blob: d98a5cfd4f50a9a041b0cf5a7e9ee8cb6baf1eea [file] [log] [blame]
//===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64ExpandImm stuff.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64ExpandImm.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
using namespace llvm;
using namespace llvm::AArch64_IMM;
/// Helper function which extracts the specified 16-bit chunk from a
/// 64-bit value.
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
}
/// Check whether the given 16-bit chunk replicated to full 64-bit width
/// can be materialized with an ORR instruction.
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
}
/// Check for identical 16-bit chunks within the constant and if so
/// materialize them with a single ORR instruction. The remaining one or two
/// 16-bit chunks will be materialized with MOVK instructions.
///
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
/// an ORR instruction.
static bool tryToreplicateChunks(uint64_t UImm,
SmallVectorImpl<ImmInsnModel> &Insn) {
using CountMap = DenseMap<uint64_t, unsigned>;
CountMap Counts;
// Scan the constant and count how often every chunk occurs.
for (unsigned Idx = 0; Idx < 4; ++Idx)
++Counts[getChunk(UImm, Idx)];
// Traverse the chunks to find one which occurs more than once.
for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
Chunk != End; ++Chunk) {
const uint64_t ChunkVal = Chunk->first;
const unsigned Count = Chunk->second;
uint64_t Encoding = 0;
// We are looking for chunks which have two or three instances and can be
// materialized with an ORR instruction.
if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
continue;
const bool CountThree = Count == 3;
Insn.push_back({ AArch64::ORRXri, 0, Encoding });
unsigned ShiftAmt = 0;
uint64_t Imm16 = 0;
// Find the first chunk not materialized with the ORR instruction.
for (; ShiftAmt < 64; ShiftAmt += 16) {
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
if (Imm16 != ChunkVal)
break;
}
// Create the first MOVK instruction.
Insn.push_back({ AArch64::MOVKXi, Imm16,
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
// In case we have three instances the whole constant is now materialized
// and we can exit.
if (CountThree)
return true;
// Find the remaining chunk which needs to be materialized.
for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
if (Imm16 != ChunkVal)
break;
}
Insn.push_back({ AArch64::MOVKXi, Imm16,
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
return true;
}
return false;
}
/// Check whether this chunk matches the pattern '1...0...'. This pattern
/// starts a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isStartChunk(uint64_t Chunk) {
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
return false;
return isMask_64(~Chunk);
}
/// Check whether this chunk matches the pattern '0...1...' This pattern
/// ends a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isEndChunk(uint64_t Chunk) {
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
return false;
return isMask_64(Chunk);
}
/// Clear or set all bits in the chunk at the given index.
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
const uint64_t Mask = 0xFFFF;
if (Clear)
// Clear chunk in the immediate.
Imm &= ~(Mask << (Idx * 16));
else
// Set all bits in the immediate for the particular chunk.
Imm |= Mask << (Idx * 16);
return Imm;
}
/// Check whether the constant contains a sequence of contiguous ones,
/// which might be interrupted by one or two chunks. If so, materialize the
/// sequence of contiguous ones with an ORR instruction.
/// Materialize the chunks which are either interrupting the sequence or outside
/// of the sequence with a MOVK instruction.
///
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
/// which ends the sequence (0...1...). Then we are looking for constants which
/// contain at least one S and E chunk.
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
///
/// We are also looking for constants like |S|A|B|E| where the contiguous
/// sequence of ones wraps around the MSB into the LSB.
static bool trySequenceOfOnes(uint64_t UImm,
SmallVectorImpl<ImmInsnModel> &Insn) {
const int NotSet = -1;
const uint64_t Mask = 0xFFFF;
int StartIdx = NotSet;
int EndIdx = NotSet;
// Try to find the chunks which start/end a contiguous sequence of ones.
for (int Idx = 0; Idx < 4; ++Idx) {
int64_t Chunk = getChunk(UImm, Idx);
// Sign extend the 16-bit chunk to 64-bit.
Chunk = (Chunk << 48) >> 48;
if (isStartChunk(Chunk))
StartIdx = Idx;
else if (isEndChunk(Chunk))
EndIdx = Idx;
}
// Early exit in case we can't find a start/end chunk.
if (StartIdx == NotSet || EndIdx == NotSet)
return false;
// Outside of the contiguous sequence of ones everything needs to be zero.
uint64_t Outside = 0;
// Chunks between the start and end chunk need to have all their bits set.
uint64_t Inside = Mask;
// If our contiguous sequence of ones wraps around from the MSB into the LSB,
// just swap indices and pretend we are materializing a contiguous sequence
// of zeros surrounded by a contiguous sequence of ones.
if (StartIdx > EndIdx) {
std::swap(StartIdx, EndIdx);
std::swap(Outside, Inside);
}
uint64_t OrrImm = UImm;
int FirstMovkIdx = NotSet;
int SecondMovkIdx = NotSet;
// Find out which chunks we need to patch up to obtain a contiguous sequence
// of ones.
for (int Idx = 0; Idx < 4; ++Idx) {
const uint64_t Chunk = getChunk(UImm, Idx);
// Check whether we are looking at a chunk which is not part of the
// contiguous sequence of ones.
if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
OrrImm = updateImm(OrrImm, Idx, Outside == 0);
// Remember the index we need to patch.
if (FirstMovkIdx == NotSet)
FirstMovkIdx = Idx;
else
SecondMovkIdx = Idx;
// Check whether we are looking a chunk which is part of the contiguous
// sequence of ones.
