blob: aeebb49675b244a447d65fed2f5ab14644acc738 [file] [log] [blame]
//===- AArch64AsmPrinter.cpp - AArch64 LLVM assembly writer ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to the AArch64 assembly language.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64MCInstLower.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetObjectFile.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64InstPrinter.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "MCTargetDesc/AArch64TargetStreamer.h"
#include "TargetInfo/AArch64TargetInfo.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/FaultMaps.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <map>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
namespace {
class AArch64AsmPrinter : public AsmPrinter {
AArch64MCInstLower MCInstLowering;
StackMaps SM;
FaultMaps FM;
const AArch64Subtarget *STI;
public:
AArch64AsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)), MCInstLowering(OutContext, *this),
SM(*this), FM(*this) {}
StringRef getPassName() const override { return "AArch64 Assembly Printer"; }
/// Wrapper for MCInstLowering.lowerOperand() for the
/// tblgen'erated pseudo lowering.
bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp) const {
return MCInstLowering.lowerOperand(MO, MCOp);
}
void emitStartOfAsmFile(Module &M) override;
void emitJumpTableInfo() override;
void emitFunctionEntryLabel() override;
void LowerJumpTableDest(MCStreamer &OutStreamer, const MachineInstr &MI);
void LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
const MachineInstr &MI);
void LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
const MachineInstr &MI);
void LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM,
const MachineInstr &MI);
void LowerFAULTING_OP(const MachineInstr &MI);
void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI);
void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI);
void LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI);
typedef std::tuple<unsigned, bool, uint32_t> HwasanMemaccessTuple;
std::map<HwasanMemaccessTuple, MCSymbol *> HwasanMemaccessSymbols;
void LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI);
void emitHwasanMemaccessSymbols(Module &M);
void emitSled(const MachineInstr &MI, SledKind Kind);
/// tblgen'erated driver function for lowering simple MI->MC
/// pseudo instructions.
bool emitPseudoExpansionLowering(MCStreamer &OutStreamer,
const MachineInstr *MI);
void emitInstruction(const MachineInstr *MI) override;
void emitFunctionHeaderComment() override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AsmPrinter::getAnalysisUsage(AU);
AU.setPreservesAll();
}
bool runOnMachineFunction(MachineFunction &MF) override {
AArch64FI = MF.getInfo<AArch64FunctionInfo>();
STI = static_cast<const AArch64Subtarget*>(&MF.getSubtarget());
SetupMachineFunction(MF);
if (STI->isTargetCOFF()) {
bool Internal = MF.getFunction().hasInternalLinkage();
COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
: COFF::IMAGE_SYM_CLASS_EXTERNAL;
int Type =
COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
OutStreamer->EmitCOFFSymbolStorageClass(Scl);
OutStreamer->EmitCOFFSymbolType(Type);
OutStreamer->EndCOFFSymbolDef();
}
// Emit the rest of the function body.
emitFunctionBody();
// Emit the XRay table for this function.
emitXRayTable();
// We didn't modify anything.
return false;
}
private:
void printOperand(const MachineInstr *MI, unsigned OpNum, raw_ostream &O);
bool printAsmMRegister(const MachineOperand &MO, char Mode, raw_ostream &O);
bool printAsmRegInClass(const MachineOperand &MO,
const TargetRegisterClass *RC, unsigned AltName,
raw_ostream &O);
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
const char *ExtraCode, raw_ostream &O) override;
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
const char *ExtraCode, raw_ostream &O) override;
void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS);
void emitFunctionBodyEnd() override;
MCSymbol *GetCPISymbol(unsigned CPID) const override;
void emitEndOfAsmFile(Module &M) override;
AArch64FunctionInfo *AArch64FI = nullptr;
/// Emit the LOHs contained in AArch64FI.
void emitLOHs();
/// Emit instruction to set float register to zero.
void emitFMov0(const MachineInstr &MI);
using MInstToMCSymbol = std::map<const MachineInstr *, MCSymbol *>;
MInstToMCSymbol LOHInstToLabel;
};
} // end anonymous namespace
void AArch64AsmPrinter::emitStartOfAsmFile(Module &M) {
const Triple &TT = TM.getTargetTriple();
if (TT.isOSBinFormatCOFF()) {
// Emit an absolute @feat.00 symbol. This appears to be some kind of
// compiler features bitfield read by link.exe.
MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00"));
OutStreamer->BeginCOFFSymbolDef(S);
OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
OutStreamer->EndCOFFSymbolDef();
int64_t Feat00Flags = 0;
if (M.getModuleFlag("cfguard")) {
Feat00Flags |= 0x800; // Object is CFG-aware.
}
if (M.getModuleFlag("ehcontguard")) {
Feat00Flags |= 0x4000; // Object also has EHCont.
}
OutStreamer->emitSymbolAttribute(S, MCSA_Global);
OutStreamer->emitAssignment(
S, MCConstantExpr::create(Feat00Flags, MMI->getContext()));
}
if (!TT.isOSBinFormatELF())
return;
// Assemble feature flags that may require creation of a note section.
unsigned Flags = 0;
if (const auto *BTE = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("branch-target-enforcement")))
if (BTE->getZExtValue())
Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
if (const auto *Sign = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("sign-return-address")))
if (Sign->getZExtValue())
Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_PAC;
if (Flags == 0)
return;
// Emit a .note.gnu.property section with the flags.
