blob: ecdbdf613a534f924df42a757641bedb2806699f [file] [log] [blame]
//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
#define DEBUG_TYPE "AMDGPUtti"
static cl::opt<unsigned> UnrollThresholdPrivate(
"amdgpu-unroll-threshold-private",
cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
cl::init(2700), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdLocal(
"amdgpu-unroll-threshold-local",
cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
cl::init(1000), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdIf(
"amdgpu-unroll-threshold-if",
cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
cl::init(200), cl::Hidden);
static cl::opt<bool> UnrollRuntimeLocal(
"amdgpu-unroll-runtime-local",
cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
cl::init(true), cl::Hidden);
static cl::opt<bool> UseLegacyDA(
"amdgpu-use-legacy-divergence-analysis",
cl::desc("Enable legacy divergence analysis for AMDGPU"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
"amdgpu-unroll-max-block-to-analyze",
cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
cl::init(32), cl::Hidden);
static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
cl::Hidden, cl::init(4000),
cl::desc("Cost of alloca argument"));
// If the amount of scratch memory to eliminate exceeds our ability to allocate
// it into registers we gain nothing by aggressively inlining functions for that
// heuristic.
static cl::opt<unsigned>
ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
cl::init(256),
cl::desc("Maximum alloca size to use for inline cost"));
// Inliner constraint to achieve reasonable compilation time.
static cl::opt<size_t> InlineMaxBB(
"amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
cl::desc("Maximum number of BBs allowed in a function after inlining"
" (compile time constraint)"));
static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
unsigned Depth = 0) {
const Instruction *I = dyn_cast<Instruction>(Cond);
if (!I)
return false;
for (const Value *V : I->operand_values()) {
if (!L->contains(I))
continue;
if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
return SubLoop->contains(PHI); }))
return true;
} else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
return true;
}
return false;
}
AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()),
TargetTriple(TM->getTargetTriple()),
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
TLI(ST->getTargetLowering()) {}
void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
const Function &F = *L->getHeader()->getParent();
UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
UP.MaxCount = std::numeric_limits<unsigned>::max();
UP.Partial = true;
// Conditional branch in a loop back edge needs 3 additional exec
// manipulations in average.
UP.BEInsns += 3;
// TODO: Do we want runtime unrolling?
// Maximum alloca size than can fit registers. Reserve 16 registers.
const unsigned MaxAlloca = (256 - 16) * 4;
unsigned ThresholdPrivate = UnrollThresholdPrivate;
unsigned ThresholdLocal = UnrollThresholdLocal;
// If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
// provided threshold value as the default for Threshold
if (MDNode *LoopUnrollThreshold =
findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
if (LoopUnrollThreshold->getNumOperands() == 2) {
ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
LoopUnrollThreshold->getOperand(1));
if (MetaThresholdValue) {
// We will also use the supplied value for PartialThreshold for now.
// We may introduce additional metadata if it becomes necessary in the
// future.
UP.Threshold = MetaThresholdValue->getSExtValue();
UP.PartialThreshold = UP.Threshold;
ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
}
}
}
unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
for (const BasicBlock *BB : L->getBlocks()) {
const DataLayout &DL = BB->getModule()->getDataLayout();
unsigned LocalGEPsSeen = 0;
if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
return SubLoop->contains(BB); }))
continue; // Block belongs to an inner loop.
for (const Instruction &I : *BB) {
// Unroll a loop which contains an "if" statement whose condition
// defined by a PHI belonging to the loop. This may help to eliminate
// if region and potentially even PHI itself, saving on both divergence
// and registers used for the PHI.
// Add a small bonus for each of such "if" statements.
if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
if (UP.Threshold < MaxBoost && Br->isConditional()) {
BasicBlock *Succ0 = Br->getSuccessor(0);
BasicBlock *Succ1 = Br->getSuccessor(1);
if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
(L->contains(Succ1) && L->isLoopExiting(Succ1)))
continue;
if (dependsOnLocalPhi(L, Br->getCondition())) {
UP.Threshold += UnrollThresholdIf;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
<< " for loop:\n"
<< *L << " due to " << *Br << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
}
continue;
}
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
if (!GEP)
continue;
unsigned AS = GEP->getAddressSpace();
unsigned Threshold = 0;
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
Threshold = ThresholdPrivate;
else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
Threshold = ThresholdLocal;
else
continue;
if (UP.Threshold >= Threshold)
continue;
if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
const Value *Ptr = GEP->getPointerOperand();
const AllocaInst *Alloca =
dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
if (!Alloca || !Alloca->isStaticAlloca())
continue;
Type *Ty = Alloca->getAllocatedType();
unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
if (AllocaSize > MaxAlloca)
continue;
} else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
AS == AMDGPUAS::REGION_ADDRESS) {
LocalGEPsSeen++;
// Inhibit unroll for local memory if we have seen addressing not to
// a variable, most likely we will be unable to combine it.
