| //===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| include "ARMSystemRegister.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Declarations that describe the ARM register file |
| //===----------------------------------------------------------------------===// |
| |
| // Registers are identified with 4-bit ID numbers. |
| class ARMReg<bits<16> Enc, string n, list<Register> subregs = [], |
| list<string> altNames = []> : Register<n, altNames> { |
| let HWEncoding = Enc; |
| let Namespace = "ARM"; |
| let SubRegs = subregs; |
| // All bits of ARM registers with sub-registers are covered by sub-registers. |
| let CoveredBySubRegs = 1; |
| } |
| |
| class ARMFReg<bits<16> Enc, string n> : Register<n> { |
| let HWEncoding = Enc; |
| let Namespace = "ARM"; |
| } |
| |
| let Namespace = "ARM", |
| FallbackRegAltNameIndex = NoRegAltName in { |
| def RegNamesRaw : RegAltNameIndex; |
| } |
| |
| // Subregister indices. |
| let Namespace = "ARM" in { |
| def qqsub_0 : SubRegIndex<256>; |
| def qqsub_1 : SubRegIndex<256, 256>; |
| |
| // Note: Code depends on these having consecutive numbers. |
| def qsub_0 : SubRegIndex<128>; |
| def qsub_1 : SubRegIndex<128, 128>; |
| def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>; |
| def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>; |
| |
| def dsub_0 : SubRegIndex<64>; |
| def dsub_1 : SubRegIndex<64, 64>; |
| def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>; |
| def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>; |
| def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>; |
| def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>; |
| def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>; |
| def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>; |
| |
| def ssub_0 : SubRegIndex<32>; |
| def ssub_1 : SubRegIndex<32, 32>; |
| def ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>; |
| def ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>; |
| def ssub_4 : ComposedSubRegIndex<dsub_2, ssub_0>; |
| def ssub_5 : ComposedSubRegIndex<dsub_2, ssub_1>; |
| def ssub_6 : ComposedSubRegIndex<dsub_3, ssub_0>; |
| def ssub_7 : ComposedSubRegIndex<dsub_3, ssub_1>; |
| def ssub_8 : ComposedSubRegIndex<dsub_4, ssub_0>; |
| def ssub_9 : ComposedSubRegIndex<dsub_4, ssub_1>; |
| def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>; |
| def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>; |
| def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>; |
| def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>; |
| def ssub_14 : ComposedSubRegIndex<dsub_7, ssub_0>; |
| def ssub_15 : ComposedSubRegIndex<dsub_7, ssub_1>; |
| |
| def gsub_0 : SubRegIndex<32>; |
| def gsub_1 : SubRegIndex<32, 32>; |
| // Let TableGen synthesize the remaining 12 ssub_* indices. |
| // We don't need to name them. |
| } |
| |
| // Integer registers |
| def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; |
| def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; |
| def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; |
| def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; |
| def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; |
| def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; |
| def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; |
| def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; |
| // These require 32-bit instructions. |
| let CostPerUse = [1] in { |
| def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; |
| def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; |
| def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; |
| def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; |
| def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; |
| let RegAltNameIndices = [RegNamesRaw] in { |
| def SP : ARMReg<13, "sp", [], ["r13"]>, DwarfRegNum<[13]>; |
| def LR : ARMReg<14, "lr", [], ["r14"]>, DwarfRegNum<[14]>; |
| def PC : ARMReg<15, "pc", [], ["r15"]>, DwarfRegNum<[15]>; |
| } |
| } |
| |
| // Float registers |
| def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; |
| def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; |
| def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; |
| def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; |
| def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; |
| def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; |
| def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; |
| def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; |
| def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; |
| def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; |
| def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; |
| def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; |
| def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; |
| def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; |
| def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; |
| def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; |
| |
| // Aliases of the F* registers used to hold 64-bit fp values (doubles) |
| let SubRegIndices = [ssub_0, ssub_1] in { |