} else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
// Remember the index we need to patch.
if (FirstMovkIdx == NotSet)
FirstMovkIdx = Idx;
else
SecondMovkIdx = Idx;
}
}
assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
// Create the ORR-immediate instruction.
uint64_t Encoding = 0;
AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
Insn.push_back({ AArch64::ORRXri, 0, Encoding });
const bool SingleMovk = SecondMovkIdx == NotSet;
Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
AArch64_AM::getShifterImm(AArch64_AM::LSL,
FirstMovkIdx * 16) });
// Early exit in case we only need to emit a single MOVK instruction.
if (SingleMovk)
return true;
// Create the second MOVK instruction.
Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
AArch64_AM::getShifterImm(AArch64_AM::LSL,
SecondMovkIdx * 16) });
return true;
}
/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
/// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
unsigned OneChunks, unsigned ZeroChunks,
SmallVectorImpl<ImmInsnModel> &Insn) {
const unsigned Mask = 0xFFFF;
// Use a MOVZ or MOVN instruction to set the high bits, followed by one or
// more MOVK instructions to insert additional 16-bit portions into the
// lower bits.
bool isNeg = false;
// Use MOVN to materialize the high bits if we have more all one chunks
// than all zero chunks.
if (OneChunks > ZeroChunks) {
isNeg = true;
Imm = ~Imm;
}
unsigned FirstOpc;
if (BitSize == 32) {
Imm &= (1LL << 32) - 1;
FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
} else {
FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
}
unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
unsigned LastShift = 0; // LSL amount for last MOVK
if (Imm != 0) {
unsigned LZ = countLeadingZeros(Imm);
unsigned TZ = countTrailingZeros(Imm);
Shift = (TZ / 16) * 16;
LastShift = ((63 - LZ) / 16) * 16;
}
unsigned Imm16 = (Imm >> Shift) & Mask;
Insn.push_back({ FirstOpc, Imm16,
AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
if (Shift == LastShift)
return;
// If a MOVN was used for the high bits of a negative value, flip the rest
// of the bits back for use with MOVK.
if (isNeg)
Imm = ~Imm;
unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
while (Shift < LastShift) {
Shift += 16;
Imm16 = (Imm >> Shift) & Mask;
if (Imm16 == (isNeg ? Mask : 0))
continue; // This 16-bit portion is already set correctly.
Insn.push_back({ Opc, Imm16,
AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
}
}
/// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
/// real move-immediate instructions to synthesize the immediate.
void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize,
SmallVectorImpl<ImmInsnModel> &Insn) {
const unsigned Mask = 0xFFFF;
// Scan the immediate and count the number of 16-bit chunks which are either
// all ones or all zeros.
unsigned OneChunks = 0;
unsigned ZeroChunks = 0;
for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
const unsigned Chunk = (Imm >> Shift) & Mask;
if (Chunk == Mask)
OneChunks++;
else if (Chunk == 0)
ZeroChunks++;
}
// Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
return;
}
// Try a single ORR.
uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
uint64_t Encoding;
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
Insn.push_back({ Opc, 0, Encoding });
return;
}
// One to up three instruction sequences.
//
// Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
// fastest sequence with fast literal generation.
if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
return;
}
assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
"MOVZ/MOVK pair");
// Try other two-instruction sequences.
// 64-bit ORR followed by MOVK.
// We try to construct the ORR immediate in three different ways: either we
// zero out the chunk which will be replaced, we fill the chunk which will
// be replaced with ones, or we take the bit pattern from the other half of
// the 64-bit immediate. This is comprehensive because of the way ORR
// immediates are constructed.
for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
uint64_t ShiftedMask = (0xFFFFULL << Shift);
uint64_t ZeroChunk = UImm & ~ShiftedMask;
uint64_t OneChunk = UImm | ShiftedMask;
uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
Encoding)) {
// Create the ORR-immediate instruction.
Insn.push_back({ AArch64::ORRXri, 0, Encoding });
// Create the MOVK instruction.
const unsigned Imm16 = getChunk(UImm, Shift / 16);
Insn.push_back({ AArch64::MOVKXi, Imm16,
AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
return;
}
}
// FIXME: Add more two-instruction sequences.
// Three instruction sequences.
//
// Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
// the fastest sequence with fast literal generation. (If neither MOVK is
// part of a fast literal generation pair, it could be slower than the
// four-instruction sequence, but we won't worry about that for now.)
if (OneChunks || ZeroChunks) {
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
return;
}
// Check for identical 16-bit chunks within the constant and if so materialize
// them with a single ORR instruction. The remaining one or two 16-bit chunks
// will be materialized with MOVK instructions.
if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
return;
// Check whether the constant contains a sequence of contiguous ones, which
// might be interrupted by one or two chunks. If so, materialize the sequence
// of contiguous ones with an ORR instruction. Materialize the chunks which
// are either interrupting the sequence or outside of the sequence with a
// MOVK instruction.
if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
return;
// We found no possible two or three instruction sequence; use the general
// four-instruction sequence.
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
}