg(); |
| unsigned Size = MRI.getType(Val).getSizeInBits(); |
| |
| MachineMemOperand *MMOBase = *MI.memoperands_begin(); |
| |
| assert(MemSize <= 8 && "MemSize is too large"); |
| assert(Size <= 64 && "Scalar size is too large"); |
| |
| // Split MemSize into two, P2HalfMemSize is largest power of two smaller |
| // then MemSize. e.g. 8 = 4 + 4 , 6 = 4 + 2, 3 = 2 + 1. |
| unsigned P2HalfMemSize, RemMemSize; |
| if (isPowerOf2_64(MemSize)) { |
| P2HalfMemSize = RemMemSize = MemSize / 2; |
| } else { |
| P2HalfMemSize = 1 << Log2_32(MemSize); |
| RemMemSize = MemSize - P2HalfMemSize; |
| } |
| |
| Register BaseAddr = MI.getOperand(1).getReg(); |
| LLT PtrTy = MRI.getType(BaseAddr); |
| MachineFunction &MF = MIRBuilder.getMF(); |
| |
| auto P2HalfMemOp = MF.getMachineMemOperand(MMOBase, 0, P2HalfMemSize); |
| auto RemMemOp = MF.getMachineMemOperand(MMOBase, P2HalfMemSize, RemMemSize); |
| |
| if (MI.getOpcode() == G_STORE) { |
| // Widen Val to s32 or s64 in order to create legal G_LSHR or G_UNMERGE. |
| if (Size < 32) |
| Val = MIRBuilder.buildAnyExt(s32, Val).getReg(0); |
| if (Size > 32 && Size < 64) |
| Val = MIRBuilder.buildAnyExt(s64, Val).getReg(0); |
| |
| auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize); |
| auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize); |
| |
| if (MI.getOpcode() == G_STORE && MemSize <= 4) { |
| MIRBuilder.buildStore(Val, BaseAddr, *P2HalfMemOp); |
| auto C_P2Half_InBits = MIRBuilder.buildConstant(s32, P2HalfMemSize * 8); |
| auto Shift = MIRBuilder.buildLShr(s32, Val, C_P2Half_InBits); |
| MIRBuilder.buildStore(Shift, Addr, *RemMemOp); |
| } else { |
| auto Unmerge = MIRBuilder.buildUnmerge(s32, Val); |
| MIRBuilder.buildStore(Unmerge.getReg(0), BaseAddr, *P2HalfMemOp); |
| MIRBuilder.buildStore(Unmerge.getReg(1), Addr, *RemMemOp); |
| } |
| } |
| |
| if (MI.getOpcode() == G_LOAD) { |
| |
| if (MemSize <= 4) { |
| // This is anyextending load, use 4 byte lwr/lwl. |
| auto *Load4MMO = MF.getMachineMemOperand(MMOBase, 0, 4); |
| |
| if (Size == 32) |
| MIRBuilder.buildLoad(Val, BaseAddr, *Load4MMO); |
| else { |
| auto Load = MIRBuilder.buildLoad(s32, BaseAddr, *Load4MMO); |
| MIRBuilder.buildTrunc(Val, Load.getReg(0)); |
| } |
| |
| } else { |
| auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize); |
| auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize); |
| |
| auto Load_P2Half = MIRBuilder.buildLoad(s32, BaseAddr, *P2HalfMemOp); |
| auto Load_Rem = MIRBuilder.buildLoad(s32, Addr, *RemMemOp); |
| |
| if (Size == 64) |
| MIRBuilder.buildMerge(Val, {Load_P2Half, Load_Rem}); |
| else { |
| auto Merge = MIRBuilder.buildMerge(s64, {Load_P2Half, Load_Rem}); |
| MIRBuilder.buildTrunc(Val, Merge); |
| } |
| } |
| } |
| MI.eraseFromParent(); |
| break; |
| } |
| case G_UITOFP: { |
| Register Dst = MI.getOperand(0).getReg(); |
| Register Src = MI.getOperand(1).getReg(); |
| LLT DstTy = MRI.getType(Dst); |
| LLT SrcTy = MRI.getType(Src); |
| |
| if (SrcTy != s32) |
| return false; |
| if (DstTy != s32 && DstTy != s64) |
| return false; |
| |
| // Let 0xABCDEFGH be given unsigned in MI.getOperand(1). First let's convert |
| // unsigned to double. Mantissa has 52 bits so we use following trick: |
| // First make floating point bit mask 0x43300000ABCDEFGH. |
| // Mask represents 2^52 * 0x1.00000ABCDEFGH i.e. 0x100000ABCDEFGH.0 . |
| // Next, subtract 2^52 * 0x1.0000000000000 i.e. 0x10000000000000.0 from it. |
| // Done. Trunc double to float if needed. |
| |
| auto C_HiMask = MIRBuilder.buildConstant(s32, UINT32_C(0x43300000)); |
| auto Bitcast = MIRBuilder.buildMerge(s64, {Src, C_HiMask.getReg(0)}); |
| |
| MachineInstrBuilder TwoP52FP = MIRBuilder.buildFConstant( |
| s64, BitsToDouble(UINT64_C(0x4330000000000000))); |
| |
| if (DstTy == s64) |
| MIRBuilder.buildFSub(Dst, Bitcast, TwoP52FP); |
| else { |
| MachineInstrBuilder ResF64 = MIRBuilder.buildFSub(s64, Bitcast, TwoP52FP); |
| MIRBuilder.buildFPTrunc(Dst, ResF64); |
| } |
| |
| MI.eraseFromParent(); |
| break; |
| } |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool SelectMSA3OpIntrinsic(MachineInstr &MI, unsigned Opcode, |
| MachineIRBuilder &MIRBuilder, |
| const MipsSubtarget &ST) { |
| assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA."); |
| if (!MIRBuilder.buildInstr(Opcode) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(2)) |
| .add(MI.getOperand(3)) |
| .constrainAllUses(MIRBuilder.getTII(), *ST.getRegisterInfo(), |
| *ST.getRegBankInfo())) |
| return false; |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| static bool MSA3OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode, |
| MachineIRBuilder &MIRBuilder, |
| const MipsSubtarget &ST) { |
| assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA."); |
| MIRBuilder.buildInstr(Opcode) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(2)) |