| def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>; |
| def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>; |
| def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>; |
| def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>; |
| def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>; |
| def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>; |
| def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>; |
| def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>; |
| def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>; |
| def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>; |
| def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>; |
| def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>; |
| def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>; |
| def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>; |
| def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>; |
| def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; |
| } |
| |
| // VFP3 defines 16 additional double registers |
| def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; |
| def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; |
| def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; |
| def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; |
| def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; |
| def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; |
| def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; |
| def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; |
| def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; |
| def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; |
| def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>; |
| def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>; |
| def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>; |
| def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>; |
| def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; |
| def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; |
| |
| // Advanced SIMD (NEON) defines 16 quad-word aliases |
| let SubRegIndices = [dsub_0, dsub_1] in { |
| def Q0 : ARMReg< 0, "q0", [D0, D1]>; |
| def Q1 : ARMReg< 1, "q1", [D2, D3]>; |
| def Q2 : ARMReg< 2, "q2", [D4, D5]>; |
| def Q3 : ARMReg< 3, "q3", [D6, D7]>; |
| def Q4 : ARMReg< 4, "q4", [D8, D9]>; |
| def Q5 : ARMReg< 5, "q5", [D10, D11]>; |
| def Q6 : ARMReg< 6, "q6", [D12, D13]>; |
| def Q7 : ARMReg< 7, "q7", [D14, D15]>; |
| } |
| let SubRegIndices = [dsub_0, dsub_1] in { |
| def Q8 : ARMReg< 8, "q8", [D16, D17]>; |
| def Q9 : ARMReg< 9, "q9", [D18, D19]>; |
| def Q10 : ARMReg<10, "q10", [D20, D21]>; |
| def Q11 : ARMReg<11, "q11", [D22, D23]>; |
| def Q12 : ARMReg<12, "q12", [D24, D25]>; |
| def Q13 : ARMReg<13, "q13", [D26, D27]>; |
| def Q14 : ARMReg<14, "q14", [D28, D29]>; |
| def Q15 : ARMReg<15, "q15", [D30, D31]>; |
| } |
| |
| // Current Program Status Register. |
| // We model fpscr with two registers: FPSCR models the control bits and will be |
| // reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV |
| // models the APSR when it's accessed by some special instructions. In such cases |
| // it has the same encoding as PC. |
| def CPSR : ARMReg<0, "cpsr">; |
| def APSR : ARMReg<15, "apsr">; |
| def APSR_NZCV : ARMReg<15, "apsr_nzcv">; |
| def SPSR : ARMReg<2, "spsr">; |
| def FPSCR : ARMReg<3, "fpscr">; |
| def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> { |
| let Aliases = [FPSCR]; |
| } |
| def ITSTATE : ARMReg<4, "itstate">; |
| |
| // Special Registers - only available in privileged mode. |
| def FPSID : ARMReg<0, "fpsid">; |
| def MVFR2 : ARMReg<5, "mvfr2">; |
| def MVFR1 : ARMReg<6, "mvfr1">; |
| def MVFR0 : ARMReg<7, "mvfr0">; |
| def FPEXC : ARMReg<8, "fpexc">; |
| def FPINST : ARMReg<9, "fpinst">; |
| def FPINST2 : ARMReg<10, "fpinst2">; |
| // These encodings aren't actual instruction encodings, their encoding depends |
| // on the instruction they are used in and for VPR 32 was chosen such that it |
| // always comes last in spr_reglist_with_vpr. |
| def VPR : ARMReg<32, "vpr">; |
| def FPSCR_NZCVQC |
| : ARMReg<2, "fpscr_nzcvqc">; |
| def P0 : ARMReg<13, "p0">; |
| def FPCXTNS : ARMReg<14, "fpcxtns">; |
| def FPCXTS : ARMReg<15, "fpcxts">; |
| |
| def ZR : ARMReg<15, "zr">, DwarfRegNum<[15]>; |
| |
| // Register classes. |
| // |
| // pc == Program Counter |
| // lr == Link Register |
| // sp == Stack Pointer |
| // r12 == ip (scratch) |
| // r7 == Frame Pointer (thumb-style backtraces) |
| // r9 == May be reserved as Thread Register |
| // r11 == Frame Pointer (arm-style backtraces) |
| // r10 == Stack Limit |
| // |
| def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), |
| SP, LR, PC)> { |
| // Allocate LR as the first CSR since it is always saved anyway. |
| // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't |
| // know how to spill them. If we make our prologue/epilogue code smarter at |
| // some point, we can go back to using the above allocation orders for the |
| // Thumb1 instructions that know how to use hi regs. |
| let AltOrders = [(add LR, GPR), (trunc GPR, 8), |
