| //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64TargetMachine.h" |
| #include "AArch64.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64MacroFusion.h" |
| #include "AArch64Subtarget.h" |
| #include "AArch64TargetObjectFile.h" |
| #include "AArch64TargetTransformInfo.h" |
| #include "MCTargetDesc/AArch64MCTargetDesc.h" |
| #include "TargetInfo/AArch64TargetInfo.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/CSEConfigBase.h" |
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| #include "llvm/CodeGen/GlobalISel/Legalizer.h" |
| #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" |
| #include "llvm/CodeGen/GlobalISel/Localizer.h" |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
| #include "llvm/CodeGen/MIRParser/MIParser.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/CFGuard.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include <memory> |
| #include <string> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", |
| cl::desc("Enable the CCMP formation pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnableCondBrTuning("aarch64-enable-cond-br-tune", |
| cl::desc("Enable the conditional branch tuning pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> EnableMCR("aarch64-enable-mcr", |
| cl::desc("Enable the machine combiner pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", |
| cl::desc("Suppress STP for AArch64"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> EnableAdvSIMDScalar( |
| "aarch64-enable-simd-scalar", |
| cl::desc("Enable use of AdvSIMD scalar integer instructions"), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnablePromoteConstant("aarch64-enable-promote-const", |
| cl::desc("Enable the promote constant pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> EnableCollectLOH( |
| "aarch64-enable-collect-loh", |
| cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, |
| cl::desc("Enable the pass that removes dead" |
| " definitons and replaces stores to" |
| " them with stores to the zero" |
| " register"), |
| cl::init(true)); |
| |
| static cl::opt<bool> EnableRedundantCopyElimination( |
| "aarch64-enable-copyelim", |
| cl::desc("Enable the redundant copy elimination pass"), cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", |
| cl::desc("Enable the load/store pair" |
| " optimization pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> EnableAtomicTidy( |
| "aarch64-enable-atomic-cfg-tidy", cl::Hidden, |
| cl::desc("Run SimplifyCFG after expanding atomic operations" |
| " to make use of cmpxchg flow-based information"), |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, |
| cl::desc("Run early if-conversion"), |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| EnableCondOpt("aarch64-enable-condopt", |
| cl::desc("Enable the condition optimizer pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, |
| cl::desc("Work around Cortex-A53 erratum 835769"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, |
| cl::desc("Enable optimizations on complex GEPs"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), |
| cl::desc("Relax out of range conditional branches")); |
| |
| static cl::opt<bool> EnableCompressJumpTables( |
| "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), |
| cl::desc("Use smallest entry possible for jump tables")); |
| |
| // FIXME: Unify control over GlobalMerge. |
| static cl::opt<cl::boolOrDefault> |
| EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, |
| cl::desc("Enable the global merge pass")); |
| |
| static cl::opt<bool> |
| EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, |
| cl::desc("Enable the loop data prefetch pass"), |
| cl::init(true)); |
| |
| static cl::opt<int> EnableGlobalISelAtO( |
| "aarch64-enable-global-isel-at-O", cl::Hidden, |
| cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), |
| cl::init(0)); |
| |
| static cl::opt<bool> |
| EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, |
| cl::desc("Enable SVE intrinsic opts"), |
| cl::init(true)); |
| |
| static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, |
