blob: 6f6f543f2f4767547f4c64082b7647039a4a8f30 [file] [log] [blame]
//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This program is a utility that works like binutils "objdump", that is, it
// dumps out a plethora of information about an object file depending on the
// flags.
//
// The flags and output of this program should be near identical to those of
// binutils objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "COFFDump.h"
#include "ELFDump.h"
#include "MachODump.h"
#include "ObjdumpOptID.h"
#include "SourcePrinter.h"
#include "WasmDump.h"
#include "XCOFFDump.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/COFFImportFile.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/FaultMapParser.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/Wasm.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cctype>
#include <cstring>
#include <system_error>
#include <unordered_map>
#include <utility>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::objdump;
using namespace llvm::opt;
namespace {
class CommonOptTable : public opt::OptTable {
public:
CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
const char *Description)
: OptTable(OptionInfos), Usage(Usage), Description(Description) {
setGroupedShortOptions(true);
}
void printHelp(StringRef Argv0, bool ShowHidden = false) const {
Argv0 = sys::path::filename(Argv0);
opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
ShowHidden, ShowHidden);
// TODO Replace this with OptTable API once it adds extrahelp support.
outs() << "\nPass @FILE as argument to read options from FILE.\n";
}
private:
const char *Usage;
const char *Description;
};
// ObjdumpOptID is in ObjdumpOptID.h
#define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
#include "ObjdumpOpts.inc"
#undef PREFIX
static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
#define OBJDUMP_nullptr nullptr
#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES) \
{OBJDUMP_##PREFIX, NAME, HELPTEXT, \
METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \
PARAM, FLAGS, OBJDUMP_##GROUP, \
OBJDUMP_##ALIAS, ALIASARGS, VALUES},
#include "ObjdumpOpts.inc"
#undef OPTION
#undef OBJDUMP_nullptr
};
class ObjdumpOptTable : public CommonOptTable {
public:
ObjdumpOptTable()
: CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
"llvm object file dumper") {}
};
enum OtoolOptID {
OTOOL_INVALID = 0, // This is not an option ID.
#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES) \
OTOOL_##ID,
#include "OtoolOpts.inc"
#undef OPTION
};
#define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
#include "OtoolOpts.inc"
#undef PREFIX
static constexpr opt::OptTable::Info OtoolInfoTable[] = {
#define OTOOL_nullptr nullptr
#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES) \
{OTOOL_##PREFIX, NAME, HELPTEXT, \
METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \
PARAM, FLAGS, OTOOL_##GROUP, \
OTOOL_##ALIAS, ALIASARGS, VALUES},
#include "OtoolOpts.inc"
#undef OPTION
#undef OTOOL_nullptr
};
class OtoolOptTable : public CommonOptTable {
public:
OtoolOptTable()
: CommonOptTable(OtoolInfoTable, " [option...] [file...]",
"Mach-O object file displaying tool") {}
};
} // namespace
#define DEBUG_TYPE "objdump"
static uint64_t AdjustVMA;
static bool AllHeaders;
static std::string ArchName;
bool objdump::ArchiveHeaders;
bool objdump::Demangle;
bool objdump::Disassemble;
bool objdump::DisassembleAll;
bool objdump::SymbolDescription;
static std::vector<std::string> DisassembleSymbols;
static bool DisassembleZeroes;
static std::vector<std::string> DisassemblerOptions;
DIDumpType objdump::DwarfDumpType;
static bool DynamicRelocations;
static bool FaultMapSection;
static bool FileHeaders;
bool objdump::SectionContents;
static std::vector<std::string> InputFilenames;
bool objdump::PrintLines;
static bool MachOOpt;
std::string objdump::MCPU;
std::vector<std::string> objdump::MAttrs;
bool objdump::ShowRawInsn;
bool objdump::LeadingAddr;
static bool RawClangAST;
bool objdump::Relocations;
bool objdump::PrintImmHex;
bool objdump::PrivateHeaders;
std::vector<std::string> objdump::FilterSections;
bool objdump::SectionHeaders;
static bool ShowLMA;
bool objdump::PrintSource;
static uint64_t StartAddress;
static bool HasStartAddressFlag;
static uint64_t StopAddress = UINT64_MAX;
static bool HasStopAddressFlag;
bool objdump::SymbolTable;
static bool SymbolizeOperands;
static bool DynamicSymbolTable;
std::string objdump::TripleName;
bool objdump::UnwindInfo;
static bool Wide;
std::string objdump::Prefix;
uint32_t objdump::PrefixStrip;
DebugVarsFormat objdump::DbgVariables = DVDisabled;
int objdump::DbgIndent = 52;
static StringSet<> DisasmSymbolSet;
StringSet<> objdump::FoundSectionSet;
static StringRef ToolName;
namespace {
struct FilterResult {
// True if the section should not be skipped.
bool Keep;
// True if the index counter should be incremented, even if the section should
// be skipped. For example, sections may be skipped if they are not included
// in the --section flag, but we still want those to count toward the section
// count.
bool IncrementIndex;
};
} // namespace
static FilterResult checkSectionFilter(object::SectionRef S) {
if (FilterSections.empty())
return {/*Keep=*/true, /*IncrementIndex=*/true};
Expected<StringRef> SecNameOrErr = S.getName();
if (!SecNameOrErr) {
consumeError(SecNameOrErr.takeError());
return {/*Keep=*/false, /*IncrementIndex=*/false};
}
StringRef SecName = *SecNameOrErr;
// StringSet does not allow empty key so avoid adding sections with
// no name (such as the section with index 0) here.
if (!SecName.empty())
FoundSectionSet.insert(SecName);
// Only show the section if it's in the FilterSections list, but always
// increment so the indexing is stable.
return {/*Keep=*/is_contained(FilterSections, SecName),
/*IncrementIndex=*/true};
}
SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
uint64_t *Idx) {
// Start at UINT64_MAX so that the first index returned after an increment is
// zero (after the unsigned wrap).
if (Idx)
*Idx = UINT64_MAX;
return SectionFilter(
[Idx](object::SectionRef S) {
FilterResult Result = checkSectionFilter(S);
if (Idx != nullptr && Result.IncrementIndex)
*Idx += 1;
return Result.Keep;
},
O);
}
std::string objdump::getFileNameForError(const object::Archive::Child &C,
unsigned Index) {
Expected<StringRef> NameOrErr = C.getName();
if (NameOrErr)
return std::string(NameOrErr.get());
// If we have an error getting the name then we print the index of the archive
// member. Since we are already in an error state, we just ignore this error.
consumeError(NameOrErr.takeError());
return "<file index: " + std::to_string(Index) + ">";
}
void objdump::reportWarning(const Twine &Message, StringRef File) {
// Output order between errs() and outs() matters especially for archive
// files where the output is per member object.
outs().flush();
WithColor::warning(errs(), ToolName)
<< "'" << File << "': " << Message << "\n";
}
[[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
outs().flush();
WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
exit(1);
}
[[noreturn]] void objdump::reportError(Error E, StringRef FileName,
StringRef ArchiveName,
StringRef ArchitectureName) {
assert(E);
outs().flush();
WithColor::error(errs(), ToolName);
if (ArchiveName != "")
errs() << ArchiveName << "(" << FileName << ")";
else
errs() << "'" << FileName << "'";
if (!ArchitectureName.empty())
errs() << " (for architecture " << ArchitectureName << ")";
errs() << ": ";
logAllUnhandledErrors(std::move(E), errs());
exit(1);
}
static void reportCmdLineWarning(const Twine &Message) {
WithColor::warning(errs(), ToolName) << Message << "\n";
}
[[noreturn]] static void reportCmdLineError(const Twine &Message) {
WithColor::error(errs(), ToolName) << Message << "\n";
exit(1);
}
static void warnOnNoMatchForSections() {
SetVector<StringRef> MissingSections;
for (StringRef S : FilterSections) {
if (FoundSectionSet.count(S))
return;
// User may specify a unnamed section. Don't warn for it.
if (!S.empty())
MissingSections.insert(S);
}
// Warn only if no section in FilterSections is matched.
for (StringRef S : MissingSections)
reportCmdLineWarning("section '" + S +
"' mentioned in a -j/--section option, but not "
"found in any input file");
}
static const Target *getTarget(const ObjectFile *Obj) {
// Figure out the target triple.