| (add (trunc GPR, 8), R12, LR, (shl GPR, 8))]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); |
| }]; |
| let DiagnosticString = "operand must be a register in range [r0, r15]"; |
| } |
| |
| // Register set that excludes registers that are reserved for procedure calls. |
| // This is used for pseudo-instructions that are actually implemented using a |
| // procedure call. |
| def GPRnoip : RegisterClass<"ARM", [i32], 32, (sub GPR, R12, LR)> { |
| // Allocate LR as the first CSR since it is always saved anyway. |
| // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't |
| // know how to spill them. If we make our prologue/epilogue code smarter at |
| // some point, we can go back to using the above allocation orders for the |
| // Thumb1 instructions that know how to use hi regs. |
| let AltOrders = [(add GPRnoip, GPRnoip), (trunc GPRnoip, 8), |
| (add (trunc GPRnoip, 8), (shl GPRnoip, 8))]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); |
| }]; |
| let DiagnosticString = "operand must be a register in range [r0, r14]"; |
| } |
| |
| // GPRs without the PC. Some ARM instructions do not allow the PC in |
| // certain operand slots, particularly as the destination. Primarily |
| // useful for disassembly. |
| def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { |
| let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8), |
| (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); |
| }]; |
| let DiagnosticString = "operand must be a register in range [r0, r14]"; |
| } |
| |
| // GPRs without the PC but with APSR. Some instructions allow accessing the |
| // APSR, while actually encoding PC in the register field. This is useful |
| // for assembly and disassembly only. |
| def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> { |
| let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); |
| }]; |
| let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv"; |
| } |
| |
| // GPRs without the SP register. Used for BXAUT and AUTG |
| def GPRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, PC)> { |
| let AltOrders = [(add LR, GPRnosp), (trunc GPRnosp, 8), |
| (add (trunc GPRnosp, 8), R12, LR, (shl GPRnosp, 8))]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); |
| }]; |
| let DiagnosticString = "operand must be a register in range [r0, r12] or LR or PC"; |
| } |
| |
| // GPRs without the PC and SP registers but with APSR. Used by CLRM instruction. |
| def GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> { |
| let isAllocatable = 0; |
| } |
| |
| def GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> { |
| let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); |
| }]; |
| let DiagnosticString = "operand must be a register in range [r0, r14] or zr"; |
| } |
| |
| def GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> { |
| let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); |
| }]; |
| let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr"; |
| } |
| |
| // GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the |
| // implied SP argument list. |
| // FIXME: It would be better to not use this at all and refactor the |
| // instructions to not have SP an an explicit argument. That makes |
| // frame index resolution a bit trickier, though. |
| def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> { |
| let DiagnosticString = "operand must be a register sp"; |
| } |
| |
| // GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions |
| // where LR is the only legal loop counter register. |
| def GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>; |
| |
| // restricted GPR register class. Many Thumb2 instructions allow the full |
| // register range for operands, but have undefined behaviours when PC |
| // or SP (R13 or R15) are used. The ARM ISA refers to these operands |
| // via the BadReg() pseudo-code description. |
| def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { |
| let AltOrders = [(add LR, rGPR), (trunc rGPR, 8), |
| (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); |
| }]; |
| let DiagnosticType = "rGPR"; |
| } |
| |
| // GPRs without the PC and SP but with APSR_NZCV.Some instructions allow |
| // accessing the APSR_NZCV, while actually encoding PC in the register field. |
| // This is useful for assembly and disassembly only. |
| // Currently used by the CDE extension. |
| def GPRwithAPSR_NZCVnosp |
| : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR_NZCV)> { |
| let isAllocatable = 0; |
| let DiagnosticString = |
| "operand must be a register in the range [r0, r12], r14 or apsr_nzcv"; |
| } |
| |
| // Thumb registers are R0-R7 normally. Some instructions can still use |
| // the general GPR register class above (MOV, e.g.) |
| def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> { |
| let DiagnosticString = "operand must be a register in range [r0, r7]"; |
| } |
| |
| // Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow |
| // the PC to be used as a destination operand as well. |
| def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>; |
| |
| // The high registers in thumb mode, R8-R15. |
| def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> { |