| cl::desc("Enable the AArch64 branch target pass"), |
| cl::init(true)); |
| |
| static cl::opt<unsigned> SVEVectorBitsMaxOpt( |
| "aarch64-sve-vector-bits-max", |
| cl::desc("Assume SVE vector registers are at most this big, " |
| "with zero meaning no maximum size is assumed."), |
| cl::init(0), cl::Hidden); |
| |
| static cl::opt<unsigned> SVEVectorBitsMinOpt( |
| "aarch64-sve-vector-bits-min", |
| cl::desc("Assume SVE vector registers are at least this big, " |
| "with zero meaning no minimum size is assumed."), |
| cl::init(0), cl::Hidden); |
| |
| extern cl::opt<bool> EnableHomogeneousPrologEpilog; |
| |
| static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( |
| "aarch64-enable-gisel-ldst-prelegal", |
| cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( |
| "aarch64-enable-gisel-ldst-postlegal", |
| cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), |
| cl::init(false), cl::Hidden); |
| |
| extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { |
| // Register the target. |
| RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); |
| RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); |
| RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); |
| RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); |
| RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); |
| auto PR = PassRegistry::getPassRegistry(); |
| initializeGlobalISel(*PR); |
| initializeAArch64A53Fix835769Pass(*PR); |
| initializeAArch64A57FPLoadBalancingPass(*PR); |
| initializeAArch64AdvSIMDScalarPass(*PR); |
| initializeAArch64BranchTargetsPass(*PR); |
| initializeAArch64CollectLOHPass(*PR); |
| initializeAArch64CompressJumpTablesPass(*PR); |
| initializeAArch64ConditionalComparesPass(*PR); |
| initializeAArch64ConditionOptimizerPass(*PR); |
| initializeAArch64DeadRegisterDefinitionsPass(*PR); |
| initializeAArch64ExpandPseudoPass(*PR); |
| initializeAArch64LoadStoreOptPass(*PR); |
| initializeAArch64MIPeepholeOptPass(*PR); |
| initializeAArch64SIMDInstrOptPass(*PR); |
| initializeAArch64O0PreLegalizerCombinerPass(*PR); |
| initializeAArch64PreLegalizerCombinerPass(*PR); |
| initializeAArch64PostLegalizerCombinerPass(*PR); |
| initializeAArch64PostLegalizerLoweringPass(*PR); |
| initializeAArch64PostSelectOptimizePass(*PR); |
| initializeAArch64PromoteConstantPass(*PR); |
| initializeAArch64RedundantCopyEliminationPass(*PR); |
| initializeAArch64StorePairSuppressPass(*PR); |
| initializeFalkorHWPFFixPass(*PR); |
| initializeFalkorMarkStridedAccessesLegacyPass(*PR); |
| initializeLDTLSCleanupPass(*PR); |
| initializeSVEIntrinsicOptsPass(*PR); |
| initializeAArch64SpeculationHardeningPass(*PR); |
| initializeAArch64SLSHardeningPass(*PR); |
| initializeAArch64StackTaggingPass(*PR); |
| initializeAArch64StackTaggingPreRAPass(*PR); |
| initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64 Lowering public interface. |
| //===----------------------------------------------------------------------===// |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { |
| if (TT.isOSBinFormatMachO()) |
| return std::make_unique<AArch64_MachoTargetObjectFile>(); |
| if (TT.isOSBinFormatCOFF()) |
| return std::make_unique<AArch64_COFFTargetObjectFile>(); |
| |
| return std::make_unique<AArch64_ELFTargetObjectFile>(); |
| } |
| |
| // Helper function to build a DataLayout string |
| static std::string computeDataLayout(const Triple &TT, |
| const MCTargetOptions &Options, |
| bool LittleEndian) { |
| if (TT.isOSBinFormatMachO()) { |
| if (TT.getArch() == Triple::aarch64_32) |
| return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; |
| return "e-m:o-i64:64-i128:128-n32:64-S128"; |
| } |
| if (TT.isOSBinFormatCOFF()) |
| return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; |
| std::string Endian = LittleEndian ? "e" : "E"; |
| std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; |
| return Endian + "-m:e" + Ptr32 + |
| "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; |
| } |
| |
| static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { |
| if (CPU.empty() && TT.isArm64e()) |
| return "apple-a12"; |
| return CPU; |
| } |
| |
| static Reloc::Model getEffectiveRelocModel(const Triple &TT, |
| Optional<Reloc::Model> RM) { |
| // AArch64 Darwin and Windows are always PIC. |
| if (TT.isOSDarwin() || TT.isOSWindows()) |
| return Reloc::PIC_; |
| // On ELF platforms the default static relocation model has a smart enough |
| // linker to cope with referencing external symbols defined in a shared |
| // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. |
| if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) |
| return Reloc::Static; |
| return *RM; |
| } |
| |
| static CodeModel::Model |
| getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, |
| bool JIT) { |
| if (CM) { |
| if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && |
| *CM != CodeModel::Large) { |
| report_fatal_error( |
| "Only small, tiny and large code models are allowed on AArch64"); |
| } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) |
| report_fatal_error("tiny code model is only supported on ELF"); |
| return *CM; |
| } |
| // The default MCJIT memory managers make no guarantees about where they can |
| // find an executable page; JITed code needs to be able to refer to globals |
| // no matter how far away they are. |
| // We should set the CodeModel::Small for Windows ARM64 in JIT mode, |
| // since with large code model LLVM generating 4 MOV instructions, and |
| // Windows doesn't support relocating these long branch (4 MOVs). |
| if (JIT && !TT.isOSWindows()) |
| return CodeModel::Large; |
| return CodeModel::Small; |
| } |
| |
| /// Create an AArch64 architecture model. |
| /// |
| AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, |
| StringRef CPU, StringRef FS, |
| const TargetOptions &Options, |
| Optional<Reloc::Model> RM, |
| Optional<CodeModel::Model> CM, |
| CodeGenOpt::Level OL, bool JIT, |
| bool LittleEndian) |
| : LLVMTargetMachine(T, |
| computeDataLayout(TT, Options.MCOptions, LittleEndian), |
| TT, computeDefaultCPU(TT, CPU), FS, Options, |
| getEffectiveRelocModel(TT, RM), |
| getEffectiveAArch64CodeModel(TT, CM, JIT), OL), |
| TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { |
| initAsmInfo(); |
| |
| if (TT.isOSBinFormatMachO()) { |
| this->Options.TrapUnreachable = true; |
| this->Options.NoTrapAfterNoreturn = true; |
| } |
| |
| if (getMCAsmInfo()->usesWindowsCFI()) { |
| // Unwinding can get confused if the last instruction in an |
| // exception-handling region (function, funclet, try block, etc.) |
| // is a call. |
| // |
| // FIXME: We could elide the trap if the next instruction would be in |
| // the same region anyway. |
| this->Options.TrapUnreachable = true; |
| } |
| |
| if (this->Options.TLSSize == 0) // default |
| this->Options.TLSSize = 24; |
| if ((getCodeModel() == CodeModel::Small || |
| getCodeModel() == CodeModel::Kernel) && |
| this->Options.TLSSize > 32) |
| // for the small (and kernel) code model, the maximum TLS size is 4GiB |
| this->Options.TLSSize = 32; |
| else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) |
| // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) |
| this->Options.TLSSize = 24; |
| |
| // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is |
| // MachO/CodeModel::Large, which GlobalISel does not support. |
| if (getOptLevel() <= EnableGlobalISelAtO && |
| TT.getArch() != Triple::aarch64_32 && |
| TT.getEnvironment() != Triple::GNUILP32 && |
| !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { |
| setGlobalISel(true); |
| setGlobalISelAbort(GlobalISelAbortMode::Disable); |
| } |
| |
| // AArch64 supports the MachineOutliner. |
| setMachineOutliner(true); |
| |
| // AArch64 supports default outlining behaviour. |
| setSupportsDefaultOutlining(true); |
| |
| // AArch64 supports the debug entry values. |
| setSupportsDebugEntryValues(true); |
| } |
| |
| AArch64TargetMachine::~AArch64TargetMachine() = default; |
| |
| const AArch64Subtarget * |
| AArch64TargetMachine::getSubtargetImpl(const Function &F) const { |