// Do not unroll too deep inner loops for local memory to give a chance
// to unroll an outer loop for a more important reason.
if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
(!isa<GlobalVariable>(GEP->getPointerOperand()) &&
!isa<Argument>(GEP->getPointerOperand())))
continue;
LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
<< *L << " due to LDS use.\n");
UP.Runtime = UnrollRuntimeLocal;
}
// Check if GEP depends on a value defined by this loop itself.
bool HasLoopDef = false;
for (const Value *Op : GEP->operands()) {
const Instruction *Inst = dyn_cast<Instruction>(Op);
if (!Inst || L->isLoopInvariant(Op))
continue;
if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
return SubLoop->contains(Inst); }))
continue;
HasLoopDef = true;
break;
}
if (!HasLoopDef)
continue;
// We want to do whatever we can to limit the number of alloca
// instructions that make it through to the code generator. allocas
// require us to use indirect addressing, which is slow and prone to
// compiler bugs. If this loop does an address calculation on an
// alloca ptr, then we want to use a higher than normal loop unroll
// threshold. This will give SROA a better chance to eliminate these
// allocas.
//
// We also want to have more unrolling for local memory to let ds
// instructions with different offsets combine.
//
// Don't use the maximum allowed value here as it will make some
// programs way too big.
UP.Threshold = Threshold;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
<< " for loop:\n"
<< *L << " due to " << *GEP << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
// If we got a GEP in a small BB from inner loop then increase max trip
// count to analyze for better estimation cost in unroll
if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
UP.MaxIterationsCountToAnalyze = 32;
}
}
void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
// Codegen control options which don't matter.
AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
AMDGPU::FeatureUnalignedAccessMode,
AMDGPU::FeatureAutoWaitcntBeforeBarrier,
// Property of the kernel/environment which can't actually differ.
AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
AMDGPU::FeatureTrapHandler,
// The default assumption needs to be ecc is enabled, but no directly
// exposed operations depend on it, so it can be safely inlined.
AMDGPU::FeatureSRAMECC,
// Perf-tuning features
AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()),
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
TLI(ST->getTargetLowering()), CommonTTI(TM, F),
IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
MaxVGPRs(ST->getMaxNumVGPRs(
std::max(ST->getWavesPerEU(F).first,
ST->getWavesPerEUForWorkGroup(
ST->getFlatWorkGroupSizes(F).second)))) {
AMDGPU::SIModeRegisterDefaults Mode(F);
HasFP32Denormals = Mode.allFP32Denormals();
HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
}
unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
// The concept of vector registers doesn't really exist. Some packed vector
// operations operate on the normal 32-bit registers.
return MaxVGPRs;
}
unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
// This is really the number of registers to fill when vectorizing /
// interleaving loops, so we lie to avoid trying to use all registers.
return getHardwareNumberOfRegisters(Vec) >> 3;
}
unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
const SIRegisterInfo *TRI = ST->getRegisterInfo();
const TargetRegisterClass *RC = TRI->getRegClass(RCID);
unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
return getHardwareNumberOfRegisters(false) / NumVGPRs;
}
TypeSize
GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(32);
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(0);
}
llvm_unreachable("Unsupported register kind");
}
unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
return 32;
}
unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
if (Opcode == Instruction::Load || Opcode == Instruction::Store)
return 32 * 4 / ElemWidth;
return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
: (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
: 1;
}
unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * LoadSize;
if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
// TODO: Support element-size less than 32bit?
return 128 / LoadSize;
return VF;
}
unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * StoreSize;
if (VecRegBitWidth > 128)
return 128 / StoreSize;
return VF;
}
unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
return 512;
}
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
return 8 * ST->getMaxPrivateElementSize();
// Common to flat, global, local and region. Assume for unknown addrspace.
return 128;
}
bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
// We allow vectorization of flat stores, even though we may need to decompose
// them later if they may access private memory. We don't have enough context
// here, and legalization can handle it.
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
ChainSizeInBytes <= ST->getMaxPrivateElementSize();
}
return true;
}
bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
// FIXME: Really we would like to issue multiple 128-bit loads and stores per
// iteration. Should we report a larger size and let it legalize?