| let DiagnosticString = "operand must be a register in range [r8, r15]"; |
| } |
| |
| // For tail calls, we can't use callee-saved registers, as they are restored |
| // to the saved value before the tail call, which would clobber a call address. |
| // Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of |
| // this class and the preceding one(!) This is what we want. |
| def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> { |
| let AltOrders = [(and tcGPR, tGPR)]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); |
| }]; |
| } |
| |
| def tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> { |
| let AltOrders = [(and tGPROdd, tGPR)]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); |
| }]; |
| let DiagnosticString = |
| "operand must be an odd-numbered register in range [r1,r11]"; |
| } |
| |
| def tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> { |
| let AltOrders = [(and tGPREven, tGPR)]; |
| let AltOrderSelect = [{ |
| return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); |
| }]; |
| let DiagnosticString = "operand must be an even-numbered register"; |
| } |
| |
| // Condition code registers. |
| def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { |
| let CopyCost = -1; // Don't allow copying of status registers. |
| let isAllocatable = 0; |
| } |
| |
| // MVE Condition code register. |
| def VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> { |
| // let CopyCost = -1; // Don't allow copying of status registers. |
| } |
| |
| // FPSCR, when the flags at the top of it are used as the input or |
| // output to an instruction such as MVE VADC. |
| def cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>; |
| |
| // Scalar single precision floating point register class.. |
| // FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack |
| // to avoid partial-write dependencies on D or Q (depending on platform) |
| // registers (S registers are renamed as portions of D/Q registers). |
| def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> { |
| let AltOrders = [(add (decimate SPR, 2), SPR), |
| (add (decimate SPR, 4), |
| (decimate SPR, 2), |
| (decimate (rotl SPR, 1), 4), |
| (decimate (rotl SPR, 1), 2))]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); |
| }]; |
| let DiagnosticString = "operand must be a register in range [s0, s31]"; |
| } |
| |
| def HPR : RegisterClass<"ARM", [f16, bf16], 32, (sequence "S%u", 0, 31)> { |
| let AltOrders = [(add (decimate HPR, 2), SPR), |
| (add (decimate HPR, 4), |
| (decimate HPR, 2), |
| (decimate (rotl HPR, 1), 4), |
| (decimate (rotl HPR, 1), 2))]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); |
| }]; |
| let DiagnosticString = "operand must be a register in range [s0, s31]"; |
| } |
| |
| // Subset of SPR which can be used as a source of NEON scalars for 16-bit |
| // operations |
| def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> { |
| let DiagnosticString = "operand must be a register in range [s0, s15]"; |
| } |
| |
| // Scalar double precision floating point / generic 64-bit vector register |
| // class. |
| // ARM requires only word alignment for double. It's more performant if it |
| // is double-word alignment though. |
| def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, |
| (sequence "D%u", 0, 31)> { |
| // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on |
| // Darwin platforms. |
| let AltOrders = [(rotl DPR, 16), |
| (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); |
| }]; |
| let DiagnosticType = "DPR"; |
| } |
| |
| // Scalar single and double precision floating point and VPR register class, |
| // this is only used for parsing, don't use it anywhere else as the size and |
| // types don't match! |
| def FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> { |
| let isAllocatable = 0; |
| } |
| |
| // Subset of DPR that are accessible with VFP2 (and so that also have |
| // 32-bit SPR subregs). |
| def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, |
| (trunc DPR, 16)> { |
| let DiagnosticString = "operand must be a register in range [d0, d15]"; |
| } |
| |
| // Subset of DPR which can be used as a source of NEON scalars for 16-bit |
| // operations |
| def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, |
| (trunc DPR, 8)> { |
| let DiagnosticString = "operand must be a register in range [d0, d7]"; |
| } |
| |
| // Generic 128-bit vector register class. |
| def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16, v8bf16], 128, |
| (sequence "Q%u", 0, 15)> { |
| // Allocate non-VFP2 aliases Q8-Q15 first. |
| let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); |
| }]; |
| let DiagnosticString = "operand must be a register in range [q0, q15]"; |
| } |
| |
| // Subset of QPR that have 32-bit SPR subregs. |
| def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| 128, (trunc QPR, 8)> { |
| let DiagnosticString = "operand must be a register in range [q0, q7]"; |
| } |
| |
| // Subset of QPR that have DPR_8 and SPR_8 subregs. |
| def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| 128, (trunc QPR, 4)> { |
| let DiagnosticString = "operand must be a register in range [q0, q3]"; |
| } |
| |