| Attribute CPUAttr = F.getFnAttribute("target-cpu"); |
| Attribute TuneAttr = F.getFnAttribute("tune-cpu"); |
| Attribute FSAttr = F.getFnAttribute("target-features"); |
| |
| std::string CPU = |
| CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; |
| std::string TuneCPU = |
| TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; |
| std::string FS = |
| FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; |
| |
| SmallString<512> Key; |
| |
| unsigned MinSVEVectorSize = 0; |
| unsigned MaxSVEVectorSize = 0; |
| Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); |
| if (VScaleRangeAttr.isValid()) { |
| std::tie(MinSVEVectorSize, MaxSVEVectorSize) = |
| VScaleRangeAttr.getVScaleRangeArgs(); |
| MinSVEVectorSize *= 128; |
| MaxSVEVectorSize *= 128; |
| } else { |
| MinSVEVectorSize = SVEVectorBitsMinOpt; |
| MaxSVEVectorSize = SVEVectorBitsMaxOpt; |
| } |
| |
| assert(MinSVEVectorSize % 128 == 0 && |
| "SVE requires vector length in multiples of 128!"); |
| assert(MaxSVEVectorSize % 128 == 0 && |
| "SVE requires vector length in multiples of 128!"); |
| assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && |
| "Minimum SVE vector size should not be larger than its maximum!"); |
| |
| // Sanitize user input in case of no asserts |
| if (MaxSVEVectorSize == 0) |
| MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; |
| else { |
| MinSVEVectorSize = |
| (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; |
| MaxSVEVectorSize = |
| (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; |
| } |
| |
| Key += "SVEMin"; |
| Key += std::to_string(MinSVEVectorSize); |
| Key += "SVEMax"; |
| Key += std::to_string(MaxSVEVectorSize); |
| Key += CPU; |
| Key += TuneCPU; |
| Key += FS; |
| |
| auto &I = SubtargetMap[Key]; |
| if (!I) { |
| // This needs to be done before we create a new subtarget since any |
| // creation will depend on the TM and the code generation flags on the |
| // function that reside in TargetOptions. |
| resetTargetOptions(F); |
| I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, TuneCPU, FS, |
| *this, isLittle, MinSVEVectorSize, |
| MaxSVEVectorSize); |
| } |
| return I.get(); |
| } |
| |
| void AArch64leTargetMachine::anchor() { } |
| |
| AArch64leTargetMachine::AArch64leTargetMachine( |
| const Target &T, const Triple &TT, StringRef CPU, StringRef FS, |
| const TargetOptions &Options, Optional<Reloc::Model> RM, |
| Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) |
| : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} |
| |
| void AArch64beTargetMachine::anchor() { } |
| |
| AArch64beTargetMachine::AArch64beTargetMachine( |
| const Target &T, const Triple &TT, StringRef CPU, StringRef FS, |
| const TargetOptions &Options, Optional<Reloc::Model> RM, |
| Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) |
| : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} |
| |
| namespace { |
| |
| /// AArch64 Code Generator Pass Configuration Options. |
| class AArch64PassConfig : public TargetPassConfig { |
| public: |
| AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) |
| : TargetPassConfig(TM, PM) { |
| if (TM.getOptLevel() != CodeGenOpt::None) |
| substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); |
| } |
| |
| AArch64TargetMachine &getAArch64TargetMachine() const { |
| return getTM<AArch64TargetMachine>(); |
| } |
| |
| ScheduleDAGInstrs * |
| createMachineScheduler(MachineSchedContext *C) const override { |
| const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); |
| ScheduleDAGMILive *DAG = createGenericSchedLive(C); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| if (ST.hasFusion()) |
| DAG->addMutation(createAArch64MacroFusionDAGMutation()); |
| return DAG; |
| } |
| |
| ScheduleDAGInstrs * |
| createPostMachineScheduler(MachineSchedContext *C) const override { |
| const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); |
| if (ST.hasFusion()) { |
| // Run the Macro Fusion after RA again since literals are expanded from |
| // pseudos then (v. addPreSched2()). |
| ScheduleDAGMI *DAG = createGenericSchedPostRA(C); |
