| //=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| // This pass removes unnecessary copies/moves in BBs based on a dominating |
| // condition. |
| // |
| // We handle three cases: |
| // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of |
| // the CBZ/CBNZ source register is zero on the taken/not-taken path. For |
| // instance, the copy instruction in the code below can be removed because |
| // the CBZW jumps to %bb.2 when w0 is zero. |
| // |
| // %bb.1: |
| // cbz w0, .LBB0_2 |
| // .LBB0_2: |
| // mov w0, wzr ; <-- redundant |
| // |
| // 2. If the flag setting instruction defines a register other than WZR/XZR, we |
| // can remove a zero copy in some cases. |
| // |
| // %bb.0: |
| // subs w0, w1, w2 |
| // str w0, [x1] |
| // b.ne .LBB0_2 |
| // %bb.1: |
| // mov w0, wzr ; <-- redundant |
| // str w0, [x2] |
| // .LBB0_2 |
| // |
| // 3. Finally, if the flag setting instruction is a comparison against a |
| // constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate |
| // in some cases. |
| // |
| // %bb.0: |
| // subs xzr, x0, #1 |
| // b.eq .LBB0_1 |
| // .LBB0_1: |
| // orr x0, xzr, #0x1 ; <-- redundant |
| // |
| // This pass should be run after register allocation. |
| // |
| // FIXME: This could also be extended to check the whole dominance subtree below |
| // the comparison if the compile time regression is acceptable. |
| // |
| // FIXME: Add support for handling CCMP instructions. |
| // FIXME: If the known register value is zero, we should be able to rewrite uses |
| // to use WZR/XZR directly in some cases. |
| //===----------------------------------------------------------------------===// |
| #include "AArch64.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/CodeGen/LiveRegUnits.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-copyelim" |
| |
| STATISTIC(NumCopiesRemoved, "Number of copies removed."); |
| |
| namespace { |
| class AArch64RedundantCopyElimination : public MachineFunctionPass { |
| const MachineRegisterInfo *MRI; |
| const TargetRegisterInfo *TRI; |
| |
| // DomBBClobberedRegs is used when computing known values in the dominating |
| // BB. |
| LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs; |
| |
| // OptBBClobberedRegs is used when optimizing away redundant copies/moves. |
| LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs; |
| |
| public: |
| static char ID; |
| AArch64RedundantCopyElimination() : MachineFunctionPass(ID) { |
| initializeAArch64RedundantCopyEliminationPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| struct RegImm { |
| MCPhysReg Reg; |
| int32_t Imm; |
| RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {} |
| }; |
| |
| bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB, |
| SmallVectorImpl<RegImm> &KnownRegs, |
| MachineBasicBlock::iterator &FirstUse); |
| bool optimizeBlock(MachineBasicBlock *MBB); |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| StringRef getPassName() const override { |
| return "AArch64 Redundant Copy Elimination"; |
| } |
| }; |
| char AArch64RedundantCopyElimination::ID = 0; |
| } |
| |
| INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim", |
| "AArch64 redundant copy elimination pass", false, false) |
| |
| /// It's possible to determine the value of a register based on a dominating |
| /// condition. To do so, this function checks to see if the basic block \p MBB |
| /// is the target of a conditional branch \p CondBr with an equality comparison. |
| /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero |
| /// in \p MBB for some cases. Otherwise, we find and inspect the NZCV setting |
| /// instruction (e.g., SUBS, ADDS). If this instruction defines a register |
| /// other than WZR/XZR, we know the value of the destination register is zero in |
| /// \p MMB for some cases. In addition, if the NZCV setting instruction is |
| /// comparing against a constant we know the other source register is equal to |
| /// the constant in \p MBB for some cases. If we find any constant values, push |
| /// a physical register and constant value pair onto the KnownRegs vector and |