//
// FIXME: Should we use narrower types for local/region, or account for when
// unaligned access is legal?
//
// FIXME: This could use fine tuning and microbenchmarks.
Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
unsigned SrcAddrSpace,
unsigned DestAddrSpace,
unsigned SrcAlign,
unsigned DestAlign) const {
unsigned MinAlign = std::min(SrcAlign, DestAlign);
// A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
// hardware into byte accesses. If you assume all alignments are equally
// probable, it's more efficient on average to use short accesses for this
// case.
if (MinAlign == 2)
return Type::getInt16Ty(Context);
// Not all subtargets have 128-bit DS instructions, and we currently don't
// form them by default.
if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
return FixedVectorType::get(Type::getInt32Ty(Context), 2);
}
// Global memory works best with 16-byte accesses. Private memory will also
// hit this, although they'll be decomposed.
return FixedVectorType::get(Type::getInt32Ty(Context), 4);
}
void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign) const {
assert(RemainingBytes < 16);
unsigned MinAlign = std::min(SrcAlign, DestAlign);
if (MinAlign != 2) {
Type *I64Ty = Type::getInt64Ty(Context);
while (RemainingBytes >= 8) {
OpsOut.push_back(I64Ty);
RemainingBytes -= 8;
}
Type *I32Ty = Type::getInt32Ty(Context);
while (RemainingBytes >= 4) {
OpsOut.push_back(I32Ty);
RemainingBytes -= 4;
}
}
Type *I16Ty = Type::getInt16Ty(Context);
while (RemainingBytes >= 2) {
OpsOut.push_back(I16Ty);
RemainingBytes -= 2;
}
Type *I8Ty = Type::getInt8Ty(Context);
while (RemainingBytes) {
OpsOut.push_back(I8Ty);
--RemainingBytes;
}
}
unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
// Disable unrolling if the loop is not vectorized.
// TODO: Enable this again.
if (VF == 1)
return 1;
return 8;
}
bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
switch (Inst->getIntrinsicID()) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
if (!Ordering || !Volatile)
return false; // Invalid.
unsigned OrderingVal = Ordering->getZExtValue();
if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
return false;
Info.PtrVal = Inst->getArgOperand(0);
Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
Info.ReadMem = true;
Info.WriteMem = true;
Info.IsVolatile = !Volatile->isZero();
return true;
}
default:
return false;
}
}
InstructionCost GCNTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI) {
EVT OrigTy = TLI->getValueType(DL, Ty);
if (!OrigTy.isSimple()) {
// FIXME: We're having to query the throughput cost so that the basic
// implementation tries to generate legalize and scalarization costs. Maybe
// we could hoist the scalarization code here?
if (CostKind != TTI::TCK_CodeSize)
return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
Opd1Info, Opd2Info, Opd1PropInfo,
Opd2PropInfo, Args, CxtI);
// Scalarization
// Check if any of the operands are vector operands.
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
bool IsFloat = Ty->isFPOrFPVectorTy();
// Assume that floating point arithmetic operations cost twice as much as
// integer operations.
unsigned OpCost = (IsFloat ? 2 : 1);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
// TODO: Once we have extract/insert subvector cost we need to use them.
return LT.first * OpCost;
}
if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered, then assume that the code is twice
// as expensive.
return LT.first * 2 * OpCost;
}
// Else, assume that we need to scalarize this op.
// TODO: If one of the types get legalized by splitting, handle this
// similarly to what getCastInstrCost() does.
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
InstructionCost Cost = getArithmeticInstrCost(
Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
SmallVector<Type *> Tys(Args.size(), Ty);
return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
}
// We don't know anything about this scalar instruction.
return OpCost;
}
// Legalize the type.
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// Because we don't have any legal vector operations, but the legal types, we
// need to account for split vectors.