| DAG->addMutation(createAArch64MacroFusionDAGMutation()); |
| return DAG; |
| } |
| |
| return nullptr; |
| } |
| |
| void addIRPasses() override; |
| bool addPreISel() override; |
| void addCodeGenPrepare() override; |
| bool addInstSelector() override; |
| bool addIRTranslator() override; |
| void addPreLegalizeMachineIR() override; |
| bool addLegalizeMachineIR() override; |
| void addPreRegBankSelect() override; |
| bool addRegBankSelect() override; |
| void addPreGlobalInstructionSelect() override; |
| bool addGlobalInstructionSelect() override; |
| void addMachineSSAOptimization() override; |
| bool addILPOpts() override; |
| void addPreRegAlloc() override; |
| void addPostRegAlloc() override; |
| void addPreSched2() override; |
| void addPreEmitPass() override; |
| void addPreEmitPass2() override; |
| |
| std::unique_ptr<CSEConfigBase> getCSEConfig() const override; |
| }; |
| |
| } // end anonymous namespace |
| |
| TargetTransformInfo |
| AArch64TargetMachine::getTargetTransformInfo(const Function &F) { |
| return TargetTransformInfo(AArch64TTIImpl(this, F)); |
| } |
| |
| TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { |
| return new AArch64PassConfig(*this, PM); |
| } |
| |
| std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { |
| return getStandardCSEConfigForOpt(TM->getOptLevel()); |
| } |
| |
| void AArch64PassConfig::addIRPasses() { |
| // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg |
| // ourselves. |
| addPass(createAtomicExpandPass()); |
| |
| // Expand any SVE vector library calls that we can't code generate directly. |
| if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) |
| addPass(createSVEIntrinsicOptsPass()); |
| |
| // Cmpxchg instructions are often used with a subsequent comparison to |
| // determine whether it succeeded. We can exploit existing control-flow in |
| // ldrex/strex loops to simplify this, but it needs tidying up. |
| if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) |
| addPass(createCFGSimplificationPass(SimplifyCFGOptions() |
| .forwardSwitchCondToPhi(true) |
| .convertSwitchToLookupTable(true) |
| .needCanonicalLoops(false) |
| .hoistCommonInsts(true) |
| .sinkCommonInsts(true))); |
| |
| // Run LoopDataPrefetch |
| // |
| // Run this before LSR to remove the multiplies involved in computing the |
| // pointer values N iterations ahead. |
| if (TM->getOptLevel() != CodeGenOpt::None) { |
| if (EnableLoopDataPrefetch) |
| addPass(createLoopDataPrefetchPass()); |
| if (EnableFalkorHWPFFix) |
| addPass(createFalkorMarkStridedAccessesPass()); |
| } |
| |
| TargetPassConfig::addIRPasses(); |
| |
| addPass(createAArch64StackTaggingPass( |
| /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); |
| |
| // Match interleaved memory accesses to ldN/stN intrinsics. |
| if (TM->getOptLevel() != CodeGenOpt::None) { |
| addPass(createInterleavedLoadCombinePass()); |
| addPass(createInterleavedAccessPass()); |
| } |
| |
| if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { |
| // Call SeparateConstOffsetFromGEP pass to extract constants within indices |
| // and lower a GEP with multiple indices to either arithmetic operations or |
| // multiple GEPs with single index. |
| addPass(createSeparateConstOffsetFromGEPPass(true)); |
| // Call EarlyCSE pass to find and remove subexpressions in the lowered |
| // result. |
| addPass(createEarlyCSEPass()); |
| // Do loop invariant code motion in case part of the lowered result is |
| // invariant. |
| addPass(createLICMPass()); |
| } |
| |
| // Add Control Flow Guard checks. |
| if (TM->getTargetTriple().isOSWindows()) |
| addPass(createCFGuardCheckPass()); |
| } |
| |
| // Pass Pipeline Configuration |
| bool AArch64PassConfig::addPreISel() { |
| // Run promote constant before global merge, so that the promoted constants |
| // get a chance to be merged |
| if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) |
| addPass(createAArch64PromoteConstantPass()); |
| // FIXME: On AArch64, this depends on the type. |
| // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). |