if (auto *TS = static_cast<AArch64TargetStreamer *>(
OutStreamer->getTargetStreamer()))
TS->emitNoteSection(Flags);
}
void AArch64AsmPrinter::emitFunctionHeaderComment() {
const AArch64FunctionInfo *FI = MF->getInfo<AArch64FunctionInfo>();
Optional<std::string> OutlinerString = FI->getOutliningStyle();
if (OutlinerString != None)
OutStreamer->GetCommentOS() << ' ' << OutlinerString;
}
void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI)
{
const Function &F = MF->getFunction();
if (F.hasFnAttribute("patchable-function-entry")) {
unsigned Num;
if (F.getFnAttribute("patchable-function-entry")
.getValueAsString()
.getAsInteger(10, Num))
return;
emitNops(Num);
return;
}
emitSled(MI, SledKind::FUNCTION_ENTER);
}
void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
emitSled(MI, SledKind::FUNCTION_EXIT);
}
void AArch64AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
emitSled(MI, SledKind::TAIL_CALL);
}
void AArch64AsmPrinter::emitSled(const MachineInstr &MI, SledKind Kind) {
static const int8_t NoopsInSledCount = 7;
// We want to emit the following pattern:
//
// .Lxray_sled_N:
// ALIGN
// B #32
// ; 7 NOP instructions (28 bytes)
// .tmpN
//
// We need the 28 bytes (7 instructions) because at runtime, we'd be patching
// over the full 32 bytes (8 instructions) with the following pattern:
//
// STP X0, X30, [SP, #-16]! ; push X0 and the link register to the stack
// LDR W0, #12 ; W0 := function ID
// LDR X16,#12 ; X16 := addr of __xray_FunctionEntry or __xray_FunctionExit
// BLR X16 ; call the tracing trampoline
// ;DATA: 32 bits of function ID
// ;DATA: lower 32 bits of the address of the trampoline
// ;DATA: higher 32 bits of the address of the trampoline
// LDP X0, X30, [SP], #16 ; pop X0 and the link register from the stack
//
OutStreamer->emitCodeAlignment(4, &getSubtargetInfo());
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitLabel(CurSled);
auto Target = OutContext.createTempSymbol();
// Emit "B #32" instruction, which jumps over the next 28 bytes.
// The operand has to be the number of 4-byte instructions to jump over,
// including the current instruction.
EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::B).addImm(8));
for (int8_t I = 0; I < NoopsInSledCount; I++)
EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
OutStreamer->emitLabel(Target);
recordSled(CurSled, MI, Kind, 2);
}
void AArch64AsmPrinter::LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI) {
Register Reg = MI.getOperand(0).getReg();
bool IsShort =
MI.getOpcode() == AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES;
uint32_t AccessInfo = MI.getOperand(1).getImm();
MCSymbol *&Sym =
HwasanMemaccessSymbols[HwasanMemaccessTuple(Reg, IsShort, AccessInfo)];
if (!Sym) {
// FIXME: Make this work on non-ELF.
if (!TM.getTargetTriple().isOSBinFormatELF())
report_fatal_error("llvm.hwasan.check.memaccess only supported on ELF");
std::string SymName = "__hwasan_check_x" + utostr(Reg - AArch64::X0) + "_" +
utostr(AccessInfo);
if (IsShort)
SymName += "_short_v2";
Sym = OutContext.getOrCreateSymbol(SymName);
}
EmitToStreamer(*OutStreamer,
MCInstBuilder(AArch64::BL)
.addExpr(MCSymbolRefExpr::create(Sym, OutContext)));
}
void AArch64AsmPrinter::emitHwasanMemaccessSymbols(Module &M) {
if (HwasanMemaccessSymbols.empty())
return;
const Triple &TT = TM.getTargetTriple();
assert(TT.isOSBinFormatELF());
std::unique_ptr<MCSubtargetInfo> STI(
TM.getTarget().createMCSubtargetInfo(TT.str(), "", ""));
assert(STI && "Unable to create subtarget info");
MCSymbol *HwasanTagMismatchV1Sym =
OutContext.getOrCreateSymbol("__hwasan_tag_mismatch");
MCSymbol *HwasanTagMismatchV2Sym =
OutContext.getOrCreateSymbol("__hwasan_tag_mismatch_v2");
const MCSymbolRefExpr *HwasanTagMismatchV1Ref =
MCSymbolRefExpr::create(HwasanTagMismatchV1Sym, OutContext);
const MCSymbolRefExpr *HwasanTagMismatchV2Ref =
MCSymbolRefExpr::create(HwasanTagMismatchV2Sym, OutContext);
for (auto &P : HwasanMemaccessSymbols) {
unsigned Reg = std::get<0>(P.first);
bool IsShort = std::get<1>(P.first);
uint32_t AccessInfo = std::get<2>(P.first);
const MCSymbolRefExpr *HwasanTagMismatchRef =
IsShort ? HwasanTagMismatchV2Ref : HwasanTagMismatchV1Ref;
MCSymbol *Sym = P.second;
bool HasMatchAllTag =
(AccessInfo >> HWASanAccessInfo::HasMatchAllShift) & 1;
uint8_t MatchAllTag =
(AccessInfo >> HWASanAccessInfo::MatchAllShift) & 0xff;
unsigned Size =
1 << ((AccessInfo >> HWASanAccessInfo::AccessSizeShift) & 0xf);
bool CompileKernel =
(AccessInfo >> HWASanAccessInfo::CompileKernelShift) & 1;
OutStreamer->SwitchSection(OutContext.getELFSection(
".text.hot", ELF::SHT_PROGBITS,
ELF::SHF_EXECINSTR | ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
Sym->getName(), /*IsComdat=*/true));
OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction);
OutStreamer->emitSymbolAttribute(Sym, MCSA_Weak);
OutStreamer->emitSymbolAttribute(Sym, MCSA_Hidden);
OutStreamer->emitLabel(Sym);
OutStreamer->emitInstruction(MCInstBuilder(AArch64::SBFMXri)
.addReg(AArch64::X16)
.addReg(Reg)
.addImm(4)
.addImm(55),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::LDRBBroX)
.addReg(AArch64::W16)
