blob: 39abea5a76baed41f1295a2ce7d6193e28830dca [file] [log] [blame]
// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -simplify-affine-structures | FileCheck %s
// CHECK-DAG: #[[$SET_2D:.*]] = affine_set<(d0, d1) : (d0 - 100 == 0, d1 - 10 == 0, -d0 + 100 >= 0, d1 >= 0)>
// CHECK-DAG: #[[$SET_7_11:.*]] = affine_set<(d0, d1) : (d0 * 7 + d1 * 5 + 88 == 0, d0 * 5 - d1 * 11 + 60 == 0, d0 * 11 + d1 * 7 - 24 == 0, d0 * 7 + d1 * 5 + 88 == 0)>
// An external function that we will use in bodies to avoid DCE.
func private @external() -> ()
// CHECK-LABEL: func @test_gaussian_elimination_empty_set0() {
func @test_gaussian_elimination_empty_set0() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (2 == 0)>(%arg0, %arg1) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_gaussian_elimination_empty_set1() {
func @test_gaussian_elimination_empty_set1() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (1 >= 0, -1 >= 0)> (%arg0, %arg1) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_gaussian_elimination_non_empty_set2() {
func @test_gaussian_elimination_non_empty_set2() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: #[[$SET_2D]](%arg0, %arg1)
affine.if affine_set<(d0, d1) : (d0 - 100 == 0, d1 - 10 == 0, -d0 + 100 >= 0, d1 >= 0, d1 + 101 >= 0)>(%arg0, %arg1) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_gaussian_elimination_empty_set3() {
func @test_gaussian_elimination_empty_set3() {
%c7 = arith.constant 7 : index
%c11 = arith.constant 11 : index
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1)[s0, s1] : (d0 - s0 == 0, d0 + s0 == 0, s0 - 1 == 0)>(%arg0, %arg1)[%c7, %c11] {
call @external() : () -> ()
}
}
}
return
}
// Set for test case: test_gaussian_elimination_non_empty_set4
#set_2d_non_empty = affine_set<(d0, d1)[s0, s1] : (d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
d0 * 5 - d1 * 11 + s0 * 7 + s1 == 0,
d0 * 11 + d1 * 7 - s0 * 5 + s1 == 0,
d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0)>
// CHECK-LABEL: func @test_gaussian_elimination_non_empty_set4() {
func @test_gaussian_elimination_non_empty_set4() {
%c7 = arith.constant 7 : index
%c11 = arith.constant 11 : index
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: #[[$SET_7_11]](%arg0, %arg1)
affine.if #set_2d_non_empty(%arg0, %arg1)[%c7, %c11] {
call @external() : () -> ()
}
}
}
return
}
// Add invalid constraints to previous non-empty set to make it empty.
#set_2d_empty = affine_set<(d0, d1)[s0, s1] : (d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
d0 * 5 - d1 * 11 + s0 * 7 + s1 == 0,
d0 * 11 + d1 * 7 - s0 * 5 + s1 == 0,
d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
d0 - 1 == 0, d0 + 2 == 0)>
// CHECK-LABEL: func @test_gaussian_elimination_empty_set5() {
func @test_gaussian_elimination_empty_set5() {
%c7 = arith.constant 7 : index
%c11 = arith.constant 11 : index
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK-NOT: affine.if
affine.if #set_2d_empty(%arg0, %arg1)[%c7, %c11] {
call @external() : () -> ()
}
}
}
return
}
// This is an artificially created system to exercise the worst case behavior of
// FM elimination - as a safeguard against improperly constructed constraint
// systems or fuzz input.