Triple TheTriple("unknown-unknown-unknown");
if (TripleName.empty()) {
TheTriple = Obj->makeTriple();
} else {
TheTriple.setTriple(Triple::normalize(TripleName));
auto Arch = Obj->getArch();
if (Arch == Triple::arm || Arch == Triple::armeb)
Obj->setARMSubArch(TheTriple);
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
Error);
if (!TheTarget)
reportError(Obj->getFileName(), "can't find target: " + Error);
// Update the triple name and return the found target.
TripleName = TheTriple.getTriple();
return TheTarget;
}
bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
return A.getOffset() < B.getOffset();
}
static Error getRelocationValueString(const RelocationRef &Rel,
SmallVectorImpl<char> &Result) {
const ObjectFile *Obj = Rel.getObject();
if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
return getELFRelocationValueString(ELF, Rel, Result);
if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
return getCOFFRelocationValueString(COFF, Rel, Result);
if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
return getWasmRelocationValueString(Wasm, Rel, Result);
if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
return getMachORelocationValueString(MachO, Rel, Result);
if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
return getXCOFFRelocationValueString(XCOFF, Rel, Result);
llvm_unreachable("unknown object file format");
}
/// Indicates whether this relocation should hidden when listing
/// relocations, usually because it is the trailing part of a multipart
/// relocation that will be printed as part of the leading relocation.
static bool getHidden(RelocationRef RelRef) {
auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
if (!MachO)
return false;
unsigned Arch = MachO->getArch();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
uint64_t Type = MachO->getRelocationType(Rel);
// On arches that use the generic relocations, GENERIC_RELOC_PAIR
// is always hidden.
if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
return Type == MachO::GENERIC_RELOC_PAIR;
if (Arch == Triple::x86_64) {
// On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
// an X86_64_RELOC_SUBTRACTOR.
if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
DataRefImpl RelPrev = Rel;
RelPrev.d.a--;
uint64_t PrevType = MachO->getRelocationType(RelPrev);
if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
return true;
}
}
return false;
}
namespace {
/// Get the column at which we want to start printing the instruction
/// disassembly, taking into account anything which appears to the left of it.
unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
}
static bool isAArch64Elf(const ObjectFile *Obj) {
const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
}
static bool isArmElf(const ObjectFile *Obj) {
const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
return Elf && Elf->getEMachine() == ELF::EM_ARM;
}
static bool hasMappingSymbols(const ObjectFile *Obj) {
return isArmElf(Obj) || isAArch64Elf(Obj);
}
static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
const RelocationRef &Rel, uint64_t Address,
bool Is64Bits) {
StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": ";
SmallString<16> Name;
SmallString<32> Val;
Rel.getTypeName(Name);
if (Error E = getRelocationValueString(Rel, Val))
reportError(std::move(E), FileName);
OS << format(Fmt.data(), Address) << Name << "\t" << Val;
}
class PrettyPrinter {
public:
virtual ~PrettyPrinter() = default;
virtual void
printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
LVP.printBetweenInsts(OS, false);
size_t Start = OS.tell();
if (LeadingAddr)
OS << format("%8" PRIx64 ":", Address.Address);
if (ShowRawInsn) {
OS << ' ';
dumpBytes(Bytes, OS);
}
// The output of printInst starts with a tab. Print some spaces so that
// the tab has 1 column and advances to the target tab stop.
unsigned TabStop = getInstStartColumn(STI);
unsigned Column = OS.tell() - Start;
OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
if (MI) {
// See MCInstPrinter::printInst. On targets where a PC relative immediate
// is relative to the next instruction and the length of a MCInst is
// difficult to measure (x86), this is the address of the next
// instruction.
uint64_t Addr =
Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
IP.printInst(MI, Addr, "", STI, OS);
} else
OS << "\t<unknown>";
}
};
PrettyPrinter PrettyPrinterInst;
class HexagonPrettyPrinter : public PrettyPrinter {
public:
void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
formatted_raw_ostream &OS) {
uint32_t opcode =
(Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
if (LeadingAddr)
OS << format("%8" PRIx64 ":", Address);
if (ShowRawInsn) {
OS << "\t";
dumpBytes(Bytes.slice(0, 4), OS);
OS << format("\t%08" PRIx32, opcode);
}
}
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
if (!MI) {
printLead(Bytes, Address.Address, OS);
OS << " <unknown>";
return;
}
std::string Buffer;
{
raw_string_ostream TempStream(Buffer);
IP.printInst(MI, Address.Address, "", STI, TempStream);
}
StringRef Contents(Buffer);
// Split off bundle attributes
auto PacketBundle = Contents.rsplit('\n');
// Split off first instruction from the rest
auto HeadTail = PacketBundle.first.split('\n');
auto Preamble = " { ";
auto Separator = "";
// Hexagon's packets require relocations to be inline rather than
// clustered at the end of the packet.
std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
auto PrintReloc = [&]() -> void {
while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
if (RelCur->getOffset() == Address.Address) {
printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
return;
}
++RelCur;
}
};
while (!HeadTail.first.empty()) {
OS << Separator;
Separator = "\n";
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
printLead(Bytes, Address.Address, OS);
OS << Preamble;
Preamble = " ";
StringRef Inst;
auto Duplex = HeadTail.first.split('\v');
if (!Duplex.second.empty()) {
OS << Duplex.first;
OS << "; ";
Inst = Duplex.second;
}
else
Inst = HeadTail.first;
OS << Inst;
HeadTail = HeadTail.second.split('\n');
if (HeadTail.first.empty())
OS << " } " << PacketBundle.second;
PrintReloc();
Bytes = Bytes.slice(4);
Address.Address += 4;
}
}
};
HexagonPrettyPrinter HexagonPrettyPrinterInst;
class AMDGCNPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
if (MI) {
SmallString<40> InstStr;
raw_svector_ostream IS(InstStr);
IP.printInst(MI, Address.Address, "", STI, IS);
OS << left_justify(IS.str(), 60);
} else {
// an unrecognized encoding - this is probably data so represent it
// using the .long directive, or .byte directive if fewer than 4 bytes
// remaining
if (Bytes.size() >= 4) {
OS << format("\t.long 0x%08" PRIx32 " ",
support::endian::read32<support::little>(Bytes.data()));
OS.indent(42);
} else {
OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
for (unsigned int i = 1; i < Bytes.size(); i++)
OS << format(", 0x%02" PRIx8, Bytes[i]);
OS.indent(55 - (6 * Bytes.size()));
}
}
OS << format("// %012" PRIX64 ":", Address.Address);
if (Bytes.size() >= 4) {
// D should be casted to uint32_t here as it is passed by format to
// snprintf as vararg.
for (uint32_t D : makeArrayRef(
reinterpret_cast<const support::little32_t *>(Bytes.data()),
Bytes.size() / 4))
OS << format(" %08" PRIX32, D);
} else {
for (unsigned char B : Bytes)
OS << format(" %02" PRIX8, B);
}
if (!Annot.empty())
OS << " // " << Annot;
}
};
AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
class BPFPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
if (LeadingAddr)
OS << format("%8" PRId64 ":", Address.Address / 8);
if (ShowRawInsn) {
OS << "\t";
dumpBytes(Bytes, OS);
}
if (MI)
IP.printInst(MI, Address.Address, "", STI, OS);
else
OS << "\t<unknown>";
}
};
BPFPrettyPrinter BPFPrettyPrinterInst;
PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
switch(Triple.getArch()) {
default:
return PrettyPrinterInst;
case Triple::hexagon:
return HexagonPrettyPrinterInst;
case Triple::amdgcn:
return AMDGCNPrettyPrinterInst;
case Triple::bpfel:
case Triple::bpfeb:
return BPFPrettyPrinterInst;
}
}
}
static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
assert(Obj->isELF());
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj->getFileName())
->getType();
if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj->getFileName())
->getType();
if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj->getFileName())
->getType();
if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj->getFileName())
->getType();
llvm_unreachable("Unsupported binary format");
}
template <class ELFT> static void
addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
for (auto Symbol : Obj->getDynamicSymbolIterators()) {
uint8_t SymbolType = Symbol.getELFType();
if (SymbolType == ELF::STT_SECTION)
continue;
uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
// ELFSymbolRef::getAddress() returns size instead of value for common
// symbols which is not desirable for disassembly output. Overriding.