.addReg(IsShort ? AArch64::X20 : AArch64::X9)
.addReg(AArch64::X16)
.addImm(0)
.addImm(0),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::SUBSXrs)
.addReg(AArch64::XZR)
.addReg(AArch64::X16)
.addReg(Reg)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)),
*STI);
MCSymbol *HandleMismatchOrPartialSym = OutContext.createTempSymbol();
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::Bcc)
.addImm(AArch64CC::NE)
.addExpr(MCSymbolRefExpr::create(HandleMismatchOrPartialSym,
OutContext)),
*STI);
MCSymbol *ReturnSym = OutContext.createTempSymbol();
OutStreamer->emitLabel(ReturnSym);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::RET).addReg(AArch64::LR), *STI);
OutStreamer->emitLabel(HandleMismatchOrPartialSym);
if (HasMatchAllTag) {
OutStreamer->emitInstruction(MCInstBuilder(AArch64::UBFMXri)
.addReg(AArch64::X16)
.addReg(Reg)
.addImm(56)
.addImm(63),
*STI);
OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSXri)
.addReg(AArch64::XZR)
.addReg(AArch64::X16)
.addImm(MatchAllTag)
.addImm(0),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::Bcc)
.addImm(AArch64CC::EQ)
.addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)),
*STI);
}
if (IsShort) {
OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWri)
.addReg(AArch64::WZR)
.addReg(AArch64::W16)
.addImm(15)
.addImm(0),
*STI);
MCSymbol *HandleMismatchSym = OutContext.createTempSymbol();
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::Bcc)
.addImm(AArch64CC::HI)
.addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::ANDXri)
.addReg(AArch64::X17)
.addReg(Reg)
.addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)),
*STI);
if (Size != 1)
OutStreamer->emitInstruction(MCInstBuilder(AArch64::ADDXri)
.addReg(AArch64::X17)
.addReg(AArch64::X17)
.addImm(Size - 1)
.addImm(0),
*STI);
OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWrs)
.addReg(AArch64::WZR)
.addReg(AArch64::W16)
.addReg(AArch64::W17)
.addImm(0),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::Bcc)
.addImm(AArch64CC::LS)
.addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::ORRXri)
.addReg(AArch64::X16)
.addReg(Reg)
.addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)),
*STI);
OutStreamer->emitInstruction(MCInstBuilder(AArch64::LDRBBui)
.addReg(AArch64::W16)
.addReg(AArch64::X16)
.addImm(0),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::SUBSXrs)
.addReg(AArch64::XZR)
.addReg(AArch64::X16)
.addReg(Reg)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::Bcc)
.addImm(AArch64CC::EQ)
.addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)),
*STI);
OutStreamer->emitLabel(HandleMismatchSym);
}
OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXpre)
.addReg(AArch64::SP)
.addReg(AArch64::X0)
.addReg(AArch64::X1)
.addReg(AArch64::SP)
.addImm(-32),
*STI);
OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXi)
.addReg(AArch64::FP)
.addReg(AArch64::LR)
.addReg(AArch64::SP)
.addImm(29),
*STI);
if (Reg != AArch64::X0)
OutStreamer->emitInstruction(MCInstBuilder(AArch64::ORRXrs)
.addReg(AArch64::X0)
.addReg(AArch64::XZR)
.addReg(Reg)
.addImm(0),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::MOVZXi)
.addReg(AArch64::X1)
.addImm(AccessInfo & HWASanAccessInfo::RuntimeMask)
.addImm(0),
*STI);
if (CompileKernel) {
// The Linux kernel's dynamic loader doesn't support GOT relative
// relocations, but it doesn't support late binding either, so just call
// the function directly.
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::B).addExpr(HwasanTagMismatchRef), *STI);
} else {
// Intentionally load the GOT entry and branch to it, rather than possibly
// late binding the function, which may clobber the registers before we
// have a chance to save them.
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::ADRP)
.addReg(AArch64::X16)
.addExpr(AArch64MCExpr::create(
HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_PAGE,
OutContext)),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::LDRXui)
.addReg(AArch64::X16)
.addReg(AArch64::X16)
.addExpr(AArch64MCExpr::create(
HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_LO12,
OutContext)),
*STI);
OutStreamer->emitInstruction(
MCInstBuilder(AArch64::BR).addReg(AArch64::X16), *STI);
}
}
}
void AArch64AsmPrinter::emitEndOfAsmFile(Module &M) {
emitHwasanMemaccessSymbols(M);
const Triple &TT = TM.getTargetTriple();
if (TT.isOSBinFormatMachO()) {
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
// Emit stack and fault map information.
emitStackMaps(SM);
FM.serializeToFaultMapSection();
}
void AArch64AsmPrinter::emitLOHs() {
SmallVector<MCSymbol *, 3> MCArgs;
for (const auto &D : AArch64FI->getLOHContainer()) {
for (const MachineInstr *MI : D.getArgs()) {
MInstToMCSymbol::iterator LabelIt = LOHInstToLabel.find(MI);
assert(LabelIt != LOHInstToLabel.end() &&
"Label hasn't been inserted for LOH related instruction");
MCArgs.push_back(LabelIt->second);
}
OutStreamer->emitLOHDirective(D.getKind(), MCArgs);
MCArgs.clear();
}
}
void AArch64AsmPrinter::emitFunctionBodyEnd() {
if (!AArch64FI->getLOHRelated().empty())
emitLOHs();
}
/// GetCPISymbol - Return the symbol for the specified constant pool entry.