| /// return true. Otherwise, return false if no known values were found. |
| bool AArch64RedundantCopyElimination::knownRegValInBlock( |
| MachineInstr &CondBr, MachineBasicBlock *MBB, |
| SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) { |
| unsigned Opc = CondBr.getOpcode(); |
| |
| // Check if the current basic block is the target block to which the |
| // CBZ/CBNZ instruction jumps when its Wt/Xt is zero. |
| if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) && |
| MBB == CondBr.getOperand(1).getMBB()) || |
| ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) && |
| MBB != CondBr.getOperand(1).getMBB())) { |
| FirstUse = CondBr; |
| KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0)); |
| return true; |
| } |
| |
| // Otherwise, must be a conditional branch. |
| if (Opc != AArch64::Bcc) |
| return false; |
| |
| // Must be an equality check (i.e., == or !=). |
| AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm(); |
| if (CC != AArch64CC::EQ && CC != AArch64CC::NE) |
| return false; |
| |
| MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB(); |
| if ((CC == AArch64CC::EQ && BrTarget != MBB) || |
| (CC == AArch64CC::NE && BrTarget == MBB)) |
| return false; |
| |
| // Stop if we get to the beginning of PredMBB. |
| MachineBasicBlock *PredMBB = *MBB->pred_begin(); |
| assert(PredMBB == CondBr.getParent() && |
| "Conditional branch not in predecessor block!"); |
| if (CondBr == PredMBB->begin()) |
| return false; |
| |
| // Registers clobbered in PredMBB between CondBr instruction and current |
| // instruction being checked in loop. |
| DomBBClobberedRegs.clear(); |
| DomBBUsedRegs.clear(); |
| |
| // Find compare instruction that sets NZCV used by CondBr. |
| MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator(); |
| for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) { |
| |
| bool IsCMN = false; |
| switch (PredI.getOpcode()) { |
| default: |
| break; |
| |
| // CMN is an alias for ADDS with a dead destination register. |
| case AArch64::ADDSWri: |
| case AArch64::ADDSXri: |
| IsCMN = true; |
| LLVM_FALLTHROUGH; |
| // CMP is an alias for SUBS with a dead destination register. |
| case AArch64::SUBSWri: |
| case AArch64::SUBSXri: { |
| // Sometimes the first operand is a FrameIndex. Bail if tht happens. |
| if (!PredI.getOperand(1).isReg()) |
| return false; |
| MCPhysReg DstReg = PredI.getOperand(0).getReg(); |
| MCPhysReg SrcReg = PredI.getOperand(1).getReg(); |
| |
| bool Res = false; |
| // If we're comparing against a non-symbolic immediate and the source |
| // register of the compare is not modified (including a self-clobbering |
| // compare) between the compare and conditional branch we known the value |
| // of the 1st source operand. |
| if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) && |
| SrcReg != DstReg) { |
| // We've found the instruction that sets NZCV. |
| int32_t KnownImm = PredI.getOperand(2).getImm(); |
| int32_t Shift = PredI.getOperand(3).getImm(); |
| KnownImm <<= Shift; |
| if (IsCMN) |
| KnownImm = -KnownImm; |
| FirstUse = PredI; |
| KnownRegs.push_back(RegImm(SrcReg, KnownImm)); |
| Res = true; |
| } |
| |
| // If this instructions defines something other than WZR/XZR, we know it's |
| // result is zero in some cases. |
| if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) |
| return Res; |
| |
| // The destination register must not be modified between the NZCV setting |
| // instruction and the conditional branch. |
| if (!DomBBClobberedRegs.available(DstReg)) |
| return Res; |
| |
| FirstUse = PredI; |
| KnownRegs.push_back(RegImm(DstReg, 0)); |
| return true; |
| } |
| |
| // Look for NZCV setting instructions that define something other than |
| // WZR/XZR. |
| case AArch64::ADCSWr: |
| case AArch64::ADCSXr: |
| case AArch64::ADDSWrr: |
| case AArch64::ADDSWrs: |
| case AArch64::ADDSWrx: |
| case AArch64::ADDSXrr: |
| case AArch64::ADDSXrs: |
| case AArch64::ADDSXrx: |
| case AArch64::ADDSXrx64: |
| case AArch64::ANDSWri: |
| case AArch64::ANDSWrr: |
| case AArch64::ANDSWrs: |
| case AArch64::ANDSXri: |
| case AArch64::ANDSXrr: |
| case AArch64::ANDSXrs: |