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
switch (ISD) {
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (SLT == MVT::i64)
return get64BitInstrCost(CostKind) * LT.first * NElts;
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return getFullRateInstrCost() * LT.first * NElts;
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
if (SLT == MVT::i64) {
// and, or and xor are typically split into 2 VALU instructions.
return 2 * getFullRateInstrCost() * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
return LT.first * NElts * getFullRateInstrCost();
case ISD::MUL: {
const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
if (SLT == MVT::i64) {
const int FullRateCost = getFullRateInstrCost();
return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return QuarterRateCost * NElts * LT.first;
}
case ISD::FMUL:
// Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
// fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
// fused operation.
if (CxtI && CxtI->hasOneUse())
if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
if (OPC == ISD::FADD || OPC == ISD::FSUB) {
if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
return TargetTransformInfo::TCC_Free;
if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
return TargetTransformInfo::TCC_Free;
// Estimate all types may be fused with contract/unsafe flags
const TargetOptions &Options = TLI->getTargetMachine().Options;
if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
Options.UnsafeFPMath ||
(FAdd->hasAllowContract() && CxtI->hasAllowContract()))
return TargetTransformInfo::TCC_Free;
}
}
LLVM_FALLTHROUGH;
case ISD::FADD:
case ISD::FSUB:
if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
NElts = (NElts + 1) / 2;
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost(CostKind);
if (ST->has16BitInsts() && SLT == MVT::f16)
NElts = (NElts + 1) / 2;
if (SLT == MVT::f32 || SLT == MVT::f16)
return LT.first * NElts * getFullRateInstrCost();
break;
case ISD::FDIV:
case ISD::FREM:
// FIXME: frem should be handled separately. The fdiv in it is most of it,
// but the current lowering is also not entirely correct.
if (SLT == MVT::f64) {
int Cost = 7 * get64BitInstrCost(CostKind) +
getQuarterRateInstrCost(CostKind) +
3 * getHalfRateInstrCost(CostKind);
// Add cost of workaround.
if (!ST->hasUsableDivScaleConditionOutput())
Cost += 3 * getFullRateInstrCost();
return LT.first * Cost * NElts;
}
if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
// TODO: This is more complicated, unsafe flags etc.
if ((SLT == MVT::f32 && !HasFP32Denormals) ||
(SLT == MVT::f16 && ST->has16BitInsts())) {
return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
}
}
if (SLT == MVT::f16 && ST->has16BitInsts()) {
// 2 x v_cvt_f32_f16
// f32 rcp
// f32 fmul
// v_cvt_f16_f32
// f16 div_fixup
int Cost =
4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
return LT.first * Cost * NElts;
}
if (SLT == MVT::f32 || SLT == MVT::f16) {
// 4 more v_cvt_* insts without f16 insts support
int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
1 * getQuarterRateInstrCost(CostKind);
if (!HasFP32Denormals) {
// FP mode switches.
Cost += 2 * getFullRateInstrCost();
}
return LT.first * NElts * Cost;
}
break;
case ISD::FNEG:
// Use the backend' estimation. If fneg is not free each element will cost
// one additional instruction.
return TLI->isFNegFree(SLT) ? 0 : NElts;
default:
break;
}
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
}
// Return true if there's a potential benefit from using v2f16/v2i16
// instructions for an intrinsic, even if it requires nontrivial legalization.
static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
switch (ID) {
case Intrinsic::fma: // TODO: fmuladd
// There's a small benefit to using vector ops in the legalized code.
case Intrinsic::round:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
InstructionCost
GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
if (ICA.getID() == Intrinsic::fabs)
return 0;
if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
Type *RetTy = ICA.getReturnType();
EVT OrigTy = TLI->getValueType(DL, RetTy);
if (!OrigTy.isSimple()) {
if (CostKind != TTI::TCK_CodeSize)
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
// TODO: Combine these two logic paths.
if (ICA.isTypeBasedOnly())
return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
unsigned RetVF =
(RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
: 1);
const IntrinsicInst *I = ICA.getInst();
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
FastMathFlags FMF = ICA.getFlags();
// Assume that we need to scalarize this intrinsic.
// Compute the scalarization overhead based on Args for a vector
// intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
// CostModel will pass a vector RetTy and VF is 1.
InstructionCost ScalarizationCost = InstructionCost::getInvalid();
if (RetVF > 1) {
ScalarizationCost = 0;
if (!RetTy->isVoidTy())
ScalarizationCost +=
getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
ScalarizationCost +=
getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
}
IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I,
ScalarizationCost);
return getIntrinsicInstrCost(Attrs, CostKind);
}
// Legalize the type.
