blob: ce26c62af61a23133704de35c774e1f9d50619a0 [file] [log] [blame]
//===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "AArch64TargetMachine.h"
#include "AArch64.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64MacroFusion.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetObjectFile.h"
#include "AArch64TargetTransformInfo.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "TargetInfo/AArch64TargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/CSEConfigBase.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/CFGuard.h"
#include "llvm/Transforms/Scalar.h"
#include <memory>
#include <string>
using namespace llvm;
static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp",
cl::desc("Enable the CCMP formation pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool>
EnableCondBrTuning("aarch64-enable-cond-br-tune",
cl::desc("Enable the conditional branch tuning pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableMCR("aarch64-enable-mcr",
cl::desc("Enable the machine combiner pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress",
cl::desc("Suppress STP for AArch64"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableAdvSIMDScalar(
"aarch64-enable-simd-scalar",
cl::desc("Enable use of AdvSIMD scalar integer instructions"),
cl::init(false), cl::Hidden);
static cl::opt<bool>
EnablePromoteConstant("aarch64-enable-promote-const",
cl::desc("Enable the promote constant pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableCollectLOH(
"aarch64-enable-collect-loh",
cl::desc("Enable the pass that emits the linker optimization hints (LOH)"),
cl::init(true), cl::Hidden);
static cl::opt<bool>
EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden,
cl::desc("Enable the pass that removes dead"
" definitons and replaces stores to"
" them with stores to the zero"
" register"),
cl::init(true));
static cl::opt<bool> EnableRedundantCopyElimination(
"aarch64-enable-copyelim",
cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt",
cl::desc("Enable the load/store pair"
" optimization pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableAtomicTidy(
"aarch64-enable-atomic-cfg-tidy", cl::Hidden,
cl::desc("Run SimplifyCFG after expanding atomic operations"
" to make use of cmpxchg flow-based information"),
cl::init(true));
static cl::opt<bool>
EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden,
cl::desc("Run early if-conversion"),
cl::init(true));
static cl::opt<bool>
EnableCondOpt("aarch64-enable-condopt",
cl::desc("Enable the condition optimizer pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool>
EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden,
cl::desc("Work around Cortex-A53 erratum 835769"),
cl::init(false));
static cl::opt<bool>
EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden,
cl::desc("Enable optimizations on complex GEPs"),
cl::init(false));
static cl::opt<bool>
BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true),
cl::desc("Relax out of range conditional branches"));
static cl::opt<bool> EnableCompressJumpTables(
"aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true),
cl::desc("Use smallest entry possible for jump tables"));
// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden,
cl::desc("Enable the global merge pass"));
static cl::opt<bool>
EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden,
cl::desc("Enable the loop data prefetch pass"),
cl::init(true));
static cl::opt<int> EnableGlobalISelAtO(
"aarch64-enable-global-isel-at-O", cl::Hidden,
cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"),
cl::init(0));
static cl::opt<bool>
EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden,
cl::desc("Enable SVE intrinsic opts"),
cl::init(true));
static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix",
cl::init(true), cl::Hidden);
static cl::opt<bool>
EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden,
cl::desc("Enable the AArch64 branch target pass"),
cl::init(true));
static cl::opt<unsigned> SVEVectorBitsMaxOpt(
"aarch64-sve-vector-bits-max",
cl::desc("Assume SVE vector registers are at most this big, "
"with zero meaning no maximum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<unsigned> SVEVectorBitsMinOpt(
"aarch64-sve-vector-bits-min",
cl::desc("Assume SVE vector registers are at least this big, "
"with zero meaning no minimum size is assumed."),
cl::init(0), cl::Hidden);
extern cl::opt<bool> EnableHomogeneousPrologEpilog;
static cl::opt<bool> EnableGISelLoadStoreOptPreLegal(
"aarch64-enable-gisel-ldst-prelegal",
cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableGISelLoadStoreOptPostLegal(
"aarch64-enable-gisel-ldst-postlegal",
cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"),
cl::init(false), cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() {
// Register the target.
RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget());
RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget());
RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target());
RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target());
RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target());
auto PR = PassRegistry::getPassRegistry();
initializeGlobalISel(*PR);
initializeAArch64A53Fix835769Pass(*PR);
initializeAArch64A57FPLoadBalancingPass(*PR);
initializeAArch64AdvSIMDScalarPass(*PR);
initializeAArch64BranchTargetsPass(*PR);
initializeAArch64CollectLOHPass(*PR);
initializeAArch64CompressJumpTablesPass(*PR);
initializeAArch64ConditionalComparesPass(*PR);
initializeAArch64ConditionOptimizerPass(*PR);
initializeAArch64DeadRegisterDefinitionsPass(*PR);
initializeAArch64ExpandPseudoPass(*PR);
initializeAArch64LoadStoreOptPass(*PR);
initializeAArch64MIPeepholeOptPass(*PR);
initializeAArch64SIMDInstrOptPass(*PR);
initializeAArch64O0PreLegalizerCombinerPass(*PR);
initializeAArch64PreLegalizerCombinerPass(*PR);
initializeAArch64PostLegalizerCombinerPass(*PR);
initializeAArch64PostLegalizerLoweringPass(*PR);
initializeAArch64PostSelectOptimizePass(*PR);
initializeAArch64PromoteConstantPass(*PR);
initializeAArch64RedundantCopyEliminationPass(*PR);
initializeAArch64StorePairSuppressPass(*PR);
initializeFalkorHWPFFixPass(*PR);
initializeFalkorMarkStridedAccessesLegacyPass(*PR);
initializeLDTLSCleanupPass(*PR);
initializeSVEIntrinsicOptsPass(*PR);
initializeAArch64SpeculationHardeningPass(*PR);
initializeAArch64SLSHardeningPass(*PR);
initializeAArch64StackTaggingPass(*PR);
initializeAArch64StackTaggingPreRAPass(*PR);
initializeAArch64LowerHomogeneousPrologEpilogPass(*PR);
}
//===----------------------------------------------------------------------===//
// AArch64 Lowering public interface.
//===----------------------------------------------------------------------===//
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
if (TT.isOSBinFormatMachO())
return std::make_unique<AArch64_MachoTargetObjectFile>();
if (TT.isOSBinFormatCOFF())
return std::make_unique<AArch64_COFFTargetObjectFile>();
return std::make_unique<AArch64_ELFTargetObjectFile>();
}
// Helper function to build a DataLayout string
static std::string computeDataLayout(const Triple &TT,
const MCTargetOptions &Options,
bool LittleEndian) {
if (TT.isOSBinFormatMachO()) {
if (TT.getArch() == Triple::aarch64_32)
return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128";
return "e-m:o-i64:64-i128:128-n32:64-S128";
}
if (TT.isOSBinFormatCOFF())
return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128";
std::string Endian = LittleEndian ? "e" : "E";
std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : "";
return Endian + "-m:e" + Ptr32 +
"-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128";
}
static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) {
if (CPU.empty() && TT.isArm64e())
return "apple-a12";
return CPU;
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
Optional<Reloc::Model> RM) {
// AArch64 Darwin and Windows are always PIC.
if (TT.isOSDarwin() || TT.isOSWindows())
return Reloc::PIC_;
// On ELF platforms the default static relocation model has a smart enough
// linker to cope with referencing external symbols defined in a shared
// library. Hence DynamicNoPIC doesn't need to be promoted to PIC.
if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
return Reloc::Static;
return *RM;
}
static CodeModel::Model
getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM,
bool JIT) {
if (CM) {
if (*CM != CodeModel::Small && *CM != CodeModel::Tiny &&
*CM != CodeModel::Large) {
report_fatal_error(
"Only small, tiny and large code models are allowed on AArch64");
} else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF())
report_fatal_error("tiny code model is only supported on ELF");
return *CM;
}
// The default MCJIT memory managers make no guarantees about where they can
// find an executable page; JITed code needs to be able to refer to globals
// no matter how far away they are.
// We should set the CodeModel::Small for Windows ARM64 in JIT mode,
// since with large code model LLVM generating 4 MOV instructions, and
// Windows doesn't support relocating these long branch (4 MOVs).
if (JIT && !TT.isOSWindows())
return CodeModel::Large;
return CodeModel::Small;
}
/// Create an AArch64 architecture model.
///
AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT,
bool LittleEndian)
: LLVMTargetMachine(T,
computeDataLayout(TT, Options.MCOptions, LittleEndian),
TT, computeDefaultCPU(TT, CPU), FS, Options,
getEffectiveRelocModel(TT, RM),
getEffectiveAArch64CodeModel(TT, CM, JIT), OL),
TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) {
initAsmInfo();
if (TT.isOSBinFormatMachO()) {
this->Options.TrapUnreachable = true;
this->Options.NoTrapAfterNoreturn = true;
}
if (getMCAsmInfo()->usesWindowsCFI()) {
// Unwinding can get confused if the last instruction in an
// exception-handling region (function, funclet, try block, etc.)
