blob: c029046ab65ff27afa47970fa62c3534c52c3788 [file] [log] [blame]
//=== lib/CodeGen/GlobalISel/AMDGPUPreLegalizerCombiner.cpp ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// before the legalizer.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUCombinerHelper.h"
#include "AMDGPULegalizerInfo.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "amdgpu-prelegalizer-combiner"
using namespace llvm;
using namespace MIPatternMatch;
class AMDGPUPreLegalizerCombinerHelper {
protected:
MachineIRBuilder &B;
MachineFunction &MF;
MachineRegisterInfo &MRI;
AMDGPUCombinerHelper &Helper;
public:
AMDGPUPreLegalizerCombinerHelper(MachineIRBuilder &B,
AMDGPUCombinerHelper &Helper)
: B(B), MF(B.getMF()), MRI(*B.getMRI()), Helper(Helper){};
struct ClampI64ToI16MatchInfo {
int64_t Cmp1 = 0;
int64_t Cmp2 = 0;
Register Origin;
};
bool matchClampI64ToI16(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineFunction &MF,
ClampI64ToI16MatchInfo &MatchInfo);
void applyClampI64ToI16(MachineInstr &MI,
const ClampI64ToI16MatchInfo &MatchInfo);
};
bool AMDGPUPreLegalizerCombinerHelper::matchClampI64ToI16(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineFunction &MF,
ClampI64ToI16MatchInfo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Invalid instruction!");
// Try to find a pattern where an i64 value should get clamped to short.
const LLT SrcType = MRI.getType(MI.getOperand(1).getReg());
if (SrcType != LLT::scalar(64))
return false;
const LLT DstType = MRI.getType(MI.getOperand(0).getReg());
if (DstType != LLT::scalar(16))
return false;
Register Base;
auto IsApplicableForCombine = [&MatchInfo]() -> bool {
const auto Cmp1 = MatchInfo.Cmp1;
const auto Cmp2 = MatchInfo.Cmp2;
const auto Diff = std::abs(Cmp2 - Cmp1);
// If the difference between both comparison values is 0 or 1, there is no
// need to clamp.
if (Diff == 0 || Diff == 1)
return false;
const int64_t Min = std::numeric_limits<int16_t>::min();
const int64_t Max = std::numeric_limits<int16_t>::max();
// Check if the comparison values are between SHORT_MIN and SHORT_MAX.
return ((Cmp2 >= Cmp1 && Cmp1 >= Min && Cmp2 <= Max) ||
(Cmp1 >= Cmp2 && Cmp1 <= Max && Cmp2 >= Min));
};
// Try to match a combination of min / max MIR opcodes.
if (mi_match(MI.getOperand(1).getReg(), MRI,
m_GSMin(m_Reg(Base), m_ICst(MatchInfo.Cmp1)))) {
if (mi_match(Base, MRI,
m_GSMax(m_Reg(MatchInfo.Origin), m_ICst(MatchInfo.Cmp2)))) {
return IsApplicableForCombine();
}
}
if (mi_match(MI.getOperand(1).getReg(), MRI,
m_GSMax(m_Reg(Base), m_ICst(MatchInfo.Cmp1)))) {
if (mi_match(Base, MRI,
m_GSMin(m_Reg(MatchInfo.Origin), m_ICst(MatchInfo.Cmp2)))) {
return IsApplicableForCombine();
}
}
return false;
}
// We want to find a combination of instructions that
// gets generated when an i64 gets clamped to i16.
// The corresponding pattern is:
// G_MAX / G_MAX for i16 <= G_TRUNC i64.