MCSymbol *AArch64AsmPrinter::GetCPISymbol(unsigned CPID) const {
// Darwin uses a linker-private symbol name for constant-pools (to
// avoid addends on the relocation?), ELF has no such concept and
// uses a normal private symbol.
if (!getDataLayout().getLinkerPrivateGlobalPrefix().empty())
return OutContext.getOrCreateSymbol(
Twine(getDataLayout().getLinkerPrivateGlobalPrefix()) + "CPI" +
Twine(getFunctionNumber()) + "_" + Twine(CPID));
return AsmPrinter::GetCPISymbol(CPID);
}
void AArch64AsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
default:
llvm_unreachable("<unknown operand type>");
case MachineOperand::MO_Register: {
Register Reg = MO.getReg();
assert(Register::isPhysicalRegister(Reg));
assert(!MO.getSubReg() && "Subregs should be eliminated!");
O << AArch64InstPrinter::getRegisterName(Reg);
break;
}
case MachineOperand::MO_Immediate: {
O << MO.getImm();
break;
}
case MachineOperand::MO_GlobalAddress: {
PrintSymbolOperand(MO, O);
break;
}
case MachineOperand::MO_BlockAddress: {
MCSymbol *Sym = GetBlockAddressSymbol(MO.getBlockAddress());
Sym->print(O, MAI);
break;
}
}
}
bool AArch64AsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode,
raw_ostream &O) {
Register Reg = MO.getReg();
switch (Mode) {
default:
return true; // Unknown mode.
case 'w':
Reg = getWRegFromXReg(Reg);
break;
case 'x':
Reg = getXRegFromWReg(Reg);
break;
case 't':
Reg = getXRegFromXRegTuple(Reg);
break;
}
O << AArch64InstPrinter::getRegisterName(Reg);
return false;
}
// Prints the register in MO using class RC using the offset in the
// new register class. This should not be used for cross class
// printing.
bool AArch64AsmPrinter::printAsmRegInClass(const MachineOperand &MO,
const TargetRegisterClass *RC,
unsigned AltName, raw_ostream &O) {
assert(MO.isReg() && "Should only get here with a register!");
const TargetRegisterInfo *RI = STI->getRegisterInfo();
Register Reg = MO.getReg();
unsigned RegToPrint = RC->getRegister(RI->getEncodingValue(Reg));
if (!RI->regsOverlap(RegToPrint, Reg))
return true;
O << AArch64InstPrinter::getRegisterName(RegToPrint, AltName);
return false;
}
bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
const char *ExtraCode, raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
// First try the generic code, which knows about modifiers like 'c' and 'n'.
if (!AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O))
return false;
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
return true; // Unknown modifier.
case 'w': // Print W register
case 'x': // Print X register
if (MO.isReg())
return printAsmMRegister(MO, ExtraCode[0], O);
if (MO.isImm() && MO.getImm() == 0) {
unsigned Reg = ExtraCode[0] == 'w' ? AArch64::WZR : AArch64::XZR;
O << AArch64InstPrinter::getRegisterName(Reg);
return false;
}
printOperand(MI, OpNum, O);
return false;
case 'b': // Print B register.
case 'h': // Print H register.
case 's': // Print S register.
case 'd': // Print D register.
case 'q': // Print Q register.
case 'z': // Print Z register.
if (MO.isReg()) {
const TargetRegisterClass *RC;
switch (ExtraCode[0]) {
case 'b':
RC = &AArch64::FPR8RegClass;
break;
case 'h':
RC = &AArch64::FPR16RegClass;
break;
case 's':
RC = &AArch64::FPR32RegClass;
break;
case 'd':
RC = &AArch64::FPR64RegClass;
break;
case 'q':
RC = &AArch64::FPR128RegClass;
break;
case 'z':
RC = &AArch64::ZPRRegClass;
break;
default:
return true;
}
return printAsmRegInClass(MO, RC, AArch64::NoRegAltName, O);
}
printOperand(MI, OpNum, O);
return false;
}
}
// According to ARM, we should emit x and v registers unless we have a
// modifier.
if (MO.isReg()) {
Register Reg = MO.getReg();
// If this is a w or x register, print an x register.
if (AArch64::GPR32allRegClass.contains(Reg) ||
AArch64::GPR64allRegClass.contains(Reg))
return printAsmMRegister(MO, 'x', O);
// If this is an x register tuple, print an x register.
if (AArch64::GPR64x8ClassRegClass.contains(Reg))
return printAsmMRegister(MO, 't', O);
unsigned AltName = AArch64::NoRegAltName;
const TargetRegisterClass *RegClass;
if (AArch64::ZPRRegClass.contains(Reg)) {
RegClass = &AArch64::ZPRRegClass;
} else if (AArch64::PPRRegClass.contains(Reg)) {
RegClass = &AArch64::PPRRegClass;
} else {
RegClass = &AArch64::FPR128RegClass;
AltName = AArch64::vreg;
}
// If this is a b, h, s, d, or q register, print it as a v register.
return printAsmRegInClass(MO, RegClass, AltName, O);
}
printOperand(MI, OpNum, O);
return false;
}
bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0] && ExtraCode[0] != 'a')
return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << AArch64InstPrinter::getRegisterName(MO.getReg()) << "]";
return false;
}
void AArch64AsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
raw_ostream &OS) {
unsigned NOps = MI->getNumOperands();
assert(NOps == 4);
OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
// cast away const; DIetc do not take const operands for some reason.