// is a call.
//
// FIXME: We could elide the trap if the next instruction would be in
// the same region anyway.
this->Options.TrapUnreachable = true;
}
if (this->Options.TLSSize == 0) // default
this->Options.TLSSize = 24;
if ((getCodeModel() == CodeModel::Small ||
getCodeModel() == CodeModel::Kernel) &&
this->Options.TLSSize > 32)
// for the small (and kernel) code model, the maximum TLS size is 4GiB
this->Options.TLSSize = 32;
else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24)
// for the tiny code model, the maximum TLS size is 1MiB (< 16MiB)
this->Options.TLSSize = 24;
// Enable GlobalISel at or below EnableGlobalISelAt0, unless this is
// MachO/CodeModel::Large, which GlobalISel does not support.
if (getOptLevel() <= EnableGlobalISelAtO &&
TT.getArch() != Triple::aarch64_32 &&
TT.getEnvironment() != Triple::GNUILP32 &&
!(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) {
setGlobalISel(true);
setGlobalISelAbort(GlobalISelAbortMode::Disable);
}
// AArch64 supports the MachineOutliner.
setMachineOutliner(true);
// AArch64 supports default outlining behaviour.
setSupportsDefaultOutlining(true);
// AArch64 supports the debug entry values.
setSupportsDebugEntryValues(true);
}
AArch64TargetMachine::~AArch64TargetMachine() = default;
const AArch64Subtarget *
AArch64TargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
SmallString<512> Key;
unsigned MinSVEVectorSize = 0;
unsigned MaxSVEVectorSize = 0;
Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange);
if (VScaleRangeAttr.isValid()) {
std::tie(MinSVEVectorSize, MaxSVEVectorSize) =
VScaleRangeAttr.getVScaleRangeArgs();
MinSVEVectorSize *= 128;
MaxSVEVectorSize *= 128;
} else {
MinSVEVectorSize = SVEVectorBitsMinOpt;
MaxSVEVectorSize = SVEVectorBitsMaxOpt;
}
assert(MinSVEVectorSize % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert(MaxSVEVectorSize % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) &&
"Minimum SVE vector size should not be larger than its maximum!");
// Sanitize user input in case of no asserts
if (MaxSVEVectorSize == 0)
MinSVEVectorSize = (MinSVEVectorSize / 128) * 128;
else {
MinSVEVectorSize =
(std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128;
MaxSVEVectorSize =
(std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128;
}
Key += "SVEMin";
Key += std::to_string(MinSVEVectorSize);
Key += "SVEMax";
Key += std::to_string(MaxSVEVectorSize);
Key += CPU;
Key += TuneCPU;
Key += FS;
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, TuneCPU, FS,
*this, isLittle, MinSVEVectorSize,
MaxSVEVectorSize);
}
return I.get();
}
void AArch64leTargetMachine::anchor() { }
AArch64leTargetMachine::AArch64leTargetMachine(
const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
: AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {}
void AArch64beTargetMachine::anchor() { }
AArch64beTargetMachine::AArch64beTargetMachine(
const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
: AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}
namespace {
/// AArch64 Code Generator Pass Configuration Options.
class AArch64PassConfig : public TargetPassConfig {
public:
AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {
if (TM.getOptLevel() != CodeGenOpt::None)
substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
}
AArch64TargetMachine &getAArch64TargetMachine() const {
return getTM<AArch64TargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
if (ST.hasFusion())
DAG->addMutation(createAArch64MacroFusionDAGMutation());
return DAG;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
if (ST.hasFusion()) {
// Run the Macro Fusion after RA again since literals are expanded from
// pseudos then (v. addPreSched2()).
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
DAG->addMutation(createAArch64MacroFusionDAGMutation());
return DAG;
}
return nullptr;
}
void addIRPasses() override;
bool addPreISel() override;
void addCodeGenPrepare() override;
bool addInstSelector() override;
bool addIRTranslator() override;
void addPreLegalizeMachineIR() override;
bool addLegalizeMachineIR() override;
void addPreRegBankSelect() override;
bool addRegBankSelect() override;
void addPreGlobalInstructionSelect() override;
bool addGlobalInstructionSelect() override;
void addMachineSSAOptimization() override;
bool addILPOpts() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};
} // end anonymous namespace
TargetTransformInfo
AArch64TargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(AArch64TTIImpl(this, F));
}
TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) {
return new AArch64PassConfig(*this, PM);
}
std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const {
return getStandardCSEConfigForOpt(TM->getOptLevel());
}
void AArch64PassConfig::addIRPasses() {
// Always expand atomic operations, we don't deal with atomicrmw or cmpxchg
// ourselves.