| .add(MI.getOperand(3)); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| static bool MSA2OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode, |
| MachineIRBuilder &MIRBuilder, |
| const MipsSubtarget &ST) { |
| assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA."); |
| MIRBuilder.buildInstr(Opcode) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(2)); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool MipsLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper, |
| MachineInstr &MI) const { |
| MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; |
| const MipsSubtarget &ST = |
| static_cast<const MipsSubtarget &>(MI.getMF()->getSubtarget()); |
| const MipsInstrInfo &TII = *ST.getInstrInfo(); |
| const MipsRegisterInfo &TRI = *ST.getRegisterInfo(); |
| const RegisterBankInfo &RBI = *ST.getRegBankInfo(); |
| |
| switch (MI.getIntrinsicID()) { |
| case Intrinsic::trap: { |
| MachineInstr *Trap = MIRBuilder.buildInstr(Mips::TRAP); |
| MI.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*Trap, TII, TRI, RBI); |
| } |
| case Intrinsic::vacopy: { |
| MachinePointerInfo MPO; |
| LLT PtrTy = LLT::pointer(0, 32); |
| auto Tmp = |
| MIRBuilder.buildLoad(PtrTy, MI.getOperand(2), |
| *MI.getMF()->getMachineMemOperand( |
| MPO, MachineMemOperand::MOLoad, PtrTy, Align(4))); |
| MIRBuilder.buildStore(Tmp, MI.getOperand(1), |
| *MI.getMF()->getMachineMemOperand( |
| MPO, MachineMemOperand::MOStore, PtrTy, Align(4))); |
| MI.eraseFromParent(); |
| return true; |
| } |
| case Intrinsic::mips_addv_b: |
| case Intrinsic::mips_addv_h: |
| case Intrinsic::mips_addv_w: |
| case Intrinsic::mips_addv_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_ADD, MIRBuilder, ST); |
| case Intrinsic::mips_addvi_b: |
| return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_B, MIRBuilder, ST); |
| case Intrinsic::mips_addvi_h: |
| return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_H, MIRBuilder, ST); |
| case Intrinsic::mips_addvi_w: |
| return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_W, MIRBuilder, ST); |
| case Intrinsic::mips_addvi_d: |
| return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_D, MIRBuilder, ST); |
| case Intrinsic::mips_subv_b: |
| case Intrinsic::mips_subv_h: |
| case Intrinsic::mips_subv_w: |
| case Intrinsic::mips_subv_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SUB, MIRBuilder, ST); |
| case Intrinsic::mips_subvi_b: |
| return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_B, MIRBuilder, ST); |
| case Intrinsic::mips_subvi_h: |
| return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_H, MIRBuilder, ST); |
| case Intrinsic::mips_subvi_w: |
| return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_W, MIRBuilder, ST); |
| case Intrinsic::mips_subvi_d: |
| return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_D, MIRBuilder, ST); |
| case Intrinsic::mips_mulv_b: |
| case Intrinsic::mips_mulv_h: |
| case Intrinsic::mips_mulv_w: |
| case Intrinsic::mips_mulv_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_MUL, MIRBuilder, ST); |
| case Intrinsic::mips_div_s_b: |
| case Intrinsic::mips_div_s_h: |
| case Intrinsic::mips_div_s_w: |
| case Intrinsic::mips_div_s_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SDIV, MIRBuilder, ST); |
| case Intrinsic::mips_mod_s_b: |
| case Intrinsic::mips_mod_s_h: |
| case Intrinsic::mips_mod_s_w: |
| case Intrinsic::mips_mod_s_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SREM, MIRBuilder, ST); |
| case Intrinsic::mips_div_u_b: |
| case Intrinsic::mips_div_u_h: |
| case Intrinsic::mips_div_u_w: |
| case Intrinsic::mips_div_u_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UDIV, MIRBuilder, ST); |
| case Intrinsic::mips_mod_u_b: |
| case Intrinsic::mips_mod_u_h: |
| case Intrinsic::mips_mod_u_w: |
| case Intrinsic::mips_mod_u_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UREM, MIRBuilder, ST); |
| case Intrinsic::mips_fadd_w: |
| case Intrinsic::mips_fadd_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FADD, MIRBuilder, ST); |
| case Intrinsic::mips_fsub_w: |
| case Intrinsic::mips_fsub_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FSUB, MIRBuilder, ST); |
| case Intrinsic::mips_fmul_w: |
| case Intrinsic::mips_fmul_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FMUL, MIRBuilder, ST); |
| case Intrinsic::mips_fdiv_w: |
| case Intrinsic::mips_fdiv_d: |
| return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FDIV, MIRBuilder, ST); |
| case Intrinsic::mips_fmax_a_w: |
| return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_W, MIRBuilder, ST); |
| case Intrinsic::mips_fmax_a_d: |
| return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_D, MIRBuilder, ST); |
| case Intrinsic::mips_fsqrt_w: |
| return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST); |
| case Intrinsic::mips_fsqrt_d: |
| return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST); |
| default: |
| break; |
| } |
| return true; |
| } |