OS << MI->getDebugVariable()->getName();
OS << " <- ";
// Frame address. Currently handles register +- offset only.
assert(MI->isIndirectDebugValue());
OS << '[';
for (unsigned I = 0, E = std::distance(MI->debug_operands().begin(),
MI->debug_operands().end());
I < E; ++I) {
if (I != 0)
OS << ", ";
printOperand(MI, I, OS);
}
OS << ']';
OS << "+";
printOperand(MI, NOps - 2, OS);
}
void AArch64AsmPrinter::emitJumpTableInfo() {
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
if (!MJTI) return;
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
MCSection *ReadOnlySec = TLOF.getSectionForJumpTable(MF->getFunction(), TM);
OutStreamer->SwitchSection(ReadOnlySec);
auto AFI = MF->getInfo<AArch64FunctionInfo>();
for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
unsigned Size = AFI->getJumpTableEntrySize(JTI);
emitAlignment(Align(Size));
OutStreamer->emitLabel(GetJTISymbol(JTI));
const MCSymbol *BaseSym = AArch64FI->getJumpTableEntryPCRelSymbol(JTI);
const MCExpr *Base = MCSymbolRefExpr::create(BaseSym, OutContext);
for (auto *JTBB : JTBBs) {
const MCExpr *Value =
MCSymbolRefExpr::create(JTBB->getSymbol(), OutContext);
// Each entry is:
// .byte/.hword (LBB - Lbase)>>2
// or plain:
// .word LBB - Lbase
Value = MCBinaryExpr::createSub(Value, Base, OutContext);
if (Size != 4)
Value = MCBinaryExpr::createLShr(
Value, MCConstantExpr::create(2, OutContext), OutContext);
OutStreamer->emitValue(Value, Size);
}
}
}
void AArch64AsmPrinter::emitFunctionEntryLabel() {
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall ||
MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SVE_VectorCall ||
STI->getRegisterInfo()->hasSVEArgsOrReturn(MF)) {
auto *TS =
static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer());
TS->emitDirectiveVariantPCS(CurrentFnSym);
}
return AsmPrinter::emitFunctionEntryLabel();
}
/// Small jump tables contain an unsigned byte or half, representing the offset
/// from the lowest-addressed possible destination to the desired basic
/// block. Since all instructions are 4-byte aligned, this is further compressed
/// by counting in instructions rather than bytes (i.e. divided by 4). So, to
/// materialize the correct destination we need:
///
/// adr xDest, .LBB0_0
/// ldrb wScratch, [xTable, xEntry] (with "lsl #1" for ldrh).
/// add xDest, xDest, xScratch (with "lsl #2" for smaller entries)
void AArch64AsmPrinter::LowerJumpTableDest(llvm::MCStreamer &OutStreamer,
const llvm::MachineInstr &MI) {
Register DestReg = MI.getOperand(0).getReg();
Register ScratchReg = MI.getOperand(1).getReg();
Register ScratchRegW =
STI->getRegisterInfo()->getSubReg(ScratchReg, AArch64::sub_32);
Register TableReg = MI.getOperand(2).getReg();
Register EntryReg = MI.getOperand(3).getReg();
int JTIdx = MI.getOperand(4).getIndex();
int Size = AArch64FI->getJumpTableEntrySize(JTIdx);
// This has to be first because the compression pass based its reachability
// calculations on the start of the JumpTableDest instruction.
auto Label =
MF->getInfo<AArch64FunctionInfo>()->getJumpTableEntryPCRelSymbol(JTIdx);
// If we don't already have a symbol to use as the base, use the ADR
// instruction itself.
if (!Label) {
Label = MF->getContext().createTempSymbol();
AArch64FI->setJumpTableEntryInfo(JTIdx, Size, Label);
OutStreamer.emitLabel(Label);
}
auto LabelExpr = MCSymbolRefExpr::create(Label, MF->getContext());
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADR)
.addReg(DestReg)
.addExpr(LabelExpr));
// Load the number of instruction-steps to offset from the label.
unsigned LdrOpcode;
switch (Size) {
case 1: LdrOpcode = AArch64::LDRBBroX; break;
case 2: LdrOpcode = AArch64::LDRHHroX; break;
case 4: LdrOpcode = AArch64::LDRSWroX; break;
default:
llvm_unreachable("Unknown jump table size");
}
EmitToStreamer(OutStreamer, MCInstBuilder(LdrOpcode)
.addReg(Size == 4 ? ScratchReg : ScratchRegW)
.addReg(TableReg)
.addReg(EntryReg)
.addImm(0)
.addImm(Size == 1 ? 0 : 1));
// Add to the already materialized base label address, multiplying by 4 if
// compressed.
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADDXrs)
.addReg(DestReg)
.addReg(DestReg)
.addReg(ScratchReg)
.addImm(Size == 4 ? 0 : 2));
}
void AArch64AsmPrinter::LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
const MachineInstr &MI) {
unsigned NumNOPBytes = StackMapOpers(&MI).getNumPatchBytes();
auto &Ctx = OutStreamer.getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer.emitLabel(MILabel);
SM.recordStackMap(*MILabel, MI);
assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
// Scan ahead to trim the shadow.
const MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::const_iterator MII(MI);
++MII;
while (NumNOPBytes > 0) {
if (MII == MBB.end() || MII->isCall() ||
MII->getOpcode() == AArch64::DBG_VALUE ||
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
MII->getOpcode() == TargetOpcode::STACKMAP)
break;
++MII;
NumNOPBytes -= 4;
}
// Emit nops.
for (unsigned i = 0; i < NumNOPBytes; i += 4)
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>
void AArch64AsmPrinter::LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
const MachineInstr &MI) {
auto &Ctx = OutStreamer.getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer.emitLabel(MILabel);
SM.recordPatchPoint(*MILabel, MI);
PatchPointOpers Opers(&MI);
int64_t CallTarget = Opers.getCallTarget().getImm();
unsigned EncodedBytes = 0;
if (CallTarget) {
assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
"High 16 bits of call target should be zero.");
Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
EncodedBytes = 16;
// Materialize the jump address:
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVZXi)
.addReg(ScratchReg)
.addImm((CallTarget >> 32) & 0xFFFF)
.addImm(32));
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm((CallTarget >> 16) & 0xFFFF)
.addImm(16));
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(CallTarget & 0xFFFF)
.addImm(0));
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::BLR).addReg(ScratchReg));
}
// Emit padding.