| case AArch64::BICSWrr: |
| case AArch64::BICSWrs: |
| case AArch64::BICSXrs: |
| case AArch64::BICSXrr: |
| case AArch64::SBCSWr: |
| case AArch64::SBCSXr: |
| case AArch64::SUBSWrr: |
| case AArch64::SUBSWrs: |
| case AArch64::SUBSWrx: |
| case AArch64::SUBSXrr: |
| case AArch64::SUBSXrs: |
| case AArch64::SUBSXrx: |
| case AArch64::SUBSXrx64: { |
| MCPhysReg DstReg = PredI.getOperand(0).getReg(); |
| if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) |
| return false; |
| |
| // The destination register of the NZCV setting instruction must not be |
| // modified before the conditional branch. |
| if (!DomBBClobberedRegs.available(DstReg)) |
| return false; |
| |
| // We've found the instruction that sets NZCV whose DstReg == 0. |
| FirstUse = PredI; |
| KnownRegs.push_back(RegImm(DstReg, 0)); |
| return true; |
| } |
| } |
| |
| // Bail if we see an instruction that defines NZCV that we don't handle. |
| if (PredI.definesRegister(AArch64::NZCV)) |
| return false; |
| |
| // Track clobbered and used registers. |
| LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs, |
| TRI); |
| } |
| return false; |
| } |
| |
| bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) { |
| // Check if the current basic block has a single predecessor. |
| if (MBB->pred_size() != 1) |
| return false; |
| |
| // Check if the predecessor has two successors, implying the block ends in a |
| // conditional branch. |
| MachineBasicBlock *PredMBB = *MBB->pred_begin(); |
| if (PredMBB->succ_size() != 2) |
| return false; |
| |
| MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr(); |
| if (CondBr == PredMBB->end()) |
| return false; |
| |
| // Keep track of the earliest point in the PredMBB block where kill markers |
| // need to be removed if a COPY is removed. |
| MachineBasicBlock::iterator FirstUse; |
| // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ |
| // or a compare (i.e., SUBS). In the latter case, we must take care when |
| // updating FirstUse when scanning for COPY instructions. In particular, if |
| // there's a COPY in between the compare and branch the COPY should not |
| // update FirstUse. |
| bool SeenFirstUse = false; |
| // Registers that contain a known value at the start of MBB. |
| SmallVector<RegImm, 4> KnownRegs; |
| |
| MachineBasicBlock::iterator Itr = std::next(CondBr); |
| do { |
| --Itr; |
| |
| if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse)) |
| continue; |
| |
| // Reset the clobbered and used register units. |
| OptBBClobberedRegs.clear(); |
| OptBBUsedRegs.clear(); |
| |
| // Look backward in PredMBB for COPYs from the known reg to find other |
| // registers that are known to be a constant value. |
| for (auto PredI = Itr;; --PredI) { |
| if (FirstUse == PredI) |
| SeenFirstUse = true; |
| |
| if (PredI->isCopy()) { |
| MCPhysReg CopyDstReg = PredI->getOperand(0).getReg(); |
| MCPhysReg CopySrcReg = PredI->getOperand(1).getReg(); |
| for (auto &KnownReg : KnownRegs) { |
| if (!OptBBClobberedRegs.available(KnownReg.Reg)) |
| continue; |
| // If we have X = COPY Y, and Y is known to be zero, then now X is |
| // known to be zero. |
| if (CopySrcReg == KnownReg.Reg && |
| OptBBClobberedRegs.available(CopyDstReg)) { |
| KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm)); |
| if (SeenFirstUse) |
| FirstUse = PredI; |
| break; |
| } |
| // If we have X = COPY Y, and X is known to be zero, then now Y is |
| // known to be zero. |
| if (CopyDstReg == KnownReg.Reg && |
| OptBBClobberedRegs.available(CopySrcReg)) { |
| KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm)); |
| if (SeenFirstUse) |
| FirstUse = PredI; |
| break; |
| } |
| } |
| } |
| |
| // Stop if we get to the beginning of PredMBB. |
| if (PredI == PredMBB->begin()) |
| break; |
| |
| LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs, |
| OptBBUsedRegs, TRI); |
| // Stop if all of the known-zero regs have been clobbered. |
| if (all_of(KnownRegs, [&](RegImm KnownReg) { |
| return !OptBBClobberedRegs.available(KnownReg.Reg); |
| })) |
| break; |
| } |
| break; |
| |
| } while (Itr != PredMBB->begin() && Itr->isTerminator()); |