| // and the offset has to be a multiple of the related size in bytes. |
| if ((TM->getOptLevel() != CodeGenOpt::None && |
| EnableGlobalMerge == cl::BOU_UNSET) || |
| EnableGlobalMerge == cl::BOU_TRUE) { |
| bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && |
| (EnableGlobalMerge == cl::BOU_UNSET); |
| |
| // Merging of extern globals is enabled by default on non-Mach-O as we |
| // expect it to be generally either beneficial or harmless. On Mach-O it |
| // is disabled as we emit the .subsections_via_symbols directive which |
| // means that merging extern globals is not safe. |
| bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); |
| |
| // FIXME: extern global merging is only enabled when we optimise for size |
| // because there are some regressions with it also enabled for performance. |
| if (!OnlyOptimizeForSize) |
| MergeExternalByDefault = false; |
| |
| addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, |
| MergeExternalByDefault)); |
| } |
| |
| return false; |
| } |
| |
| void AArch64PassConfig::addCodeGenPrepare() { |
| if (getOptLevel() != CodeGenOpt::None) |
| addPass(createTypePromotionPass()); |
| TargetPassConfig::addCodeGenPrepare(); |
| } |
| |
| bool AArch64PassConfig::addInstSelector() { |
| addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); |
| |
| // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many |
| // references to _TLS_MODULE_BASE_ as possible. |
| if (TM->getTargetTriple().isOSBinFormatELF() && |
| getOptLevel() != CodeGenOpt::None) |
| addPass(createAArch64CleanupLocalDynamicTLSPass()); |
| |
| return false; |
| } |
| |
| bool AArch64PassConfig::addIRTranslator() { |
| addPass(new IRTranslator(getOptLevel())); |
| return false; |
| } |
| |
| void AArch64PassConfig::addPreLegalizeMachineIR() { |
| if (getOptLevel() == CodeGenOpt::None) |
| addPass(createAArch64O0PreLegalizerCombiner()); |
| else { |
| addPass(createAArch64PreLegalizerCombiner()); |
| if (EnableGISelLoadStoreOptPreLegal) |
| addPass(new LoadStoreOpt()); |
| } |
| } |
| |
| bool AArch64PassConfig::addLegalizeMachineIR() { |
| addPass(new Legalizer()); |
| return false; |
| } |
| |
| void AArch64PassConfig::addPreRegBankSelect() { |
| bool IsOptNone = getOptLevel() == CodeGenOpt::None; |
| if (!IsOptNone) { |
| addPass(createAArch64PostLegalizerCombiner(IsOptNone)); |
| if (EnableGISelLoadStoreOptPostLegal) |
| addPass(new LoadStoreOpt()); |
| } |
| addPass(createAArch64PostLegalizerLowering()); |
| } |
| |
| bool AArch64PassConfig::addRegBankSelect() { |
| addPass(new RegBankSelect()); |
| return false; |
| } |
| |
| void AArch64PassConfig::addPreGlobalInstructionSelect() { |
| addPass(new Localizer()); |
| } |
| |
| bool AArch64PassConfig::addGlobalInstructionSelect() { |
| addPass(new InstructionSelect(getOptLevel())); |
| if (getOptLevel() != CodeGenOpt::None) |
| addPass(createAArch64PostSelectOptimize()); |
| return false; |
| } |
| |
| void AArch64PassConfig::addMachineSSAOptimization() { |
| // Run default MachineSSAOptimization first. |
| TargetPassConfig::addMachineSSAOptimization(); |
| |
| if (TM->getOptLevel() != CodeGenOpt::None) |
| addPass(createAArch64MIPeepholeOptPass()); |
| } |
| |
| bool AArch64PassConfig::addILPOpts() { |
| if (EnableCondOpt) |
| addPass(createAArch64ConditionOptimizerPass()); |
| if (EnableCCMP) |
| addPass(createAArch64ConditionalCompares()); |
| if (EnableMCR) |
| addPass(&MachineCombinerID); |
| if (EnableCondBrTuning) |
| addPass(createAArch64CondBrTuning()); |
| if (EnableEarlyIfConversion) |
| addPass(&EarlyIfConverterID); |
| if (EnableStPairSuppress) |
| addPass(createAArch64StorePairSuppressPass()); |
| addPass(createAArch64SIMDInstrOptPass()); |
| if (TM->getOptLevel() != CodeGenOpt::None) |
| addPass(createAArch64StackTaggingPreRAPass()); |
| return true; |
| } |
| |
| void AArch64PassConfig::addPreRegAlloc() { |
| // Change dead register definitions to refer to the zero register. |
| if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) |
| addPass(createAArch64DeadRegisterDefinitions()); |