#set_fuzz_virus = affine_set<(d0, d1, d2, d3, d4, d5) : (
1089234*d0 + 203472*d1 + 82342 >= 0,
-55*d0 + 24*d1 + 238*d2 - 234*d3 - 9743 >= 0,
-5445*d0 - 284*d1 + 23*d2 + 34*d3 - 5943 >= 0,
-5445*d0 + 284*d1 + 238*d2 - 34*d3 >= 0,
445*d0 + 284*d1 + 238*d2 + 39*d3 >= 0,
-545*d0 + 214*d1 + 218*d2 - 94*d3 >= 0,
44*d0 - 184*d1 - 231*d2 + 14*d3 >= 0,
-45*d0 + 284*d1 + 138*d2 - 39*d3 >= 0,
154*d0 - 84*d1 + 238*d2 - 34*d3 >= 0,
54*d0 - 284*d1 - 223*d2 + 384*d3 >= 0,
-55*d0 + 284*d1 + 23*d2 + 34*d3 >= 0,
54*d0 - 84*d1 + 28*d2 - 34*d3 >= 0,
54*d0 - 24*d1 - 23*d2 + 34*d3 >= 0,
-55*d0 + 24*d1 + 23*d2 + 4*d3 >= 0,
15*d0 - 84*d1 + 238*d2 - 3*d3 >= 0,
5*d0 - 24*d1 - 223*d2 + 84*d3 >= 0,
-5*d0 + 284*d1 + 23*d2 - 4*d3 >= 0,
14*d0 + 4*d2 + 7234 >= 0,
-174*d0 - 534*d2 + 9834 >= 0,
194*d0 - 954*d2 + 9234 >= 0,
47*d0 - 534*d2 + 9734 >= 0,
-194*d0 - 934*d2 + 984 >= 0,
-947*d0 - 953*d2 + 234 >= 0,
184*d0 - 884*d2 + 884 >= 0,
-174*d0 + 834*d2 + 234 >= 0,
844*d0 + 634*d2 + 9874 >= 0,
-797*d2 - 79*d3 + 257 >= 0,
2039*d0 + 793*d2 - 99*d3 - 24*d4 + 234*d5 >= 0,
78*d2 - 788*d5 + 257 >= 0,
d3 - (d5 + 97*d0) floordiv 423 >= 0,
234* (d0 + d3 mod 5 floordiv 2342) mod 2309
+ (d0 + 2038*d3) floordiv 208 >= 0,
239* (d0 + 2300 * d3) floordiv 2342
mod 2309 mod 239423 == 0,
d0 + d3 mod 2642 + (d3 + 2*d0) mod 1247
mod 2038 mod 2390 mod 2039 floordiv 55 >= 0
)>
// CHECK-LABEL: func @test_fuzz_explosion
func @test_fuzz_explosion(%arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index) {
affine.for %arg4 = 1 to 10 {
affine.for %arg5 = 1 to 100 {
affine.if #set_fuzz_virus(%arg4, %arg5, %arg0, %arg1, %arg2, %arg3) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_empty_set(%arg0: index) {
func @test_empty_set(%N : index) {
affine.for %i = 0 to 10 {
affine.for %j = 0 to 10 {
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (d0 - d1 >= 0, d1 - d0 - 1 >= 0)>(%i, %j) {
"foo"() : () -> ()
}
// CHECK-NOT: affine.if
affine.if affine_set<(d0) : (d0 >= 0, -d0 - 1 >= 0)>(%i) {
"bar"() : () -> ()
}
// CHECK-NOT: affine.if
affine.if affine_set<(d0) : (d0 >= 0, -d0 - 1 >= 0)>(%i) {
"foo"() : () -> ()
}
// CHECK-NOT: affine.if
affine.if affine_set<(d0)[s0, s1] : (d0 >= 0, -d0 + s0 - 1 >= 0, -s0 >= 0)>(%i)[%N, %N] {
"bar"() : () -> ()
}
// CHECK-NOT: affine.if
// The set below implies d0 = d1; so d1 >= d0, but d0 >= d1 + 1.
affine.if affine_set<(d0, d1, d2) : (d0 - d1 == 0, d2 - d0 >= 0, d0 - d1 - 1 >= 0)>(%i, %j, %N) {
"foo"() : () -> ()
}
// CHECK-NOT: affine.if
// The set below has rational solutions but no integer solutions; GCD test catches it.