unsigned NumBytes = Opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
assert((NumBytes - EncodedBytes) % 4 == 0 &&
"Invalid number of NOP bytes requested!");
for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
}
void AArch64AsmPrinter::LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM,
const MachineInstr &MI) {
StatepointOpers SOpers(&MI);
if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
assert(PatchBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
for (unsigned i = 0; i < PatchBytes; i += 4)
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
} else {
// Lower call target and choose correct opcode
const MachineOperand &CallTarget = SOpers.getCallTarget();
MCOperand CallTargetMCOp;
unsigned CallOpcode;
switch (CallTarget.getType()) {
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
MCInstLowering.lowerOperand(CallTarget, CallTargetMCOp);
CallOpcode = AArch64::BL;
break;
case MachineOperand::MO_Immediate:
CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
CallOpcode = AArch64::BL;
break;
case MachineOperand::MO_Register:
CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
CallOpcode = AArch64::BLR;
break;
default:
llvm_unreachable("Unsupported operand type in statepoint call target");
break;
}
EmitToStreamer(OutStreamer,
MCInstBuilder(CallOpcode).addOperand(CallTargetMCOp));
}
auto &Ctx = OutStreamer.getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer.emitLabel(MILabel);
SM.recordStatepoint(*MILabel, MI);
}
void AArch64AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI) {
// FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
// <opcode>, <operands>
Register DefRegister = FaultingMI.getOperand(0).getReg();
FaultMaps::FaultKind FK =
static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
unsigned Opcode = FaultingMI.getOperand(3).getImm();
unsigned OperandsBeginIdx = 4;
auto &Ctx = OutStreamer->getContext();
MCSymbol *FaultingLabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(FaultingLabel);
assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
MCInst MI;
MI.setOpcode(Opcode);
if (DefRegister != (Register)0)
MI.addOperand(MCOperand::createReg(DefRegister));
for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
E = FaultingMI.operands_end();
I != E; ++I) {
MCOperand Dest;
lowerOperand(*I, Dest);
MI.addOperand(Dest);
}
OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
OutStreamer->emitInstruction(MI, getSubtargetInfo());
}
void AArch64AsmPrinter::emitFMov0(const MachineInstr &MI) {
Register DestReg = MI.getOperand(0).getReg();
if (STI->hasZeroCycleZeroingFP() && !STI->hasZeroCycleZeroingFPWorkaround()) {
// Convert H/S register to corresponding D register
if (AArch64::H0 <= DestReg && DestReg <= AArch64::H31)
DestReg = AArch64::D0 + (DestReg - AArch64::H0);
else if (AArch64::S0 <= DestReg && DestReg <= AArch64::S31)
DestReg = AArch64::D0 + (DestReg - AArch64::S0);
else
assert(AArch64::D0 <= DestReg && DestReg <= AArch64::D31);
MCInst MOVI;
MOVI.setOpcode(AArch64::MOVID);
MOVI.addOperand(MCOperand::createReg(DestReg));
MOVI.addOperand(MCOperand::createImm(0));
EmitToStreamer(*OutStreamer, MOVI);
} else {
MCInst FMov;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unexpected opcode");
case AArch64::FMOVH0:
FMov.setOpcode(AArch64::FMOVWHr);
FMov.addOperand(MCOperand::createReg(DestReg));
FMov.addOperand(MCOperand::createReg(AArch64::WZR));
break;
case AArch64::FMOVS0:
FMov.setOpcode(AArch64::FMOVWSr);
FMov.addOperand(MCOperand::createReg(DestReg));
FMov.addOperand(MCOperand::createReg(AArch64::WZR));
break;
case AArch64::FMOVD0:
FMov.setOpcode(AArch64::FMOVXDr);
FMov.addOperand(MCOperand::createReg(DestReg));
FMov.addOperand(MCOperand::createReg(AArch64::XZR));
break;
}
EmitToStreamer(*OutStreamer, FMov);
}
}
// Simple pseudo-instructions have their lowering (with expansion to real
// instructions) auto-generated.
#include "AArch64GenMCPseudoLowering.inc"
void AArch64AsmPrinter::emitInstruction(const MachineInstr *MI) {
// Do any auto-generated pseudo lowerings.
if (emitPseudoExpansionLowering(*OutStreamer, MI))
return;
if (AArch64FI->getLOHRelated().count(MI)) {
// Generate a label for LOH related instruction
MCSymbol *LOHLabel = createTempSymbol("loh");
// Associate the instruction with the label
LOHInstToLabel[MI] = LOHLabel;
OutStreamer->emitLabel(LOHLabel);
}
AArch64TargetStreamer *TS =
static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer());
// Do any manual lowerings.
switch (MI->getOpcode()) {
default:
break;
case AArch64::HINT: {
// CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
// -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
// non-empty. If MI is the initial BTI, place the
// __patchable_function_entries label after BTI.
if (CurrentPatchableFunctionEntrySym &&
CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
MI == &MF->front().front()) {
int64_t Imm = MI->getOperand(0).getImm();
if ((Imm & 32) && (Imm & 6)) {
MCInst Inst;
MCInstLowering.Lower(MI, Inst);
EmitToStreamer(*OutStreamer, Inst);
CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
return;
}
}
break;
}
case AArch64::MOVMCSym: {
Register DestReg = MI->getOperand(0).getReg();
const MachineOperand &MO_Sym = MI->getOperand(1);
MachineOperand Hi_MOSym(MO_Sym), Lo_MOSym(MO_Sym);
MCOperand Hi_MCSym, Lo_MCSym;
Hi_MOSym.setTargetFlags(AArch64II::MO_G1 | AArch64II::MO_S);
Lo_MOSym.setTargetFlags(AArch64II::MO_G0 | AArch64II::MO_NC);
MCInstLowering.lowerOperand(Hi_MOSym, Hi_MCSym);
MCInstLowering.lowerOperand(Lo_MOSym, Lo_MCSym);
MCInst MovZ;
MovZ.setOpcode(AArch64::MOVZXi);
MovZ.addOperand(MCOperand::createReg(DestReg));
MovZ.addOperand(Hi_MCSym);
MovZ.addOperand(MCOperand::createImm(16));
EmitToStreamer(*OutStreamer, MovZ);
MCInst MovK;
MovK.setOpcode(AArch64::MOVKXi);
MovK.addOperand(MCOperand::createReg(DestReg));
MovK.addOperand(MCOperand::createReg(DestReg));
MovK.addOperand(Lo_MCSym);
MovK.addOperand(MCOperand::createImm(0));
EmitToStreamer(*OutStreamer, MovK);
return;
}
case AArch64::MOVIv2d_ns:
// If the target has <rdar://problem/16473581>, lower this
// instruction to movi.16b instead.