addPass(createAtomicExpandPass());
// Expand any SVE vector library calls that we can't code generate directly.
if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive)
addPass(createSVEIntrinsicOptsPass());
// Cmpxchg instructions are often used with a subsequent comparison to
// determine whether it succeeded. We can exploit existing control-flow in
// ldrex/strex loops to simplify this, but it needs tidying up.
if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
addPass(createCFGSimplificationPass(SimplifyCFGOptions()
.forwardSwitchCondToPhi(true)
.convertSwitchToLookupTable(true)
.needCanonicalLoops(false)
.hoistCommonInsts(true)
.sinkCommonInsts(true)));
// Run LoopDataPrefetch
//
// Run this before LSR to remove the multiplies involved in computing the
// pointer values N iterations ahead.
if (TM->getOptLevel() != CodeGenOpt::None) {
if (EnableLoopDataPrefetch)
addPass(createLoopDataPrefetchPass());
if (EnableFalkorHWPFFix)
addPass(createFalkorMarkStridedAccessesPass());
}
TargetPassConfig::addIRPasses();
addPass(createAArch64StackTaggingPass(
/*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None));
// Match interleaved memory accesses to ldN/stN intrinsics.
if (TM->getOptLevel() != CodeGenOpt::None) {
addPass(createInterleavedLoadCombinePass());
addPass(createInterleavedAccessPass());
}
if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
// Call SeparateConstOffsetFromGEP pass to extract constants within indices
// and lower a GEP with multiple indices to either arithmetic operations or
// multiple GEPs with single index.
addPass(createSeparateConstOffsetFromGEPPass(true));
// Call EarlyCSE pass to find and remove subexpressions in the lowered
// result.
addPass(createEarlyCSEPass());
// Do loop invariant code motion in case part of the lowered result is
// invariant.
addPass(createLICMPass());
}
// Add Control Flow Guard checks.
if (TM->getTargetTriple().isOSWindows())
addPass(createCFGuardCheckPass());
}
// Pass Pipeline Configuration
bool AArch64PassConfig::addPreISel() {
// Run promote constant before global merge, so that the promoted constants
// get a chance to be merged
if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant)
addPass(createAArch64PromoteConstantPass());
// FIXME: On AArch64, this depends on the type.
// Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
// and the offset has to be a multiple of the related size in bytes.
if ((TM->getOptLevel() != CodeGenOpt::None &&
EnableGlobalMerge == cl::BOU_UNSET) ||
EnableGlobalMerge == cl::BOU_TRUE) {
bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
(EnableGlobalMerge == cl::BOU_UNSET);
// Merging of extern globals is enabled by default on non-Mach-O as we
// expect it to be generally either beneficial or harmless. On Mach-O it
// is disabled as we emit the .subsections_via_symbols directive which
// means that merging extern globals is not safe.
bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
// FIXME: extern global merging is only enabled when we optimise for size
// because there are some regressions with it also enabled for performance.
if (!OnlyOptimizeForSize)
MergeExternalByDefault = false;
addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize,
MergeExternalByDefault));
}
return false;
}
void AArch64PassConfig::addCodeGenPrepare() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createTypePromotionPass());
TargetPassConfig::addCodeGenPrepare();
}
bool AArch64PassConfig::addInstSelector() {
addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel()));
// For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many
// references to _TLS_MODULE_BASE_ as possible.
if (TM->getTargetTriple().isOSBinFormatELF() &&
getOptLevel() != CodeGenOpt::None)
addPass(createAArch64CleanupLocalDynamicTLSPass());
return false;
}
bool AArch64PassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
void AArch64PassConfig::addPreLegalizeMachineIR() {
if (getOptLevel() == CodeGenOpt::None)
addPass(createAArch64O0PreLegalizerCombiner());
else {
addPass(createAArch64PreLegalizerCombiner());
if (EnableGISelLoadStoreOptPreLegal)
addPass(new LoadStoreOpt());
}
}
bool AArch64PassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
void AArch64PassConfig::addPreRegBankSelect() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
if (!IsOptNone) {
addPass(createAArch64PostLegalizerCombiner(IsOptNone));
if (EnableGISelLoadStoreOptPostLegal)
addPass(new LoadStoreOpt());
}
addPass(createAArch64PostLegalizerLowering());
}
bool AArch64PassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
void AArch64PassConfig::addPreGlobalInstructionSelect() {
addPass(new Localizer());
}
bool AArch64PassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
if (getOptLevel() != CodeGenOpt::None)
addPass(createAArch64PostSelectOptimize());
return false;
}
void AArch64PassConfig::addMachineSSAOptimization() {
// Run default MachineSSAOptimization first.