affine.if affine_set<(d0, d1) : (d0*2 -d1*2 - 1 == 0, d0 >= 0, -d0 + 100 >= 0, d1 >= 0, -d1 + 100 >= 0)>(%i, %j) {
"foo"() : () -> ()
}
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (d1 == 0, d0 - 1 >= 0, - d0 - 1 >= 0)>(%i, %j) {
"foo"() : () -> ()
}
}
}
// The tests below test GCDTightenInequalities().
affine.for %k = 0 to 10 {
affine.for %l = 0 to 10 {
// Empty because no multiple of 8 lies between 4 and 7.
// CHECK-NOT: affine.if
affine.if affine_set<(d0) : (8*d0 - 4 >= 0, -8*d0 + 7 >= 0)>(%k) {
"foo"() : () -> ()
}
// Same as above but with equalities and inequalities.
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (d0 - 4*d1 == 0, 4*d1 - 5 >= 0, -4*d1 + 7 >= 0)>(%k, %l) {
"foo"() : () -> ()
}
// Same as above but with a combination of multiple identifiers. 4*d0 +
// 8*d1 here is a multiple of 4, and so can't lie between 9 and 11. GCD
// tightening will tighten constraints to 4*d0 + 8*d1 >= 12 and 4*d0 +
// 8*d1 <= 8; hence infeasible.
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (4*d0 + 8*d1 - 9 >= 0, -4*d0 - 8*d1 + 11 >= 0)>(%k, %l) {
"foo"() : () -> ()
}
// Same as above but with equalities added into the mix.
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1, d2) : (d0 - 4*d2 == 0, d0 + 8*d1 - 9 >= 0, -d0 - 8*d1 + 11 >= 0)>(%k, %k, %l) {
"foo"() : () -> ()
}
}
}
affine.for %m = 0 to 10 {
// CHECK-NOT: affine.if
affine.if affine_set<(d0) : (d0 mod 2 - 3 == 0)> (%m) {
"foo"() : () -> ()
}
}
return
}
// -----
// An external function that we will use in bodies to avoid DCE.
func private @external() -> ()
// CHECK-DAG: #[[$SET:.*]] = affine_set<()[s0] : (s0 >= 0, -s0 + 50 >= 0)
// CHECK-LABEL: func @simplify_set
func @simplify_set(%a : index, %b : index) {
// CHECK: affine.if #[[$SET]]
affine.if affine_set<(d0, d1) : (d0 - d1 + d1 + d0 >= 0, 2 >= 0, d0 >= 0, -d0 + 50 >= 0, -d0 + 100 >= 0)>(%a, %b) {
call @external() : () -> ()
}
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (d0 mod 2 - 1 == 0, d0 - 2 * (d0 floordiv 2) == 0)>(%a, %b) {
call @external() : () -> ()
}
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (1 >= 0, 3 >= 0)>(%a, %b) {
call @external() : () -> ()
}
return
}
// -----
// CHECK-DAG: -> (s0 * 2 + 1)
// Test "op local" simplification on affine.apply. DCE on arith.addi will not happen.
func @affine.apply(%N : index) -> index {
%v = affine.apply affine_map<(d0, d1) -> (d0 + d1 + 1)>(%N, %N)
%res = arith.addi %v, %v : index
// CHECK: affine.apply #map{{.*}}()[%arg0]
// CHECK-NEXT: arith.addi
return %res: index
}
// -----
// CHECK-LABEL: func @simplify_zero_dim_map
func @simplify_zero_dim_map(%in : memref<f32>) -> f32 {
%out = affine.load %in[] : memref<f32>
return %out : f32
}
// -----
// Tests the simplification of a semi-affine expression in various cases.
// CHECK-DAG: #[[$map0:.*]] = affine_map<()[s0, s1] -> (-(s1 floordiv s0) + 2)>
// CHECK-DAG: #[[$map1:.*]] = affine_map<()[s0, s1] -> (-(s1 floordiv s0) + 42)>
// Tests the simplification of a semi-affine expression with a modulo operation on a floordiv and multiplication.