if (STI->hasZeroCycleZeroingFPWorkaround() &&
MI->getOperand(1).getImm() == 0) {
MCInst TmpInst;
TmpInst.setOpcode(AArch64::MOVIv16b_ns);
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::createImm(MI->getOperand(1).getImm()));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
break;
case AArch64::DBG_VALUE:
case AArch64::DBG_VALUE_LIST: {
if (isVerbose() && OutStreamer->hasRawTextSupport()) {
SmallString<128> TmpStr;
raw_svector_ostream OS(TmpStr);
PrintDebugValueComment(MI, OS);
OutStreamer->emitRawText(StringRef(OS.str()));
}
return;
case AArch64::EMITBKEY: {
ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
ExceptionHandlingType != ExceptionHandling::ARM)
return;
if (getFunctionCFISectionType(*MF) == CFISection::None)
return;
OutStreamer->emitCFIBKeyFrame();
return;
}
}
// Tail calls use pseudo instructions so they have the proper code-gen
// attributes (isCall, isReturn, etc.). We lower them to the real
// instruction here.
case AArch64::TCRETURNri:
case AArch64::TCRETURNriBTI:
case AArch64::TCRETURNriALL: {
MCInst TmpInst;
TmpInst.setOpcode(AArch64::BR);
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case AArch64::TCRETURNdi: {
MCOperand Dest;
MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
MCInst TmpInst;
TmpInst.setOpcode(AArch64::B);
TmpInst.addOperand(Dest);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case AArch64::SpeculationBarrierISBDSBEndBB: {
// Print DSB SYS + ISB
MCInst TmpInstDSB;
TmpInstDSB.setOpcode(AArch64::DSB);
TmpInstDSB.addOperand(MCOperand::createImm(0xf));
EmitToStreamer(*OutStreamer, TmpInstDSB);
MCInst TmpInstISB;
TmpInstISB.setOpcode(AArch64::ISB);
TmpInstISB.addOperand(MCOperand::createImm(0xf));
EmitToStreamer(*OutStreamer, TmpInstISB);
return;
}
case AArch64::SpeculationBarrierSBEndBB: {
// Print SB
MCInst TmpInstSB;
TmpInstSB.setOpcode(AArch64::SB);
EmitToStreamer(*OutStreamer, TmpInstSB);
return;
}
case AArch64::TLSDESC_CALLSEQ: {
/// lower this to:
/// adrp x0, :tlsdesc:var
/// ldr x1, [x0, #:tlsdesc_lo12:var]
/// add x0, x0, #:tlsdesc_lo12:var
/// .tlsdesccall var
/// blr x1
/// (TPIDR_EL0 offset now in x0)
const MachineOperand &MO_Sym = MI->getOperand(0);
MachineOperand MO_TLSDESC_LO12(MO_Sym), MO_TLSDESC(MO_Sym);
MCOperand Sym, SymTLSDescLo12, SymTLSDesc;
MO_TLSDESC_LO12.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
MO_TLSDESC.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGE);
MCInstLowering.lowerOperand(MO_Sym, Sym);
MCInstLowering.lowerOperand(MO_TLSDESC_LO12, SymTLSDescLo12);
MCInstLowering.lowerOperand(MO_TLSDESC, SymTLSDesc);
MCInst Adrp;
Adrp.setOpcode(AArch64::ADRP);
Adrp.addOperand(MCOperand::createReg(AArch64::X0));
Adrp.addOperand(SymTLSDesc);
EmitToStreamer(*OutStreamer, Adrp);
MCInst Ldr;
if (STI->isTargetILP32()) {
Ldr.setOpcode(AArch64::LDRWui);
Ldr.addOperand(MCOperand::createReg(AArch64::W1));
} else {
Ldr.setOpcode(AArch64::LDRXui);
Ldr.addOperand(MCOperand::createReg(AArch64::X1));
}
Ldr.addOperand(MCOperand::createReg(AArch64::X0));
Ldr.addOperand(SymTLSDescLo12);
Ldr.addOperand(MCOperand::createImm(0));
EmitToStreamer(*OutStreamer, Ldr);
MCInst Add;
if (STI->isTargetILP32()) {
Add.setOpcode(AArch64::ADDWri);
Add.addOperand(MCOperand::createReg(AArch64::W0));
Add.addOperand(MCOperand::createReg(AArch64::W0));
} else {
Add.setOpcode(AArch64::ADDXri);
Add.addOperand(MCOperand::createReg(AArch64::X0));
Add.addOperand(MCOperand::createReg(AArch64::X0));
}
Add.addOperand(SymTLSDescLo12);
Add.addOperand(MCOperand::createImm(AArch64_AM::getShiftValue(0)));
EmitToStreamer(*OutStreamer, Add);
// Emit a relocation-annotation. This expands to no code, but requests
// the following instruction gets an R_AARCH64_TLSDESC_CALL.