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost(CostKind);
if ((ST->has16BitInsts() && SLT == MVT::f16) ||
(ST->hasPackedFP32Ops() && SLT == MVT::f32))
NElts = (NElts + 1) / 2;
// TODO: Get more refined intrinsic costs?
unsigned InstRate = getQuarterRateInstrCost(CostKind);
switch (ICA.getID()) {
case Intrinsic::fma:
InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
: getQuarterRateInstrCost(CostKind);
break;
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
NElts = 1;
break;
}
return LT.first * NElts * InstRate;
}
InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I) {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
const bool SCost =
(CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
const int CBrCost = SCost ? 5 : 7;
switch (Opcode) {
case Instruction::Br: {
// Branch instruction takes about 4 slots on gfx900.
auto BI = dyn_cast_or_null<BranchInst>(I);
if (BI && BI->isUnconditional())
return SCost ? 1 : 4;
// Suppose conditional branch takes additional 3 exec manipulations
// instructions in average.
return CBrCost;
}
case Instruction::Switch: {
auto SI = dyn_cast_or_null<SwitchInst>(I);
// Each case (including default) takes 1 cmp + 1 cbr instructions in
// average.
return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
}
case Instruction::Ret:
return SCost ? 1 : 10;
}
return BaseT::getCFInstrCost(Opcode, CostKind, I);
}
InstructionCost
GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
Optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (TTI::requiresOrderedReduction(FMF))
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
return LT.first * getFullRateInstrCost();
}
InstructionCost
GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsUnsigned,
TTI::TargetCostKind CostKind) {
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
return LT.first * getHalfRateInstrCost(CostKind);
}
InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
unsigned Index) {
switch (Opcode) {
case Instruction::ExtractElement:
case Instruction::InsertElement: {
unsigned EltSize
= DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
if (EltSize < 32) {
if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
return 0;
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
// Extracts are just reads of a subregister, so are free. Inserts are
// considered free because we don't want to have any cost for scalarizing
// operations, and we don't have to copy into a different register class.
// Dynamic indexing isn't free and is best avoided.
return Index == ~0u ? 2 : 0;
}
default:
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
}
/// Analyze if the results of inline asm are divergent. If \p Indices is empty,
/// this is analyzing the collective result of all output registers. Otherwise,
/// this is only querying a specific result index if this returns multiple
/// registers in a struct.
bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
const CallInst *CI, ArrayRef<unsigned> Indices) const {
// TODO: Handle complex extract indices
if (Indices.size() > 1)
return true;
const DataLayout &DL = CI->getModule()->getDataLayout();
const SIRegisterInfo *TRI = ST->getRegisterInfo();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
int OutputIdx = 0;
for (auto &TC : TargetConstraints) {
if (TC.Type != InlineAsm::isOutput)
continue;
// Skip outputs we don't care about.
if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
continue;
TLI->ComputeConstraintToUse(TC, SDValue());
Register AssignedReg;
const TargetRegisterClass *RC;
std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
TRI, TC.ConstraintCode, TC.ConstraintVT);
if (AssignedReg) {
// FIXME: This is a workaround for getRegForInlineAsmConstraint
// returning VS_32
RC = TRI->getPhysRegClass(AssignedReg);
}
// For AGPR constraints null is returned on subtargets without AGPRs, so
// assume divergent for null.
if (!RC || !TRI->isSGPRClass(RC))
return true;
}
return false;
}
/// \returns true if the new GPU divergence analysis is enabled.
bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
return !UseLegacyDA;
}
/// \returns true if the result of the value could potentially be
/// different across workitems in a wavefront.
bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return !AMDGPU::isArgPassedInSGPR(A);
// Loads from the private and flat address spaces are divergent, because
// threads can execute the load instruction with the same inputs and get
// different results.
//
// All other loads are not divergent, because if threads issue loads with the
// same arguments, they will always get the same result.
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
// Atomics are divergent because they are executed sequentially: when an
// atomic operation refers to the same address in each thread, then each
// thread after the first sees the value written by the previous thread as
// original value.
if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
return true;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
// Assume all function calls are a source of divergence.
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (CI->isInlineAsm())
return isInlineAsmSourceOfDivergence(CI);
return true;
}
// Assume all function calls are a source of divergence.
if (isa<InvokeInst>(V))
return true;
return false;
}
bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
switch (Intrinsic->getIntrinsicID()) {
default:
return false;
case Intrinsic::amdgcn_readfirstlane:
case Intrinsic::amdgcn_readlane:
case Intrinsic::amdgcn_icmp:
case Intrinsic::amdgcn_fcmp:
case Intrinsic::amdgcn_ballot:
case Intrinsic::amdgcn_if_break:
return true;
}
}
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (CI->isInlineAsm())
return !isInlineAsmSourceOfDivergence(CI);
return false;
}
const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
if (!ExtValue)
return false;
const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
if (!CI)
return false;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
switch (Intrinsic->getIntrinsicID()) {
default:
return false;
case Intrinsic::amdgcn_if:
case Intrinsic::amdgcn_else: {
ArrayRef<unsigned> Indices = ExtValue->getIndices();
return Indices.size() == 1 && Indices[0] == 1;
}
}
}
// If we have inline asm returning mixed SGPR and VGPR results, we inferred
// divergent for the overall struct return. We need to override it in the
// case we're extracting an SGPR component here.