if (SymbolType == ELF::STT_COMMON)
Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
Obj->getFileName())
->st_value;
StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
if (Name.empty())
continue;
section_iterator SecI =
unwrapOrError(Symbol.getSection(), Obj->getFileName());
if (SecI == Obj->section_end())
continue;
AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
}
}
static void
addDynamicElfSymbols(const ObjectFile *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
assert(Obj->isELF());
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
addDynamicElfSymbols(Elf32LEObj, AllSymbols);
else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
addDynamicElfSymbols(Elf64LEObj, AllSymbols);
else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
addDynamicElfSymbols(Elf32BEObj, AllSymbols);
else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
addDynamicElfSymbols(Elf64BEObj, AllSymbols);
else
llvm_unreachable("Unsupported binary format");
}
static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) {
for (auto SecI : Obj->sections()) {
const WasmSection &Section = Obj->getWasmSection(SecI);
if (Section.Type == wasm::WASM_SEC_CODE)
return SecI;
}
return None;
}
static void
addMissingWasmCodeSymbols(const WasmObjectFile *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
Optional<SectionRef> Section = getWasmCodeSection(Obj);
if (!Section)
return;
SectionSymbolsTy &Symbols = AllSymbols[*Section];
std::set<uint64_t> SymbolAddresses;
for (const auto &Sym : Symbols)
SymbolAddresses.insert(Sym.Addr);
for (const wasm::WasmFunction &Function : Obj->functions()) {
uint64_t Address = Function.CodeSectionOffset;
// Only add fallback symbols for functions not already present in the symbol
// table.
if (SymbolAddresses.count(Address))
continue;
// This function has no symbol, so it should have no SymbolName.
assert(Function.SymbolName.empty());
// We use DebugName for the name, though it may be empty if there is no
// "name" custom section, or that section is missing a name for this
// function.
StringRef Name = Function.DebugName;
Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
}
}
static void addPltEntries(const ObjectFile *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
StringSaver &Saver) {
Optional<SectionRef> Plt = None;
for (const SectionRef &Section : Obj->sections()) {
Expected<StringRef> SecNameOrErr = Section.getName();
if (!SecNameOrErr) {
consumeError(SecNameOrErr.takeError());
continue;
}
if (*SecNameOrErr == ".plt")
Plt = Section;
}
if (!Plt)
return;
if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
for (auto PltEntry : ElfObj->getPltAddresses()) {
if (PltEntry.first) {
SymbolRef Symbol(*PltEntry.first, ElfObj);
uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
if (Expected<StringRef> NameOrErr = Symbol.getName()) {
if (!NameOrErr->empty())
AllSymbols[*Plt].emplace_back(
PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
SymbolType);
continue;
} else {
// The warning has been reported in disassembleObject().
consumeError(NameOrErr.takeError());
}
}
reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
" references an invalid symbol",
Obj->getFileName());
}
}
}
// Normally the disassembly output will skip blocks of zeroes. This function
// returns the number of zero bytes that can be skipped when dumping the
// disassembly of the instructions in Buf.
static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
// Find the number of leading zeroes.
size_t N = 0;
while (N < Buf.size() && !Buf[N])
++N;
// We may want to skip blocks of zero bytes, but unless we see
// at least 8 of them in a row.
if (N < 8)
return 0;
// We skip zeroes in multiples of 4 because do not want to truncate an
// instruction if it starts with a zero byte.
return N & ~0x3;
}
// Returns a map from sections to their relocations.
static std::map<SectionRef, std::vector<RelocationRef>>
getRelocsMap(object::ObjectFile const &Obj) {
std::map<SectionRef, std::vector<RelocationRef>> Ret;
uint64_t I = (uint64_t)-1;
for (SectionRef Sec : Obj.sections()) {
++I;
Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
if (!RelocatedOrErr)
reportError(Obj.getFileName(),
"section (" + Twine(I) +
"): failed to get a relocated section: " +
toString(RelocatedOrErr.takeError()));
section_iterator Relocated = *RelocatedOrErr;
if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
continue;
std::vector<RelocationRef> &V = Ret[*Relocated];
append_range(V, Sec.relocations());
// Sort relocations by address.
llvm::stable_sort(V, isRelocAddressLess);
}
return Ret;
}
// Used for --adjust-vma to check if address should be adjusted by the
// specified value for a given section.
// For ELF we do not adjust non-allocatable sections like debug ones,
// because they are not loadable.
// TODO: implement for other file formats.
static bool shouldAdjustVA(const SectionRef &Section) {
const ObjectFile *Obj = Section.getObject();
if (Obj->isELF())
return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
return false;
}
typedef std::pair<uint64_t, char> MappingSymbolPair;
static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
uint64_t Address) {
auto It =
partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
return Val.first <= Address;
});
// Return zero for any address before the first mapping symbol; this means
// we should use the default disassembly mode, depending on the target.
if (It == MappingSymbols.begin())
return '\x00';
return (It - 1)->second;
}
static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
uint64_t End, const ObjectFile *Obj,
ArrayRef<uint8_t> Bytes,
ArrayRef<MappingSymbolPair> MappingSymbols,
raw_ostream &OS) {
support::endianness Endian =
Obj->isLittleEndian() ? support::little : support::big;
OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
if (Index + 4 <= End) {
dumpBytes(Bytes.slice(Index, 4), OS);
OS << "\t.word\t"
<< format_hex(support::endian::read32(Bytes.data() + Index, Endian),
10);
return 4;
}
if (Index + 2 <= End) {
dumpBytes(Bytes.slice(Index, 2), OS);
OS << "\t\t.short\t"
<< format_hex(support::endian::read16(Bytes.data() + Index, Endian),
6);
return 2;
}
dumpBytes(Bytes.slice(Index, 1), OS);
OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
return 1;
}
static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
ArrayRef<uint8_t> Bytes) {
// print out data up to 8 bytes at a time in hex and ascii
uint8_t AsciiData[9] = {'\0'};
uint8_t Byte;
int NumBytes = 0;
for (; Index < End; ++Index) {
if (NumBytes == 0)
outs() << format("%8" PRIx64 ":", SectionAddr + Index);
Byte = Bytes.slice(Index)[0];
outs() << format(" %02x", Byte);
AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
uint8_t IndentOffset = 0;
NumBytes++;
if (Index == End - 1 || NumBytes > 8) {
// Indent the space for less than 8 bytes data.
// 2 spaces for byte and one for space between bytes
IndentOffset = 3 * (8 - NumBytes);
for (int Excess = NumBytes; Excess < 8; Excess++)
AsciiData[Excess] = '\0';
NumBytes = 8;
}
if (NumBytes == 8) {
AsciiData[8] = '\0';
outs() << std::string(IndentOffset, ' ') << " ";
outs() << reinterpret_cast<char *>(AsciiData);
outs() << '\n';
NumBytes = 0;
}
}
}
SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
const SymbolRef &Symbol) {
const StringRef FileName = Obj->getFileName();
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
if (Obj->isXCOFF() && SymbolDescription) {
const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
Optional<XCOFF::StorageMappingClass> Smc =
getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
isLabel(XCOFFObj, Symbol));
} else
return SymbolInfoTy(Addr, Name,
Obj->isELF() ? getElfSymbolType(Obj, Symbol)
: (uint8_t)ELF::STT_NOTYPE);
}
static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
const uint64_t Addr, StringRef &Name,
uint8_t Type) {
if (Obj->isXCOFF() && SymbolDescription)
return SymbolInfoTy(Addr, Name, None, None, false);
else
return SymbolInfoTy(Addr, Name, Type);
}
static void
collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
MCDisassembler *DisAsm, MCInstPrinter *IP,
const MCSubtargetInfo *STI, uint64_t SectionAddr,
uint64_t Start, uint64_t End,
std::unordered_map<uint64_t, std::string> &Labels) {
// So far only supports X86.
if (!STI->getTargetTriple().isX86())
return;
Labels.clear();
unsigned LabelCount = 0;
Start += SectionAddr;
End += SectionAddr;
uint64_t Index = Start;
while (Index < End) {
// Disassemble a real instruction and record function-local branch labels.
MCInst Inst;
uint64_t Size;
bool Disassembled = DisAsm->getInstruction(
Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
if (Size == 0)
Size = 1;
if (Disassembled && MIA) {
uint64_t Target;
bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
if (TargetKnown && (Target >= Start && Target < End) &&
!Labels.count(Target))
Labels[Target] = ("L" + Twine(LabelCount++)).str();
}
Index += Size;
}
}
// Create an MCSymbolizer for the target and add it to the MCDisassembler.