| |
| // Use AdvSIMD scalar instructions whenever profitable. |
| if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { |
| addPass(createAArch64AdvSIMDScalar()); |
| // The AdvSIMD pass may produce copies that can be rewritten to |
| // be register coalescer friendly. |
| addPass(&PeepholeOptimizerID); |
| } |
| } |
| |
| void AArch64PassConfig::addPostRegAlloc() { |
| // Remove redundant copy instructions. |
| if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) |
| addPass(createAArch64RedundantCopyEliminationPass()); |
| |
| if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) |
| // Improve performance for some FP/SIMD code for A57. |
| addPass(createAArch64A57FPLoadBalancing()); |
| } |
| |
| void AArch64PassConfig::addPreSched2() { |
| // Lower homogeneous frame instructions |
| if (EnableHomogeneousPrologEpilog) |
| addPass(createAArch64LowerHomogeneousPrologEpilogPass()); |
| // Expand some pseudo instructions to allow proper scheduling. |
| addPass(createAArch64ExpandPseudoPass()); |
| // Use load/store pair instructions when possible. |
| if (TM->getOptLevel() != CodeGenOpt::None) { |
| if (EnableLoadStoreOpt) |
| addPass(createAArch64LoadStoreOptimizationPass()); |
| } |
| |
| // The AArch64SpeculationHardeningPass destroys dominator tree and natural |
| // loop info, which is needed for the FalkorHWPFFixPass and also later on. |
| // Therefore, run the AArch64SpeculationHardeningPass before the |
| // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop |
| // info. |
| addPass(createAArch64SpeculationHardeningPass()); |
| |
| addPass(createAArch64IndirectThunks()); |
| addPass(createAArch64SLSHardeningPass()); |
| |
| if (TM->getOptLevel() != CodeGenOpt::None) { |
| if (EnableFalkorHWPFFix) |
| addPass(createFalkorHWPFFixPass()); |
| } |
| } |
| |
| void AArch64PassConfig::addPreEmitPass() { |
| // Machine Block Placement might have created new opportunities when run |
| // at O3, where the Tail Duplication Threshold is set to 4 instructions. |
| // Run the load/store optimizer once more. |
| if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) |
| addPass(createAArch64LoadStoreOptimizationPass()); |
| |
| if (EnableA53Fix835769) |
| addPass(createAArch64A53Fix835769()); |
| |
| if (EnableBranchTargets) |
| addPass(createAArch64BranchTargetsPass()); |
| |
| // Relax conditional branch instructions if they're otherwise out of |
| // range of their destination. |
| if (BranchRelaxation) |
| addPass(&BranchRelaxationPassID); |
| |
| if (TM->getTargetTriple().isOSWindows()) { |
| // Identify valid longjmp targets for Windows Control Flow Guard. |
| addPass(createCFGuardLongjmpPass()); |
| // Identify valid eh continuation targets for Windows EHCont Guard. |
| addPass(createEHContGuardCatchretPass()); |
| } |
| |
| if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) |
| addPass(createAArch64CompressJumpTablesPass()); |
| |
| if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && |
| TM->getTargetTriple().isOSBinFormatMachO()) |
| addPass(createAArch64CollectLOHPass()); |
| } |
| |
| void AArch64PassConfig::addPreEmitPass2() { |
| // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo |
| // instructions are lowered to bundles as well. |
| addPass(createUnpackMachineBundles(nullptr)); |
| } |
| |
| yaml::MachineFunctionInfo * |
| AArch64TargetMachine::createDefaultFuncInfoYAML() const { |
| return new yaml::AArch64FunctionInfo(); |
| } |
| |
| yaml::MachineFunctionInfo * |
| AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { |
| const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); |
| return new yaml::AArch64FunctionInfo(*MFI); |
| } |
| |
| bool AArch64TargetMachine::parseMachineFunctionInfo( |
| const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, |
| SMDiagnostic &Error, SMRange &SourceRange) const { |
| const auto &YamlMFI = |
| reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI); |
| MachineFunction &MF = PFS.MF; |
| MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); |
| return false; |
| } |