// CHECK-LABEL: func @semiaffine_mod
func @semiaffine_mod(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + s0 * s0) mod s0)> (%arg0)[%arg1]
// CHECK: %[[CST:.*]] = arith.constant 0
return %a : index
}
// Tests the simplification of a semi-affine expression with a nested floordiv and a floordiv on modulo operation.
// CHECK-LABEL: func @semiaffine_floordiv
func @semiaffine_floordiv(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + ((2 * s0) mod (3 * s0))) floordiv s0)> (%arg0)[%arg1]
// CHECK: affine.apply #[[$map0]]()[%arg1, %arg0]
return %a : index
}
// Tests the simplification of a semi-affine expression with a ceildiv operation and a division of arith.constant 0 by a symbol.
// CHECK-LABEL: func @semiaffine_ceildiv
func @semiaffine_ceildiv(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + s0 * 42 + ((5-5) floordiv s0)) ceildiv s0)> (%arg0)[%arg1]
// CHECK: affine.apply #[[$map1]]()[%arg1, %arg0]
return %a : index
}
// Tests the simplification of a semi-affine expression with a nested ceildiv operation and further simplifications after performing ceildiv.
// CHECK-LABEL: func @semiaffine_composite_floor
func @semiaffine_composite_floor(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->(((((s0 * 2) ceildiv 4) * 5) + s0 * 42) ceildiv s0)> (%arg0)[%arg1]
// CHECK: %[[CST:.*]] = arith.constant 47
return %a : index
}
// Tests the simplification of a semi-affine expression with a modulo operation with a second operand that simplifies to symbol.
// CHECK-LABEL: func @semiaffine_unsimplified_symbol
func @semiaffine_unsimplified_symbol(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->(s0 mod (2 * s0 - s0))> (%arg0)[%arg1]
// CHECK: %[[CST:.*]] = arith.constant 0
return %a : index
}
// -----
// Two external functions that we will use in bodies to avoid DCE.
func private @external() -> ()
func private @external1() -> ()
// CHECK-LABEL: func @test_always_true_if_elimination() {
func @test_always_true_if_elimination() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
affine.if affine_set<(d0, d1) : (1 >= 0)> (%arg0, %arg1) {
call @external() : () -> ()
} else {
call @external1() : () -> ()
}
}
}
return
}
// CHECK: affine.for
// CHECK-NEXT: affine.for
// CHECK-NEXT: call @external()
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-LABEL: func @test_always_false_if_elimination() {
func @test_always_false_if_elimination() {
// CHECK: affine.for
affine.for %arg0 = 1 to 10 {
// CHECK: affine.for
affine.for %arg1 = 1 to 100 {
// CHECK: call @external1()
// CHECK-NOT: affine.if
affine.if affine_set<(d0, d1) : (-1 >= 0)> (%arg0, %arg1) {
call @external() : () -> ()
} else {
call @external1() : () -> ()
}
}
}
return
}
// Testing: affine.if is not trivially true or false, nothing happens.
// CHECK-LABEL: func @test_dimensional_if_elimination() {
func @test_dimensional_if_elimination() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: affine.if
// CHECK: } else {
affine.if affine_set<(d0, d1) : (d0-1 == 0)> (%arg0, %arg1) {
call @external() : () -> ()
} else {
call @external() : () -> ()
}
}
}
return
}
// Testing: affine.if gets removed.
// CHECK-LABEL: func @test_num_results_if_elimination
func @test_num_results_if_elimination() -> index {
// CHECK: %[[zero:.*]] = arith.constant 0 : index
%zero = arith.constant 0 : index
%0 = affine.if affine_set<() : ()> () -> index {
affine.yield %zero : index
} else {
affine.yield %zero : index
}
// CHECK-NEXT: return %[[zero]] : index
return %0 : index
}
// Three more test functions involving affine.if operations which are
// returning results:
// Testing: affine.if gets removed. `Else` block get promoted.