// This is currently only used on AMDGPU, and assumes the format of the
// void * argument passed to AMDGPU's createMCSymbolizer.
static void addSymbolizer(
MCContext &Ctx, const Target *Target, StringRef TripleName,
MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols,
std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
std::unique_ptr<MCRelocationInfo> RelInfo(
Target->createMCRelocationInfo(TripleName, Ctx));
if (!RelInfo)
return;
std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
MCSymbolizer *SymbolizerPtr = &*Symbolizer;
DisAsm->setSymbolizer(std::move(Symbolizer));
if (!SymbolizeOperands)
return;
// Synthesize labels referenced by branch instructions by
// disassembling, discarding the output, and collecting the referenced
// addresses from the symbolizer.
for (size_t Index = 0; Index != Bytes.size();) {
MCInst Inst;
uint64_t Size;
DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
nulls());
if (Size == 0)
Size = 1;
Index += Size;
}
ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
// Copy and sort to remove duplicates.
std::vector<uint64_t> LabelAddrs;
LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
LabelAddrsRef.end());
llvm::sort(LabelAddrs);
LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
LabelAddrs.begin());
// Add the labels.
for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
auto Name = std::make_unique<std::string>();
*Name = (Twine("L") + Twine(LabelNum)).str();
SynthesizedLabelNames.push_back(std::move(Name));
Symbols.push_back(SymbolInfoTy(
LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
}
llvm::stable_sort(Symbols);
// Recreate the symbolizer with the new symbols list.
RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
Symbolizer.reset(Target->createMCSymbolizer(
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
DisAsm->setSymbolizer(std::move(Symbolizer));
}
static StringRef getSegmentName(const MachOObjectFile *MachO,
const SectionRef &Section) {
if (MachO) {
DataRefImpl DR = Section.getRawDataRefImpl();
StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
return SegmentName;
}
return "";
}
static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
const MCAsmInfo &MAI,
const MCSubtargetInfo &STI,
StringRef Comments,
LiveVariablePrinter &LVP) {
do {
if (!Comments.empty()) {
// Emit a line of comments.
StringRef Comment;
std::tie(Comment, Comments) = Comments.split('\n');
// MAI.getCommentColumn() assumes that instructions are printed at the
// position of 8, while getInstStartColumn() returns the actual position.
unsigned CommentColumn =
MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
FOS.PadToColumn(CommentColumn);
FOS << MAI.getCommentString() << ' ' << Comment;
}
LVP.printAfterInst(FOS);
FOS << '\n';
} while (!Comments.empty());
FOS.flush();
}
static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
MCDisassembler *SecondaryDisAsm,
const MCInstrAnalysis *MIA, MCInstPrinter *IP,
const MCSubtargetInfo *PrimarySTI,
const MCSubtargetInfo *SecondarySTI,
PrettyPrinter &PIP,
SourcePrinter &SP, bool InlineRelocs) {
const MCSubtargetInfo *STI = PrimarySTI;
MCDisassembler *DisAsm = PrimaryDisAsm;
bool PrimaryIsThumb = false;
if (isArmElf(Obj))
PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
if (InlineRelocs)
RelocMap = getRelocsMap(*Obj);
bool Is64Bits = Obj->getBytesInAddress() > 4;
// Create a mapping from virtual address to symbol name. This is used to
// pretty print the symbols while disassembling.
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
SectionSymbolsTy AbsoluteSymbols;
const StringRef FileName = Obj->getFileName();
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
for (const SymbolRef &Symbol : Obj->symbols()) {
Expected<StringRef> NameOrErr = Symbol.getName();
if (!NameOrErr) {
reportWarning(toString(NameOrErr.takeError()), FileName);
continue;
}
if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
continue;
if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
continue;
if (MachO) {
// __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
// symbols that support MachO header introspection. They do not bind to
// code locations and are irrelevant for disassembly.
if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
continue;
// Don't ask a Mach-O STAB symbol for its section unless you know that
// STAB symbol's section field refers to a valid section index. Otherwise
// the symbol may error trying to load a section that does not exist.
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
uint8_t NType = (MachO->is64Bit() ?
MachO->getSymbol64TableEntry(SymDRI).n_type:
MachO->getSymbolTableEntry(SymDRI).n_type);
if (NType & MachO::N_STAB)
continue;
}
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
if (SecI != Obj->section_end())
AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
else
AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
}
if (AllSymbols.empty() && Obj->isELF())
addDynamicElfSymbols(Obj, AllSymbols);
if (Obj->isWasm())
addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
BumpPtrAllocator A;
StringSaver Saver(A);
addPltEntries(Obj, AllSymbols, Saver);
// Create a mapping from virtual address to section. An empty section can
// cause more than one section at the same address. Sort such sections to be
// before same-addressed non-empty sections so that symbol lookups prefer the
// non-empty section.
std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
for (SectionRef Sec : Obj->sections())
SectionAddresses.emplace_back(Sec.getAddress(), Sec);
llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
if (LHS.first != RHS.first)
return LHS.first < RHS.first;
return LHS.second.getSize() < RHS.second.getSize();
});
// Linked executables (.exe and .dll files) typically don't include a real
// symbol table but they might contain an export table.
if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
for (const auto &ExportEntry : COFFObj->export_directories()) {
StringRef Name;
if (Error E = ExportEntry.getSymbolName(Name))
reportError(std::move(E), Obj->getFileName());
if (Name.empty())
continue;
uint32_t RVA;
if (Error E = ExportEntry.getExportRVA(RVA))
reportError(std::move(E), Obj->getFileName());
uint64_t VA = COFFObj->getImageBase() + RVA;
auto Sec = partition_point(
SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
return O.first <= VA;
});
if (Sec != SectionAddresses.begin()) {
--Sec;
AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
} else
AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
}
}
// Sort all the symbols, this allows us to use a simple binary search to find
// Multiple symbols can have the same address. Use a stable sort to stabilize
// the output.
StringSet<> FoundDisasmSymbolSet;
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
llvm::stable_sort(SecSyms.second);
llvm::stable_sort(AbsoluteSymbols);
std::unique_ptr<DWARFContext> DICtx;
LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
if (DbgVariables != DVDisabled) {
DICtx = DWARFContext::create(*Obj);
for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
LVP.addCompileUnit(CU->getUnitDIE(false));
}
LLVM_DEBUG(LVP.dump());
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
if (FilterSections.empty() && !DisassembleAll &&
(!Section.isText() || Section.isVirtual()))
continue;
uint64_t SectionAddr = Section.getAddress();
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
// Get the list of all the symbols in this section.
SectionSymbolsTy &Symbols = AllSymbols[Section];
std::vector<MappingSymbolPair> MappingSymbols;
if (hasMappingSymbols(Obj)) {
for (const auto &Symb : Symbols) {
uint64_t Address = Symb.Addr;
StringRef Name = Symb.Name;
if (Name.startswith("$d"))
MappingSymbols.emplace_back(Address - SectionAddr, 'd');
if (Name.startswith("$x"))
MappingSymbols.emplace_back(Address - SectionAddr, 'x');
if (Name.startswith("$a"))
MappingSymbols.emplace_back(Address - SectionAddr, 'a');
if (Name.startswith("$t"))
MappingSymbols.emplace_back(Address - SectionAddr, 't');
}
}
llvm::sort(MappingSymbols);
ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
unwrapOrError(Section.getContents(), Obj->getFileName()));
std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
// AMDGPU disassembler uses symbolizer for printing labels
addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
Symbols, SynthesizedLabelNames);
}
StringRef SegmentName = getSegmentName(MachO, Section);
StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
// If the section has no symbol at the start, just insert a dummy one.
if (Symbols.empty() || Symbols[0].Addr != 0) {
Symbols.insert(Symbols.begin(),
createDummySymbolInfo(Obj, SectionAddr, SectionName,
Section.isText() ? ELF::STT_FUNC
: ELF::STT_OBJECT));
}
SmallString<40> Comments;
raw_svector_ostream CommentStream(Comments);
uint64_t VMAAdjustment = 0;
if (shouldAdjustVA(Section))
VMAAdjustment = AdjustVMA;
// In executable and shared objects, r_offset holds a virtual address.