MCInst TLSDescCall;
TLSDescCall.setOpcode(AArch64::TLSDESCCALL);
TLSDescCall.addOperand(Sym);
EmitToStreamer(*OutStreamer, TLSDescCall);
MCInst Blr;
Blr.setOpcode(AArch64::BLR);
Blr.addOperand(MCOperand::createReg(AArch64::X1));
EmitToStreamer(*OutStreamer, Blr);
return;
}
case AArch64::JumpTableDest32:
case AArch64::JumpTableDest16:
case AArch64::JumpTableDest8:
LowerJumpTableDest(*OutStreamer, *MI);
return;
case AArch64::FMOVH0:
case AArch64::FMOVS0:
case AArch64::FMOVD0:
emitFMov0(*MI);
return;
case TargetOpcode::STACKMAP:
return LowerSTACKMAP(*OutStreamer, SM, *MI);
case TargetOpcode::PATCHPOINT:
return LowerPATCHPOINT(*OutStreamer, SM, *MI);
case TargetOpcode::STATEPOINT:
return LowerSTATEPOINT(*OutStreamer, SM, *MI);
case TargetOpcode::FAULTING_OP:
return LowerFAULTING_OP(*MI);
case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
LowerPATCHABLE_FUNCTION_ENTER(*MI);
return;
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
LowerPATCHABLE_FUNCTION_EXIT(*MI);
return;
case TargetOpcode::PATCHABLE_TAIL_CALL:
LowerPATCHABLE_TAIL_CALL(*MI);
return;
case AArch64::HWASAN_CHECK_MEMACCESS:
case AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES:
LowerHWASAN_CHECK_MEMACCESS(*MI);
return;
case AArch64::SEH_StackAlloc:
TS->emitARM64WinCFIAllocStack(MI->getOperand(0).getImm());
return;
case AArch64::SEH_SaveFPLR:
TS->emitARM64WinCFISaveFPLR(MI->getOperand(0).getImm());
return;
case AArch64::SEH_SaveFPLR_X:
assert(MI->getOperand(0).getImm() < 0 &&
"Pre increment SEH opcode must have a negative offset");
TS->emitARM64WinCFISaveFPLRX(-MI->getOperand(0).getImm());
return;
case AArch64::SEH_SaveReg:
TS->emitARM64WinCFISaveReg(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
return;
case AArch64::SEH_SaveReg_X:
assert(MI->getOperand(1).getImm() < 0 &&
"Pre increment SEH opcode must have a negative offset");
TS->emitARM64WinCFISaveRegX(MI->getOperand(0).getImm(),
-MI->getOperand(1).getImm());
return;
case AArch64::SEH_SaveRegP:
if (MI->getOperand(1).getImm() == 30 && MI->getOperand(0).getImm() >= 19 &&
MI->getOperand(0).getImm() <= 28) {
assert((MI->getOperand(0).getImm() - 19) % 2 == 0 &&
"Register paired with LR must be odd");
TS->emitARM64WinCFISaveLRPair(MI->getOperand(0).getImm(),
MI->getOperand(2).getImm());
return;
}
assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
"Non-consecutive registers not allowed for save_regp");
TS->emitARM64WinCFISaveRegP(MI->getOperand(0).getImm(),
MI->getOperand(2).getImm());
return;
case AArch64::SEH_SaveRegP_X:
assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
"Non-consecutive registers not allowed for save_regp_x");
assert(MI->getOperand(2).getImm() < 0 &&
"Pre increment SEH opcode must have a negative offset");
TS->emitARM64WinCFISaveRegPX(MI->getOperand(0).getImm(),
-MI->getOperand(2).getImm());
return;
case AArch64::SEH_SaveFReg:
TS->emitARM64WinCFISaveFReg(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
return;
case AArch64::SEH_SaveFReg_X:
assert(MI->getOperand(1).getImm() < 0 &&
"Pre increment SEH opcode must have a negative offset");
TS->emitARM64WinCFISaveFRegX(MI->getOperand(0).getImm(),
-MI->getOperand(1).getImm());
return;
case AArch64::SEH_SaveFRegP:
assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
"Non-consecutive registers not allowed for save_regp");
TS->emitARM64WinCFISaveFRegP(MI->getOperand(0).getImm(),
MI->getOperand(2).getImm());
return;
case AArch64::SEH_SaveFRegP_X:
assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
"Non-consecutive registers not allowed for save_regp_x");
assert(MI->getOperand(2).getImm() < 0 &&
"Pre increment SEH opcode must have a negative offset");
TS->emitARM64WinCFISaveFRegPX(MI->getOperand(0).getImm(),
-MI->getOperand(2).getImm());
return;
case AArch64::SEH_SetFP:
TS->emitARM64WinCFISetFP();
return;
case AArch64::SEH_AddFP:
TS->emitARM64WinCFIAddFP(MI->getOperand(0).getImm());
return;
case AArch64::SEH_Nop:
TS->emitARM64WinCFINop();
return;
case AArch64::SEH_PrologEnd:
TS->emitARM64WinCFIPrologEnd();
return;
case AArch64::SEH_EpilogStart:
TS->emitARM64WinCFIEpilogStart();
return;
case AArch64::SEH_EpilogEnd:
TS->emitARM64WinCFIEpilogEnd();
return;
}
// Finally, do the automated lowerings for everything else.
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
EmitToStreamer(*OutStreamer, TmpInst);
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64AsmPrinter() {
RegisterAsmPrinter<AArch64AsmPrinter> X(getTheAArch64leTarget());
RegisterAsmPrinter<AArch64AsmPrinter> Y(getTheAArch64beTarget());
RegisterAsmPrinter<AArch64AsmPrinter> Z(getTheARM64Target());
RegisterAsmPrinter<AArch64AsmPrinter> W(getTheARM64_32Target());
RegisterAsmPrinter<AArch64AsmPrinter> V(getTheAArch64_32Target());
}