if (CI->isInlineAsm())
return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
return false;
}
bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
switch (IID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax:
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private:
OpIndexes.push_back(0);
return true;
default:
return false;
}
}
Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
Value *OldV,
Value *NewV) const {
auto IntrID = II->getIntrinsicID();
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
if (!IsVolatile->isZero())
return nullptr;
Module *M = II->getParent()->getParent()->getParent();
Type *DestTy = II->getType();
Type *SrcTy = NewV->getType();
Function *NewDecl =
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
II->setArgOperand(0, NewV);
II->setCalledFunction(NewDecl);
return II;
}
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private: {
unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
LLVMContext &Ctx = NewV->getType()->getContext();
ConstantInt *NewVal = (TrueAS == NewAS) ?
ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
return NewVal;
}
case Intrinsic::ptrmask: {
unsigned OldAS = OldV->getType()->getPointerAddressSpace();
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
Value *MaskOp = II->getArgOperand(1);
Type *MaskTy = MaskOp->getType();
bool DoTruncate = false;
const GCNTargetMachine &TM =
static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
// All valid 64-bit to 32-bit casts work by chopping off the high
// bits. Any masking only clearing the low bits will also apply in the new
// address space.
if (DL.getPointerSizeInBits(OldAS) != 64 ||
DL.getPointerSizeInBits(NewAS) != 32)
return nullptr;
// TODO: Do we need to thread more context in here?
KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
if (Known.countMinLeadingOnes() < 32)
return nullptr;
DoTruncate = true;
}
IRBuilder<> B(II);
if (DoTruncate) {
MaskTy = B.getInt32Ty();
MaskOp = B.CreateTrunc(MaskOp, MaskTy);
}
return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
{NewV, MaskOp});
}
default:
return nullptr;
}
}
InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *VT, ArrayRef<int> Mask,
int Index, VectorType *SubTp) {
Kind = improveShuffleKindFromMask(Kind, Mask);
if (ST->hasVOP3PInsts()) {
if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
DL.getTypeSizeInBits(VT->getElementType()) == 16) {
// With op_sel VOP3P instructions freely can access the low half or high
// half of a register, so any swizzle is free.
switch (Kind) {
case TTI::SK_Broadcast:
case TTI::SK_Reverse:
case TTI::SK_PermuteSingleSrc:
return 0;
default:
break;
}
}
}
return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
}
bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const GCNSubtarget *CallerST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
const GCNSubtarget *CalleeST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
const FeatureBitset &CallerBits = CallerST->getFeatureBits();
const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
return false;
// FIXME: dx10_clamp can just take the caller setting, but there seems to be
// no way to support merge for backend defined attributes.
AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
if (!CallerMode.isInlineCompatible(CalleeMode))
return false;
if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
Callee->hasFnAttribute(Attribute::InlineHint))
return true;
// Hack to make compile times reasonable.
if (InlineMaxBB) {
// Single BB does not increase total BB amount.
if (Callee->size() == 1)
return true;
size_t BBSize = Caller->size() + Callee->size() - 1;
return BBSize <= InlineMaxBB;
}
return true;
}
unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
// If we have a pointer to private array passed into a function
// it will not be optimized out, leaving scratch usage.
// Increase the inline threshold to allow inlining in this case.
uint64_t AllocaSize = 0;
SmallPtrSet<const AllocaInst *, 8> AIVisited;
for (Value *PtrArg : CB->args()) {
PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
continue;
PtrArg = getUnderlyingObject(PtrArg);
if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
continue;
AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
// If the amount of stack memory is excessive we will not be able
// to get rid of the scratch anyway, bail out.
if (AllocaSize > ArgAllocaCutoff) {
AllocaSize = 0;
break;
}
}
}
if (AllocaSize)
return ArgAllocaCost;
return 0;
}
void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
}
void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
CommonTTI.getPeelingPreferences(L, SE, PP);
}
int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
return ST->hasFullRate64Ops()
? getFullRateInstrCost()
: ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
: getQuarterRateInstrCost(CostKind);
}