// Subtract SectionAddr from the r_offset field of a relocation to get
// the section offset.
uint64_t RelAdjustment = Obj->isRelocatableObject() ? 0 : SectionAddr;
uint64_t Size;
uint64_t Index;
bool PrintedSection = false;
std::vector<RelocationRef> Rels = RelocMap[Section];
std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
// Disassemble symbol by symbol.
for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
std::string SymbolName = Symbols[SI].Name.str();
if (Demangle)
SymbolName = demangle(SymbolName);
// Skip if --disassemble-symbols is not empty and the symbol is not in
// the list.
if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
continue;
uint64_t Start = Symbols[SI].Addr;
if (Start < SectionAddr || StopAddress <= Start)
continue;
else
FoundDisasmSymbolSet.insert(SymbolName);
// The end is the section end, the beginning of the next symbol, or
// --stop-address.
uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
if (SI + 1 < SE)
End = std::min(End, Symbols[SI + 1].Addr);
if (Start >= End || End <= StartAddress)
continue;
Start -= SectionAddr;
End -= SectionAddr;
if (!PrintedSection) {
PrintedSection = true;
outs() << "\nDisassembly of section ";
if (!SegmentName.empty())
outs() << SegmentName << ",";
outs() << SectionName << ":\n";
}
outs() << '\n';
if (LeadingAddr)
outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
SectionAddr + Start + VMAAdjustment);
if (Obj->isXCOFF() && SymbolDescription) {
outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
} else
outs() << '<' << SymbolName << ">:\n";
// Don't print raw contents of a virtual section. A virtual section
// doesn't have any contents in the file.
if (Section.isVirtual()) {
outs() << "...\n";
continue;
}
auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
Bytes.slice(Start, End - Start),
SectionAddr + Start, CommentStream);
// To have round trippable disassembly, we fall back to decoding the
// remaining bytes as instructions.
//
// If there is a failure, we disassemble the failed region as bytes before
// falling back. The target is expected to print nothing in this case.
//
// If there is Success or SoftFail i.e no 'real' failure, we go ahead by
// Size bytes before falling back.
// So if the entire symbol is 'eaten' by the target:
// Start += Size // Now Start = End and we will never decode as
// // instructions
//
// Right now, most targets return None i.e ignore to treat a symbol
// separately. But WebAssembly decodes preludes for some symbols.
//
if (Status.hasValue()) {
if (Status.getValue() == MCDisassembler::Fail) {
outs() << "// Error in decoding " << SymbolName
<< " : Decoding failed region as bytes.\n";
for (uint64_t I = 0; I < Size; ++I) {
outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
<< "\n";
}
}
} else {
Size = 0;
}
Start += Size;
Index = Start;
if (SectionAddr < StartAddress)
Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
// If there is a data/common symbol inside an ELF text section and we are
// only disassembling text (applicable all architectures), we are in a
// situation where we must print the data and not disassemble it.
if (Obj->isELF() && !DisassembleAll && Section.isText()) {
uint8_t SymTy = Symbols[SI].Type;
if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
dumpELFData(SectionAddr, Index, End, Bytes);
Index = End;
}
}
bool CheckARMELFData = hasMappingSymbols(Obj) &&
Symbols[SI].Type != ELF::STT_OBJECT &&
!DisassembleAll;
bool DumpARMELFData = false;
formatted_raw_ostream FOS(outs());
std::unordered_map<uint64_t, std::string> AllLabels;
if (SymbolizeOperands)
collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
SectionAddr, Index, End, AllLabels);
while (Index < End) {
// ARM and AArch64 ELF binaries can interleave data and text in the
// same section. We rely on the markers introduced to understand what
// we need to dump. If the data marker is within a function, it is
// denoted as a word/short etc.
if (CheckARMELFData) {
char Kind = getMappingSymbolKind(MappingSymbols, Index);
DumpARMELFData = Kind == 'd';
if (SecondarySTI) {
if (Kind == 'a') {
STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
} else if (Kind == 't') {
STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
}
}
}
if (DumpARMELFData) {
Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
MappingSymbols, FOS);
} else {
// When -z or --disassemble-zeroes are given we always dissasemble
// them. Otherwise we might want to skip zero bytes we see.
if (!DisassembleZeroes) {
uint64_t MaxOffset = End - Index;
// For --reloc: print zero blocks patched by relocations, so that
// relocations can be shown in the dump.
if (RelCur != RelEnd)
MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
MaxOffset);
if (size_t N =
countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
FOS << "\t\t..." << '\n';
Index += N;
continue;
}
}
// Print local label if there's any.
auto Iter = AllLabels.find(SectionAddr + Index);
if (Iter != AllLabels.end())
FOS << "<" << Iter->second << ">:\n";
// Disassemble a real instruction or a data when disassemble all is
// provided
MCInst Inst;
bool Disassembled =
DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
SectionAddr + Index, CommentStream);
if (Size == 0)
Size = 1;
LVP.update({Index, Section.getIndex()},
{Index + Size, Section.getIndex()}, Index + Size != End);
IP->setCommentStream(CommentStream);
PIP.printInst(
*IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
{SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
"", *STI, &SP, Obj->getFileName(), &Rels, LVP);
IP->setCommentStream(llvm::nulls());
// If disassembly has failed, avoid analysing invalid/incomplete
// instruction information. Otherwise, try to resolve the target
// address (jump target or memory operand address) and print it on the
// right of the instruction.
if (Disassembled && MIA) {
// Branch targets are printed just after the instructions.
llvm::raw_ostream *TargetOS = &FOS;
uint64_t Target;
bool PrintTarget =
MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
if (!PrintTarget)
if (Optional<uint64_t> MaybeTarget =
MIA->evaluateMemoryOperandAddress(
Inst, STI, SectionAddr + Index, Size)) {
Target = *MaybeTarget;
PrintTarget = true;
// Do not print real address when symbolizing.
if (!SymbolizeOperands) {
// Memory operand addresses are printed as comments.
TargetOS = &CommentStream;
*TargetOS << "0x" << Twine::utohexstr(Target);
}
}
if (PrintTarget) {
// In a relocatable object, the target's section must reside in
// the same section as the call instruction or it is accessed
// through a relocation.
//
// In a non-relocatable object, the target may be in any section.
// In that case, locate the section(s) containing the target
// address and find the symbol in one of those, if possible.
//
// N.B. We don't walk the relocations in the relocatable case yet.
std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
if (!Obj->isRelocatableObject()) {
auto It = llvm::partition_point(
SectionAddresses,
[=](const std::pair<uint64_t, SectionRef> &O) {
return O.first <= Target;
});
uint64_t TargetSecAddr = 0;
while (It != SectionAddresses.begin()) {
--It;
if (TargetSecAddr == 0)
TargetSecAddr = It->first;
if (It->first != TargetSecAddr)
break;
TargetSectionSymbols.push_back(&AllSymbols[It->second]);
}
} else {
TargetSectionSymbols.push_back(&Symbols);
}
TargetSectionSymbols.push_back(&AbsoluteSymbols);
// Find the last symbol in the first candidate section whose
// offset is less than or equal to the target. If there are no
// such symbols, try in the next section and so on, before finally
// using the nearest preceding absolute symbol (if any), if there
// are no other valid symbols.
const SymbolInfoTy *TargetSym = nullptr;
for (const SectionSymbolsTy *TargetSymbols :
TargetSectionSymbols) {
auto It = llvm::partition_point(
*TargetSymbols,
[=](const SymbolInfoTy &O) { return O.Addr <= Target; });
if (It != TargetSymbols->begin()) {
TargetSym = &*(It - 1);
break;
}
}
// Print the labels corresponding to the target if there's any.
bool LabelAvailable = AllLabels.count(Target);
if (TargetSym != nullptr) {
uint64_t TargetAddress = TargetSym->Addr;
uint64_t Disp = Target - TargetAddress;
std::string TargetName = TargetSym->Name.str();
if (Demangle)
TargetName = demangle(TargetName);
*TargetOS << " <";
if (!Disp) {
// Always Print the binary symbol precisely corresponding to
// the target address.
*TargetOS << TargetName;
} else if (!LabelAvailable) {
// Always Print the binary symbol plus an offset if there's no
// local label corresponding to the target address.
*TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
} else {
*TargetOS << AllLabels[Target];
}
*TargetOS << ">";
} else if (LabelAvailable) {
*TargetOS << " <" << AllLabels[Target] << ">";
}
// By convention, each record in the comment stream should be
// terminated.
if (TargetOS == &CommentStream)
*TargetOS << "\n";
}
}
}
assert(Ctx.getAsmInfo());
emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
CommentStream.str(), LVP);
Comments.clear();
// Hexagon does this in pretty printer
if (Obj->getArch() != Triple::hexagon) {
// Print relocation for instruction and data.
while (RelCur != RelEnd) {
uint64_t Offset = RelCur->getOffset() - RelAdjustment;
// If this relocation is hidden, skip it.
if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
++RelCur;
continue;
}
// Stop when RelCur's offset is past the disassembled
// instruction/data. Note that it's possible the disassembled data
// is not the complete data: we might see the relocation printed in
// the middle of the data, but this matches the binutils objdump
// output.
if (Offset >= Index + Size)
break;
// When --adjust-vma is used, update the address printed.
if (RelCur->getSymbol() != Obj->symbol_end()) {
Expected<section_iterator> SymSI =
RelCur->getSymbol()->getSection();
if (SymSI && *SymSI != Obj->section_end() &&
shouldAdjustVA(**SymSI))
Offset += AdjustVMA;
}
printRelocation(FOS, Obj->getFileName(), *RelCur,
SectionAddr + Offset, Is64Bits);
LVP.printAfterOtherLine(FOS, true);
++RelCur;
}
}
Index += Size;
}
}
}
StringSet<> MissingDisasmSymbolSet =
set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
for (StringRef Sym : MissingDisasmSymbolSet.keys())
reportWarning("failed to disassemble missing symbol " + Sym, FileName);
}
static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
const Target *TheTarget = getTarget(Obj);
// Package up features to be passed to target/subtarget
SubtargetFeatures Features = Obj->getFeatures();
if (!MAttrs.empty())
for (unsigned I = 0; I != MAttrs.size(); ++I)
Features.AddFeature(MAttrs[I]);
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
if (!MRI)
reportError(Obj->getFileName(),
"no register info for target " + TripleName);
// Set up disassembler.
MCTargetOptions MCOptions;
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
if (!AsmInfo)
reportError(Obj->getFileName(),
"no assembly info for target " + TripleName);
if (MCPU.empty())
MCPU = Obj->tryGetCPUName().getValueOr("").str();
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
if (!STI)
reportError(Obj->getFileName(),
"no subtarget info for target " + TripleName);
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII)
reportError(Obj->getFileName(),
"no instruction info for target " + TripleName);
MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
// FIXME: for now initialize MCObjectFileInfo with default values
std::unique_ptr<MCObjectFileInfo> MOFI(
TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
Ctx.setObjectFileInfo(MOFI.get());
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
if (!DisAsm)
reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
// If we have an ARM object file, we need a second disassembler, because
// ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
// We use mapping symbols to switch between the two assemblers, where
// appropriate.
std::unique_ptr<MCDisassembler> SecondaryDisAsm;
std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
if (STI->checkFeatures("+thumb-mode"))
Features.AddFeature("-thumb-mode");
else
Features.AddFeature("+thumb-mode");
SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
Features.getString()));
SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
}
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
if (!IP)
reportError(Obj->getFileName(),
"no instruction printer for target " + TripleName);
IP->setPrintImmHex(PrintImmHex);
IP->setPrintBranchImmAsAddress(true);
IP->setSymbolizeOperands(SymbolizeOperands);
IP->setMCInstrAnalysis(MIA.get());
PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
SourcePrinter SP(Obj, TheTarget->getName());
for (StringRef Opt : DisassemblerOptions)
if (!IP->applyTargetSpecificCLOption(Opt))
reportError(Obj->getFileName(),
"Unrecognized disassembler option: " + Opt);
disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
SP, InlineRelocs);
}
void objdump::printRelocations(const ObjectFile *Obj) {
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
"%08" PRIx64;
// Regular objdump doesn't print relocations in non-relocatable object
// files.
if (!Obj->isRelocatableObject())
return;
// Build a mapping from relocation target to a vector of relocation
// sections. Usually, there is an only one relocation section for
// each relocated section.
MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
uint64_t Ndx;
for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
if (Section.relocation_begin() == Section.relocation_end())
continue;
Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
if (!SecOrErr)
reportError(Obj->getFileName(),
"section (" + Twine(Ndx) +
"): unable to get a relocation target: " +
toString(SecOrErr.takeError()));
SecToRelSec[**SecOrErr].push_back(Section);
}
for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
uint32_t TypePadding = 24;
outs() << left_justify("OFFSET", OffsetPadding) << " "
<< left_justify("TYPE", TypePadding) << " "
<< "VALUE\n";
for (SectionRef Section : P.second) {
for (const RelocationRef &Reloc : Section.relocations()) {
uint64_t Address = Reloc.getOffset();
SmallString<32> RelocName;
SmallString<32> ValueStr;
if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
continue;
Reloc.getTypeName(RelocName);
if (Error E = getRelocationValueString(Reloc, ValueStr))
reportError(std::move(E), Obj->getFileName());
outs() << format(Fmt.data(), Address) << " "
<< left_justify(RelocName, TypePadding) << " " << ValueStr
<< "\n";
}
}
}
}
void objdump::printDynamicRelocations(const ObjectFile *Obj) {
// For the moment, this option is for ELF only
if (!Obj->isELF())
return;
const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
return Sec.getType() == ELF::SHT_DYNAMIC;
})) {
reportError(Obj->getFileName(), "not a dynamic object");
return;
}
std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
if (DynRelSec.empty())
return;
outs() << "\nDYNAMIC RELOCATION RECORDS\n";
const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
const uint32_t TypePadding = 24;
outs() << left_justify("OFFSET", OffsetPadding) << ' '
<< left_justify("TYPE", TypePadding) << " VALUE\n";
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
for (const SectionRef &Section : DynRelSec)
for (const RelocationRef &Reloc : Section.relocations()) {
uint64_t Address = Reloc.getOffset();
SmallString<32> RelocName;
SmallString<32> ValueStr;
Reloc.getTypeName(RelocName);
if (Error E = getRelocationValueString(Reloc, ValueStr))
reportError(std::move(E), Obj->getFileName());
outs() << format(Fmt.data(), Address) << ' '
<< left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
}
}
// Returns true if we need to show LMA column when dumping section headers. We
// show it only when the platform is ELF and either we have at least one section
// whose VMA and LMA are different and/or when --show-lma flag is used.
static bool shouldDisplayLMA(const ObjectFile *Obj) {
if (!Obj->isELF())
return false;
for (const SectionRef &S : ToolSectionFilter(*Obj))
if (S.getAddress() != getELFSectionLMA(S))
return true;
return ShowLMA;
}
static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
// Default column width for names is 13 even if no names are that long.
size_t MaxWidth = 13;
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
MaxWidth = std::max(MaxWidth, Name.size());
}
return MaxWidth;
}
void objdump::printSectionHeaders(const ObjectFile *Obj) {
size_t NameWidth = getMaxSectionNameWidth(Obj);
size_t AddressWidth = 2 * Obj->getBytesInAddress();
bool HasLMAColumn = shouldDisplayLMA(Obj);
outs() << "\nSections:\n";
if (HasLMAColumn)
outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
<< left_justify("VMA", AddressWidth) << " "
<< left_justify("LMA", AddressWidth) << " Type\n";
else
outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
<< left_justify("VMA", AddressWidth) << " Type\n";
uint64_t Idx;
for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
uint64_t VMA = Section.getAddress();
if (shouldAdjustVA(Section))
VMA += AdjustVMA;
uint64_t Size = Section.getSize();
std::string Type = Section.isText() ? "TEXT" : "";
if (Section.isData())
Type += Type.empty() ? "DATA" : ", DATA";
if (Section.isBSS())
Type += Type.empty() ? "BSS" : ", BSS";
if (Section.isDebugSection())
Type += Type.empty() ? "DEBUG" : ", DEBUG";
if (HasLMAColumn)
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
Name.str().c_str(), Size)
<< format_hex_no_prefix(VMA, AddressWidth) << " "
<< format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
<< " " << Type << "\n";
else
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
Name.str().c_str(), Size)
<< format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
}
}
void objdump::printSectionContents(const ObjectFile *Obj) {
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
uint64_t BaseAddr = Section.getAddress();
uint64_t Size = Section.getSize();
if (!Size)
continue;
outs() << "Contents of section ";
StringRef SegmentName = getSegmentName(MachO, Section);
if (!SegmentName.empty())
outs() << SegmentName << ",";
outs() << Name << ":\n";
if (Section.isBSS()) {
outs() << format("<skipping contents of bss section at [%04" PRIx64
", %04" PRIx64 ")>\n",
BaseAddr, BaseAddr + Size);
continue;
}
StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
// Dump out the content as hex and printable ascii characters.