| |
| // We've not found a registers with a known value, time to bail out. |
| if (KnownRegs.empty()) |
| return false; |
| |
| bool Changed = false; |
| // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB. |
| SmallSetVector<unsigned, 4> UsedKnownRegs; |
| MachineBasicBlock::iterator LastChange = MBB->begin(); |
| // Remove redundant copy/move instructions unless KnownReg is modified. |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { |
| MachineInstr *MI = &*I; |
| ++I; |
| bool RemovedMI = false; |
| bool IsCopy = MI->isCopy(); |
| bool IsMoveImm = MI->isMoveImmediate(); |
| if (IsCopy || IsMoveImm) { |
| Register DefReg = MI->getOperand(0).getReg(); |
| Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register(); |
| int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0; |
| if (!MRI->isReserved(DefReg) && |
| ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) || |
| IsMoveImm)) { |
| for (RegImm &KnownReg : KnownRegs) { |
| if (KnownReg.Reg != DefReg && |
| !TRI->isSuperRegister(DefReg, KnownReg.Reg)) |
| continue; |
| |
| // For a copy, the known value must be a zero. |
| if (IsCopy && KnownReg.Imm != 0) |
| continue; |
| |
| if (IsMoveImm) { |
| // For a move immediate, the known immediate must match the source |
| // immediate. |
| if (KnownReg.Imm != SrcImm) |
| continue; |
| |
| // Don't remove a move immediate that implicitly defines the upper |
| // bits when only the lower 32 bits are known. |
| MCPhysReg CmpReg = KnownReg.Reg; |
| if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) { |
| return !O.isDead() && O.isReg() && O.isDef() && |
| O.getReg() != CmpReg; |
| })) |
| continue; |
| |
| // Don't remove a move immediate that implicitly defines the upper |
| // bits as different. |
| if (TRI->isSuperRegister(DefReg, KnownReg.Reg) && KnownReg.Imm < 0) |
| continue; |
| } |
| |
| if (IsCopy) |
| LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI); |
| else |
| LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI); |
| |
| MI->eraseFromParent(); |
| Changed = true; |
| LastChange = I; |
| NumCopiesRemoved++; |
| UsedKnownRegs.insert(KnownReg.Reg); |
| RemovedMI = true; |
| break; |
| } |
| } |
| } |
| |
| // Skip to the next instruction if we removed the COPY/MovImm. |
| if (RemovedMI) |
| continue; |
| |
| // Remove any regs the MI clobbers from the KnownConstRegs set. |
| for (unsigned RI = 0; RI < KnownRegs.size();) |
| if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) { |
| std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]); |
| KnownRegs.pop_back(); |
| // Don't increment RI since we need to now check the swapped-in |
| // KnownRegs[RI]. |
| } else { |
| ++RI; |
| } |
| |
| // Continue until the KnownRegs set is empty. |
| if (KnownRegs.empty()) |
| break; |
| } |
| |
| if (!Changed) |
| return false; |
| |
| // Add newly used regs to the block's live-in list if they aren't there |
| // already. |
| for (MCPhysReg KnownReg : UsedKnownRegs) |
| if (!MBB->isLiveIn(KnownReg)) |
| MBB->addLiveIn(KnownReg); |
| |
| // Clear kills in the range where changes were made. This is conservative, |
| // but should be okay since kill markers are being phased out. |
| LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse |
| << "\tLastChange: " << *LastChange); |
| for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end())) |
| MMI.clearKillInfo(); |
| for (MachineInstr &MMI : make_range(MBB->begin(), LastChange)) |
| MMI.clearKillInfo(); |
| |
| return true; |
| } |
| |
| bool AArch64RedundantCopyElimination::runOnMachineFunction( |
| MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| |
| // Resize the clobbered and used register unit trackers. We do this once per |
| // function. |
| DomBBClobberedRegs.init(*TRI); |
| DomBBUsedRegs.init(*TRI); |
| OptBBClobberedRegs.init(*TRI); |
| OptBBUsedRegs.init(*TRI); |
| |
| bool Changed = false; |
| for (MachineBasicBlock &MBB : MF) |
| Changed |= optimizeBlock(&MBB); |
| return Changed; |
| } |
| |
| FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() { |
| return new AArch64RedundantCopyElimination(); |
| } |