// This can be efficiently written as following:
// v_cvt_pk_i16_i32 v0, v0, v1
// v_med3_i32 v0, Clamp_Min, v0, Clamp_Max
void AMDGPUPreLegalizerCombinerHelper::applyClampI64ToI16(
MachineInstr &MI, const ClampI64ToI16MatchInfo &MatchInfo) {
Register Src = MatchInfo.Origin;
assert(MI.getParent()->getParent()->getRegInfo().getType(Src) ==
LLT::scalar(64));
const LLT S32 = LLT::scalar(32);
B.setMBB(*MI.getParent());
B.setInstrAndDebugLoc(MI);
auto Unmerge = B.buildUnmerge(S32, Src);
assert(MI.getOpcode() != AMDGPU::G_AMDGPU_CVT_PK_I16_I32);
const LLT V2S16 = LLT::fixed_vector(2, 16);
auto CvtPk =
B.buildInstr(AMDGPU::G_AMDGPU_CVT_PK_I16_I32, {V2S16},
{Unmerge.getReg(0), Unmerge.getReg(1)}, MI.getFlags());
auto MinBoundary = std::min(MatchInfo.Cmp1, MatchInfo.Cmp2);
auto MaxBoundary = std::max(MatchInfo.Cmp1, MatchInfo.Cmp2);
auto MinBoundaryDst = B.buildConstant(S32, MinBoundary);
auto MaxBoundaryDst = B.buildConstant(S32, MaxBoundary);
auto Bitcast = B.buildBitcast({S32}, CvtPk);
auto Med3 = B.buildInstr(
AMDGPU::G_AMDGPU_SMED3, {S32},
{MinBoundaryDst.getReg(0), Bitcast.getReg(0), MaxBoundaryDst.getReg(0)},
MI.getFlags());
B.buildTrunc(MI.getOperand(0).getReg(), Med3);
MI.eraseFromParent();
}
class AMDGPUPreLegalizerCombinerHelperState {
protected:
AMDGPUCombinerHelper &Helper;
AMDGPUPreLegalizerCombinerHelper &PreLegalizerHelper;
public:
AMDGPUPreLegalizerCombinerHelperState(
AMDGPUCombinerHelper &Helper,
AMDGPUPreLegalizerCombinerHelper &PreLegalizerHelper)
: Helper(Helper), PreLegalizerHelper(PreLegalizerHelper) {}
};
#define AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
#include "AMDGPUGenPreLegalizeGICombiner.inc"
#undef AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
#include "AMDGPUGenPreLegalizeGICombiner.inc"
#undef AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
class AMDGPUPreLegalizerCombinerInfo final : public CombinerInfo {
GISelKnownBits *KB;
MachineDominatorTree *MDT;
public:
AMDGPUGenPreLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;
AMDGPUPreLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
GISelKnownBits *KB, MachineDominatorTree *MDT)
: CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
KB(KB), MDT(MDT) {
if (!GeneratedRuleCfg.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AMDGPUPreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
AMDGPUCombinerHelper Helper(Observer, B, KB, MDT);
AMDGPUPreLegalizerCombinerHelper PreLegalizerHelper(B, Helper);
AMDGPUGenPreLegalizerCombinerHelper Generated(GeneratedRuleCfg, Helper,
PreLegalizerHelper);
if (Generated.tryCombineAll(Observer, MI, B))
return true;
switch (MI.getOpcode()) {
case TargetOpcode::G_CONCAT_VECTORS:
return Helper.tryCombineConcatVectors(MI);
case TargetOpcode::G_SHUFFLE_VECTOR:
return Helper.tryCombineShuffleVector(MI);
}
return false;
}
#define AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
#include "AMDGPUGenPreLegalizeGICombiner.inc"
#undef AMDGPUPRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
// Pass boilerplate
// ================
class AMDGPUPreLegalizerCombiner : public MachineFunctionPass {
public:
static char ID;
AMDGPUPreLegalizerCombiner(bool IsOptNone = false);
StringRef getPassName() const override {
return "AMDGPUPreLegalizerCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool IsOptNone;
};
} // end anonymous namespace
void AMDGPUPreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
if (!IsOptNone) {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
AU.addRequired<GISelCSEAnalysisWrapperPass>();
AU.addPreserved<GISelCSEAnalysisWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
AMDGPUPreLegalizerCombiner::AMDGPUPreLegalizerCombiner(bool IsOptNone)
: MachineFunctionPass(ID), IsOptNone(IsOptNone) {
initializeAMDGPUPreLegalizerCombinerPass(*PassRegistry::getPassRegistry());
}
bool AMDGPUPreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT =
IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
AMDGPUPreLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
F.hasMinSize(), KB, MDT);
// Enable CSE.
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
auto *CSEInfo = &Wrapper.get(TPC->getCSEConfig());
Combiner C(PCInfo, TPC);
return C.combineMachineInstrs(MF, CSEInfo);
}
char AMDGPUPreLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPUPreLegalizerCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs before legalization",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_END(AMDGPUPreLegalizerCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs before legalization", false,
false)
namespace llvm {
FunctionPass *createAMDGPUPreLegalizeCombiner(bool IsOptNone) {
return new AMDGPUPreLegalizerCombiner(IsOptNone);
}
} // end namespace llvm