for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
// Dump line of hex.
for (std::size_t I = 0; I < 16; ++I) {
if (I != 0 && I % 4 == 0)
outs() << ' ';
if (Addr + I < End)
outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
<< hexdigit(Contents[Addr + I] & 0xF, true);
else
outs() << " ";
}
// Print ascii.
outs() << " ";
for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
outs() << Contents[Addr + I];
else
outs() << ".";
}
outs() << "\n";
}
}
}
void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
StringRef ArchitectureName, bool DumpDynamic) {
if (O->isCOFF() && !DumpDynamic) {
outs() << "\nSYMBOL TABLE:\n";
printCOFFSymbolTable(cast<const COFFObjectFile>(O));
return;
}
const StringRef FileName = O->getFileName();
if (!DumpDynamic) {
outs() << "\nSYMBOL TABLE:\n";
for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
DumpDynamic);
return;
}
outs() << "\nDYNAMIC SYMBOL TABLE:\n";
if (!O->isELF()) {
reportWarning(
"this operation is not currently supported for this file format",
FileName);
return;
}
const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
auto Symbols = ELF->getDynamicSymbolIterators();
Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
ELF->readDynsymVersions();
if (!SymbolVersionsOrErr) {
reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
SymbolVersionsOrErr = std::vector<VersionEntry>();
(void)!SymbolVersionsOrErr;
}
for (auto &Sym : Symbols)
printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
ArchitectureName, DumpDynamic);
}
void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
ArrayRef<VersionEntry> SymbolVersions,
StringRef FileName, StringRef ArchiveName,
StringRef ArchitectureName, bool DumpDynamic) {
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
ArchitectureName);
if ((Address < StartAddress) || (Address > StopAddress))
return;
SymbolRef::Type Type =
unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
uint32_t Flags =
unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
// Don't ask a Mach-O STAB symbol for its section unless you know that
// STAB symbol's section field refers to a valid section index. Otherwise
// the symbol may error trying to load a section that does not exist.
bool IsSTAB = false;
if (MachO) {
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
uint8_t NType =
(MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
: MachO->getSymbolTableEntry(SymDRI).n_type);
if (NType & MachO::N_STAB)
IsSTAB = true;
}
section_iterator Section = IsSTAB
? O->section_end()
: unwrapOrError(Symbol.getSection(), FileName,
ArchiveName, ArchitectureName);
StringRef Name;
if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
if (Expected<StringRef> NameOrErr = Section->getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
} else {
Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
ArchitectureName);
}
bool Global = Flags & SymbolRef::SF_Global;
bool Weak = Flags & SymbolRef::SF_Weak;
bool Absolute = Flags & SymbolRef::SF_Absolute;
bool Common = Flags & SymbolRef::SF_Common;
bool Hidden = Flags & SymbolRef::SF_Hidden;
char GlobLoc = ' ';
if ((Section != O->section_end() || Absolute) && !Weak)
GlobLoc = Global ? 'g' : 'l';
char IFunc = ' ';
if (O->isELF()) {
if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
IFunc = 'i';
if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
GlobLoc = 'u';
}
char Debug = ' ';
if (DumpDynamic)
Debug = 'D';
else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
Debug = 'd';
char FileFunc = ' ';
if (Type == SymbolRef::ST_File)
FileFunc = 'f';
else if (Type == SymbolRef::ST_Function)
FileFunc = 'F';
else if (Type == SymbolRef::ST_Data)
FileFunc = 'O';
const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
outs() << format(Fmt, Address) << " "
<< GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
<< (Weak ? 'w' : ' ') // Weak?
<< ' ' // Constructor. Not supported yet.
<< ' ' // Warning. Not supported yet.
<< IFunc // Indirect reference to another symbol.
<< Debug // Debugging (d) or dynamic (D) symbol.
<< FileFunc // Name of function (F), file (f) or object (O).
<< ' ';
if (Absolute) {
outs() << "*ABS*";
} else if (Common) {
outs() << "*COM*";
} else if (Section == O->section_end()) {
if (O->isXCOFF()) {
XCOFFSymbolRef XCOFFSym = dyn_cast<const XCOFFObjectFile>(O)->toSymbolRef(
Symbol.getRawDataRefImpl());
if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
outs() << "*DEBUG*";
else
outs() << "*UND*";
} else
outs() << "*UND*";
} else {
StringRef SegmentName = getSegmentName(MachO, *Section);
if (!SegmentName.empty())
outs() << SegmentName << ",";
StringRef SectionName = unwrapOrError(Section->getName(), FileName);
outs() << SectionName;
if (O->isXCOFF()) {
Optional<SymbolRef> SymRef = getXCOFFSymbolContainingSymbolRef(
dyn_cast<const XCOFFObjectFile>(O), Symbol);
if (SymRef) {
Expected<StringRef> NameOrErr = SymRef.getValue().getName();
if (NameOrErr) {
outs() << " (csect:";
std::string SymName(NameOrErr.get());
if (Demangle)
SymName = demangle(SymName);
if (SymbolDescription)
SymName = getXCOFFSymbolDescription(
createSymbolInfo(O, SymRef.getValue()), SymName);
outs() << ' ' << SymName;
outs() << ") ";
} else
reportWarning(toString(NameOrErr.takeError()), FileName);
}
}
}
if (Common)
outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
else if (O->isXCOFF())
outs() << '\t'
<< format(Fmt, dyn_cast<const XCOFFObjectFile>(O)->getSymbolSize(
Symbol.getRawDataRefImpl()));
else if (O->isELF())
outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
if (O->isELF()) {
if (!SymbolVersions.empty()) {
const VersionEntry &Ver =
SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
std::string Str;
if (!Ver.Name.empty())
Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
outs() << ' ' << left_justify(Str, 12);
}
uint8_t Other = ELFSymbolRef(Symbol).getOther();
switch (Other) {
case ELF::STV_DEFAULT:
break;
case ELF::STV_INTERNAL:
outs() << " .internal";
break;
case ELF::STV_HIDDEN:
outs() << " .hidden";
break;
case ELF::STV_PROTECTED:
outs() << " .protected";
break;
default:
outs() << format(" 0x%02x", Other);
break;
}
} else if (Hidden) {
outs() << " .hidden";
}
std::string SymName(Name);
if (Demangle)
SymName = demangle(SymName);
if (O->isXCOFF() && SymbolDescription)
SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
outs() << ' ' << SymName << '\n';
}
static void printUnwindInfo(const ObjectFile *O) {
outs() << "Unwind info:\n\n";
if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
printCOFFUnwindInfo(Coff);
else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
printMachOUnwindInfo(MachO);
else
// TODO: Extract DWARF dump tool to objdump.
WithColor::error(errs(), ToolName)
<< "This operation is only currently supported "
"for COFF and MachO object files.\n";
}
/// Dump the raw contents of the __clangast section so the output can be piped
/// into llvm-bcanalyzer.