TargetPassConfig::addMachineSSAOptimization();
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createAArch64MIPeepholeOptPass());
}
bool AArch64PassConfig::addILPOpts() {
if (EnableCondOpt)
addPass(createAArch64ConditionOptimizerPass());
if (EnableCCMP)
addPass(createAArch64ConditionalCompares());
if (EnableMCR)
addPass(&MachineCombinerID);
if (EnableCondBrTuning)
addPass(createAArch64CondBrTuning());
if (EnableEarlyIfConversion)
addPass(&EarlyIfConverterID);
if (EnableStPairSuppress)
addPass(createAArch64StorePairSuppressPass());
addPass(createAArch64SIMDInstrOptPass());
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createAArch64StackTaggingPreRAPass());
return true;
}
void AArch64PassConfig::addPreRegAlloc() {
// Change dead register definitions to refer to the zero register.
if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination)
addPass(createAArch64DeadRegisterDefinitions());
// Use AdvSIMD scalar instructions whenever profitable.
if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) {
addPass(createAArch64AdvSIMDScalar());
// The AdvSIMD pass may produce copies that can be rewritten to
// be register coalescer friendly.
addPass(&PeepholeOptimizerID);
}
}
void AArch64PassConfig::addPostRegAlloc() {
// Remove redundant copy instructions.
if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
addPass(createAArch64RedundantCopyEliminationPass());
if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc())
// Improve performance for some FP/SIMD code for A57.
addPass(createAArch64A57FPLoadBalancing());
}
void AArch64PassConfig::addPreSched2() {
// Lower homogeneous frame instructions
if (EnableHomogeneousPrologEpilog)
addPass(createAArch64LowerHomogeneousPrologEpilogPass());
// Expand some pseudo instructions to allow proper scheduling.
addPass(createAArch64ExpandPseudoPass());
// Use load/store pair instructions when possible.
if (TM->getOptLevel() != CodeGenOpt::None) {
if (EnableLoadStoreOpt)
addPass(createAArch64LoadStoreOptimizationPass());
}
// The AArch64SpeculationHardeningPass destroys dominator tree and natural
// loop info, which is needed for the FalkorHWPFFixPass and also later on.
// Therefore, run the AArch64SpeculationHardeningPass before the
// FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop
// info.
addPass(createAArch64SpeculationHardeningPass());
addPass(createAArch64IndirectThunks());
addPass(createAArch64SLSHardeningPass());
if (TM->getOptLevel() != CodeGenOpt::None) {
if (EnableFalkorHWPFFix)
addPass(createFalkorHWPFFixPass());
}
}
void AArch64PassConfig::addPreEmitPass() {
// Machine Block Placement might have created new opportunities when run
// at O3, where the Tail Duplication Threshold is set to 4 instructions.
// Run the load/store optimizer once more.
if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt)
addPass(createAArch64LoadStoreOptimizationPass());
if (EnableA53Fix835769)
addPass(createAArch64A53Fix835769());
if (EnableBranchTargets)
addPass(createAArch64BranchTargetsPass());
// Relax conditional branch instructions if they're otherwise out of
// range of their destination.
if (BranchRelaxation)
addPass(&BranchRelaxationPassID);
if (TM->getTargetTriple().isOSWindows()) {
// Identify valid longjmp targets for Windows Control Flow Guard.
addPass(createCFGuardLongjmpPass());
// Identify valid eh continuation targets for Windows EHCont Guard.
addPass(createEHContGuardCatchretPass());
}
if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables)
addPass(createAArch64CompressJumpTablesPass());
if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH &&
TM->getTargetTriple().isOSBinFormatMachO())
addPass(createAArch64CollectLOHPass());
}
void AArch64PassConfig::addPreEmitPass2() {
// SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo
// instructions are lowered to bundles as well.
addPass(createUnpackMachineBundles(nullptr));
}
yaml::MachineFunctionInfo *
AArch64TargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::AArch64FunctionInfo();
}
yaml::MachineFunctionInfo *
AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<AArch64FunctionInfo>();
return new yaml::AArch64FunctionInfo(*MFI);
}
bool AArch64TargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const auto &YamlMFI =
reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI);
MachineFunction &MF = PFS.MF;
MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI);
return false;
}