| // MVE 128-bit vector register class. This class is only really needed for |
| // parsing assembly, since we still have to truncate the register set in the QPR |
| // class anyway. |
| def MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], |
| 128, (trunc QPR, 8)>; |
| |
| // Pseudo-registers representing odd-even pairs of D registers. The even-odd |
| // pairs are already represented by the Q registers. |
| // These are needed by NEON instructions requiring two consecutive D registers. |
| // There is no D31_D0 register as that is always an UNPREDICTABLE encoding. |
| def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1], |
| [(decimate (shl DPR, 1), 2), |
| (decimate (shl DPR, 2), 2)]>; |
| |
| // Register class representing a pair of consecutive D registers. |
| // Use the Q registers for the even-odd pairs. |
| def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| 128, (interleave QPR, TuplesOE2D)> { |
| // Allocate starting at non-VFP2 registers D16-D31 first. |
| // Prefer even-odd pairs as they are easier to copy. |
| let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16)), |
| (add (trunc QPR, 8), (trunc DPair, 16))]; |
| let AltOrderSelect = [{ |
| return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); |
| }]; |
| } |
| |
| // Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP. |
| // These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs. |
| def Tuples2Rnosp : RegisterTuples<[gsub_0, gsub_1], |
| [(add R0, R2, R4, R6, R8, R10), |
| (add R1, R3, R5, R7, R9, R11)]>; |
| |
| def Tuples2Rsp : RegisterTuples<[gsub_0, gsub_1], |
| [(add R12), (add SP)]>; |
| |
| // Register class representing a pair of even-odd GPRs. |
| def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp, Tuples2Rsp)> { |
| let Size = 64; // 2 x 32 bits, we have no predefined type of that size. |
| } |
| |
| // Register class representing a pair of even-odd GPRs, except (R12, SP). |
| def GPRPairnosp : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp)> { |
| let Size = 64; // 2 x 32 bits, we have no predefined type of that size. |
| } |
| |
| // Pseudo-registers representing 3 consecutive D registers. |
| def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2], |
| [(shl DPR, 0), |
| (shl DPR, 1), |
| (shl DPR, 2)]>; |
| |
| // 3 consecutive D registers. |
| def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> { |
| let Size = 192; // 3 x 64 bits, we have no predefined type of that size. |
| } |
| |
| // Pseudo 256-bit registers to represent pairs of Q registers. These should |
| // never be present in the emitted code. |
| // These are used for NEON load / store instructions, e.g., vld4, vst3. |
| def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>; |
| |
| // Pseudo 256-bit vector register class to model pairs of Q registers |
| // (4 consecutive D registers). |
| def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> { |
| // Allocate non-VFP2 aliases first. |
| let AltOrders = [(rotl QQPR, 8)]; |
| let AltOrderSelect = [{ return 1; }]; |
| } |
| |
| // Same as QQPR but for MVE, containing the 7 register pairs made up from Q0-Q7. |
| def MQQPR : RegisterClass<"ARM", [v4i64], 256, (trunc QQPR, 7)>; |
| |
| // Tuples of 4 D regs that isn't also a pair of Q regs. |
| def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3], |
| [(decimate (shl DPR, 1), 2), |
| (decimate (shl DPR, 2), 2), |
| (decimate (shl DPR, 3), 2), |
| (decimate (shl DPR, 4), 2)]>; |
| |
| // 4 consecutive D registers. |
| def DQuad : RegisterClass<"ARM", [v4i64], 256, |
| (interleave Tuples2Q, TuplesOE4D)>; |
| |
| // Pseudo 512-bit registers to represent four consecutive Q registers. |
| def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1], |
| [(shl QQPR, 0), (shl QQPR, 2)]>; |
| |
| // Pseudo 512-bit vector register class to model 4 consecutive Q registers |
| // (8 consecutive D registers). |
| def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> { |
| // Allocate non-VFP2 aliases first. |
| let AltOrders = [(rotl QQQQPR, 8)]; |
| let AltOrderSelect = [{ return 1; }]; |
| } |
| |
| // Same as QQPR but for MVE, containing the 5 register quads made up from Q0-Q7. |
| def MQQQQPR : RegisterClass<"ARM", [v8i64], 256, (trunc QQQQPR, 5)>; |
| |
| |
| // Pseudo-registers representing 2-spaced consecutive D registers. |
| def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2], |
| [(shl DPR, 0), |
| (shl DPR, 2)]>; |
| |
| // Spaced pairs of D registers. |
| def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>; |
| |
| def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4], |
| [(shl DPR, 0), |
| (shl DPR, 2), |
| (shl DPR, 4)]>; |
| |
| // Spaced triples of D registers. |
| def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> { |
| let Size = 192; // 3 x 64 bits, we have no predefined type of that size. |
| } |
| |
| def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6], |
| [(shl DPR, 0), |
| (shl DPR, 2), |
| (shl DPR, 4), |
| (shl DPR, 6)]>; |
| |
| // Spaced quads of D registers. |
| def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>; |
| |
| // FP context payload |
| def FPCXTRegs : RegisterClass<"ARM", [i32], 32, (add FPCXTNS)>; |