static void printRawClangAST(const ObjectFile *Obj) {
if (outs().is_displayed()) {
WithColor::error(errs(), ToolName)
<< "The -raw-clang-ast option will dump the raw binary contents of "
"the clang ast section.\n"
"Please redirect the output to a file or another program such as "
"llvm-bcanalyzer.\n";
return;
}
StringRef ClangASTSectionName("__clangast");
if (Obj->isCOFF()) {
ClangASTSectionName = "clangast";
}
Optional<object::SectionRef> ClangASTSection;
for (auto Sec : ToolSectionFilter(*Obj)) {
StringRef Name;
if (Expected<StringRef> NameOrErr = Sec.getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
if (Name == ClangASTSectionName) {
ClangASTSection = Sec;
break;
}
}
if (!ClangASTSection)
return;
StringRef ClangASTContents = unwrapOrError(
ClangASTSection.getValue().getContents(), Obj->getFileName());
outs().write(ClangASTContents.data(), ClangASTContents.size());
}
static void printFaultMaps(const ObjectFile *Obj) {
StringRef FaultMapSectionName;
if (Obj->isELF()) {
FaultMapSectionName = ".llvm_faultmaps";
} else if (Obj->isMachO()) {
FaultMapSectionName = "__llvm_faultmaps";
} else {
WithColor::error(errs(), ToolName)
<< "This operation is only currently supported "
"for ELF and Mach-O executable files.\n";
return;
}
Optional<object::SectionRef> FaultMapSection;
for (auto Sec : ToolSectionFilter(*Obj)) {
StringRef Name;
if (Expected<StringRef> NameOrErr = Sec.getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
if (Name == FaultMapSectionName) {
FaultMapSection = Sec;
break;
}
}
outs() << "FaultMap table:\n";
if (!FaultMapSection.hasValue()) {
outs() << "<not found>\n";
return;
}
StringRef FaultMapContents =
unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
FaultMapParser FMP(FaultMapContents.bytes_begin(),
FaultMapContents.bytes_end());
outs() << FMP;
}
static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
if (O->isELF()) {
printELFFileHeader(O);
printELFDynamicSection(O);
printELFSymbolVersionInfo(O);
return;
}
if (O->isCOFF())
return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
if (O->isWasm())
return printWasmFileHeader(O);
if (O->isMachO()) {
printMachOFileHeader(O);
if (!OnlyFirst)
printMachOLoadCommands(O);
return;
}
reportError(O->getFileName(), "Invalid/Unsupported object file format");
}
static void printFileHeaders(const ObjectFile *O) {
if (!O->isELF() && !O->isCOFF())
reportError(O->getFileName(), "Invalid/Unsupported object file format");
Triple::ArchType AT = O->getArch();
outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
outs() << "start address: "
<< "0x" << format(Fmt.data(), Address) << "\n";
}
static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
if (!ModeOrErr) {
WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
consumeError(ModeOrErr.takeError());
return;
}
sys::fs::perms Mode = ModeOrErr.get();
outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
outs() << " ";
outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
unwrapOrError(C.getGID(), Filename),
unwrapOrError(C.getRawSize(), Filename));
StringRef RawLastModified = C.getRawLastModified();
unsigned Seconds;
if (RawLastModified.getAsInteger(10, Seconds))
outs() << "(date: \"" << RawLastModified
<< "\" contains non-decimal chars) ";
else {
// Since ctime(3) returns a 26 character string of the form:
// "Sun Sep 16 01:03:52 1973\n\0"
// just print 24 characters.
time_t t = Seconds;
outs() << format("%.24s ", ctime(&t));
}
StringRef Name = "";
Expected<StringRef> NameOrErr = C.getName();
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
Name = unwrapOrError(C.getRawName(), Filename);
} else {
Name = NameOrErr.get();
}
outs() << Name << "\n";
}
// For ELF only now.
static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
if (Elf->getEType() != ELF::ET_REL)
return true;
}
return false;
}
static void checkForInvalidStartStopAddress(ObjectFile *Obj,
uint64_t Start, uint64_t Stop) {
if (!shouldWarnForInvalidStartStopAddress(Obj))
return;
for (const SectionRef &Section : Obj->sections())
if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
uint64_t BaseAddr = Section.getAddress();
uint64_t Size = Section.getSize();
if ((Start < BaseAddr + Size) && Stop > BaseAddr)
return;
}
if (!HasStartAddressFlag)
reportWarning("no section has address less than 0x" +
Twine::utohexstr(Stop) + " specified by --stop-address",
Obj->getFileName());
else if (!HasStopAddressFlag)
reportWarning("no section has address greater than or equal to 0x" +
Twine::utohexstr(Start) + " specified by --start-address",
Obj->getFileName());
else
reportWarning("no section overlaps the range [0x" +
Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
") specified by --start-address/--stop-address",
Obj->getFileName());
}
static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
const Archive::Child *C = nullptr) {
// Avoid other output when using a raw option.
if (!RawClangAST) {
outs() << '\n';
if (A)
outs() << A->getFileName() << "(" << O->getFileName() << ")";
else
outs() << O->getFileName();
outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
}
if (HasStartAddressFlag || HasStopAddressFlag)
checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
// Note: the order here matches GNU objdump for compatability.
StringRef ArchiveName = A ? A->getFileName() : "";
if (ArchiveHeaders && !MachOOpt && C)
printArchiveChild(ArchiveName, *C);
if (FileHeaders)
printFileHeaders(O);
if (PrivateHeaders || FirstPrivateHeader)
printPrivateFileHeaders(O, FirstPrivateHeader);
if (SectionHeaders)
printSectionHeaders(O);
if (SymbolTable)
printSymbolTable(O, ArchiveName);
if (DynamicSymbolTable)
printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
/*DumpDynamic=*/true);
if (DwarfDumpType != DIDT_Null) {
std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
// Dump the complete DWARF structure.
DIDumpOptions DumpOpts;
DumpOpts.DumpType = DwarfDumpType;
DICtx->dump(outs(), DumpOpts);
}
if (Relocations && !Disassemble)
printRelocations(O);
if (DynamicRelocations)
printDynamicRelocations(O);
if (SectionContents)
printSectionContents(O);
if (Disassemble)
disassembleObject(O, Relocations);
if (UnwindInfo)
printUnwindInfo(O);
// Mach-O specific options:
if (ExportsTrie)
printExportsTrie(O);
if (Rebase)
printRebaseTable(O);
if (Bind)
printBindTable(O);
if (LazyBind)
printLazyBindTable(O);
if (WeakBind)
printWeakBindTable(O);
// Other special sections:
if (RawClangAST)
printRawClangAST(O);
if (FaultMapSection)
printFaultMaps(O);
}
static void dumpObject(const COFFImportFile *I, const Archive *A,
const Archive::Child *C = nullptr) {
StringRef ArchiveName = A ? A->getFileName() : "";
// Avoid other output when using a raw option.
if (!RawClangAST)
outs() << '\n'
<< ArchiveName << "(" << I->getFileName() << ")"
<< ":\tfile format COFF-import-file"
<< "\n\n";
if (ArchiveHeaders && !MachOOpt && C)
printArchiveChild(ArchiveName, *C);
if (SymbolTable)
printCOFFSymbolTable(I);
}
/// Dump each object file in \a a;
static void dumpArchive(const Archive *A) {
Error Err = Error::success();
unsigned I = -1;
for (auto &C : A->children(Err)) {
++I;
Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
if (!ChildOrErr) {
if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
continue;
}
if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
dumpObject(O, A, &C);
else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
dumpObject(I, A, &C);
else
reportError(errorCodeToError(object_error::invalid_file_type),
A->getFileName());
}
if (Err)
reportError(std::move(Err), A->getFileName());
}
/// Open file and figure out how to dump it.
static void dumpInput(StringRef file) {
// If we are using the Mach-O specific object file parser, then let it parse
// the file and process the command line options. So the -arch flags can
// be used to select specific slices, etc.
if (MachOOpt) {
parseInputMachO(file);
return;
}
// Attempt to open the binary.
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
Binary &Binary = *OBinary.getBinary();
if (Archive *A = dyn_cast<Archive>(&Binary))
dumpArchive(A);
else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
dumpObject(O);
else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
parseInputMachO(UB);
else
reportError(errorCodeToError(object_error::invalid_file_type), file);
}
template <typename T>
static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
T &Value) {
if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
StringRef V(A->getValue());
if (!llvm::to_integer(V, Value, 0)) {
reportCmdLineError(A->getSpelling() +
": expected a non-negative integer, but got '" + V +
"'");
}
}
}
static void invalidArgValue(const opt::Arg *A) {
reportCmdLineError("'" + StringRef(A->getValue()) +
"' is not a valid value for '" + A->getSpelling() + "'");
}
static std::vector<std::string>
commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
std::vector<std::string> Values;
for (StringRef Value : InputArgs.getAllArgValues(ID)) {
llvm::SmallVector<StringRef, 2> SplitValues;
llvm::SplitString(Value, SplitValues, ",");
for (StringRef SplitValue : SplitValues)
Values.push_back(SplitValue.str());
}
return Values;
}
static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
MachOOpt = true;
FullLeadingAddr = true;
PrintImmHex = true;
ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
LinkOptHints = InputArgs.hasArg(OTOOL_C);
if (InputArgs.hasArg(OTOOL_d))
FilterSections.push_back("__DATA,__data");
DylibId = InputArgs.hasArg(OTOOL_D);
UniversalHeaders