// CHECK-LABEL: func @test_trivially_false_returning_two_results
// CHECK-SAME: (%[[arg0:.*]]: index)
func @test_trivially_false_returning_two_results(%arg0: index) -> (index, index) {
// CHECK: %[[c7:.*]] = arith.constant 7 : index
// CHECK: %[[c13:.*]] = arith.constant 13 : index
%c7 = arith.constant 7 : index
%c13 = arith.constant 13 : index
// CHECK: %[[c2:.*]] = arith.constant 2 : index
// CHECK: %[[c3:.*]] = arith.constant 3 : index
%res:2 = affine.if affine_set<(d0, d1) : (5 >= 0, -2 >= 0)> (%c7, %c13) -> (index, index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
affine.yield %c0, %c1 : index, index
} else {
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
affine.yield %c7, %arg0 : index, index
}
// CHECK-NEXT: return %[[c7]], %[[arg0]] : index, index
return %res#0, %res#1 : index, index
}
// Testing: affine.if gets removed. `Then` block get promoted.
// CHECK-LABEL: func @test_trivially_true_returning_five_results
func @test_trivially_true_returning_five_results() -> (index, index, index, index, index) {
// CHECK: %[[c12:.*]] = arith.constant 12 : index
// CHECK: %[[c13:.*]] = arith.constant 13 : index
%c12 = arith.constant 12 : index
%c13 = arith.constant 13 : index
// CHECK: %[[c0:.*]] = arith.constant 0 : index
// CHECK: %[[c1:.*]] = arith.constant 1 : index
// CHECK: %[[c2:.*]] = arith.constant 2 : index
// CHECK: %[[c3:.*]] = arith.constant 3 : index
// CHECK: %[[c4:.*]] = arith.constant 4 : index
%res:5 = affine.if affine_set<(d0, d1) : (1 >= 0, 3 >= 0)>(%c12, %c13) -> (index, index, index, index, index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
affine.yield %c0, %c1, %c2, %c3, %c4 : index, index, index, index, index
} else {
%c5 = arith.constant 5 : index
%c6 = arith.constant 6 : index
%c7 = arith.constant 7 : index
%c8 = arith.constant 8 : index
%c9 = arith.constant 9 : index
affine.yield %c5, %c6, %c7, %c8, %c9 : index, index, index, index, index
}
// CHECK-NEXT: return %[[c0]], %[[c1]], %[[c2]], %[[c3]], %[[c4]] : index, index, index, index, index
return %res#0, %res#1, %res#2, %res#3, %res#4 : index, index, index, index, index
}
// Testing: affine.if doesn't get removed.
// CHECK-LABEL: func @test_not_trivially_true_or_false_returning_three_results
func @test_not_trivially_true_or_false_returning_three_results() -> (index, index, index) {
// CHECK: %[[c8:.*]] = arith.constant 8 : index
// CHECK: %[[c13:.*]] = arith.constant 13 : index
%c8 = arith.constant 8 : index
%c13 = arith.constant 13 : index
// CHECK: affine.if
%res:3 = affine.if affine_set<(d0, d1) : (d0 - 1 == 0)>(%c8, %c13) -> (index, index, index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
affine.yield %c0, %c1, %c2 : index, index, index
// CHECK: } else {
} else {
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
%c5 = arith.constant 5 : index
affine.yield %c3, %c4, %c5 : index, index, index
}
return %res#0, %res#1, %res#2 : index, index, index
}
// -----
// Test simplification of mod expressions.
// CHECK-DAG: #[[$MOD:.*]] = affine_map<()[s0, s1, s2, s3, s4] -> (s3 + s4 * s1 + (s0 - s1) mod s2)>
// CHECK-DAG: #[[$SIMPLIFIED_MOD_RHS:.*]] = affine_map<()[s0, s1, s2, s3] -> (s3 mod (s2 - s0 * s1))>
// CHECK-DAG: #[[$MODULO_AND_PRODUCT:.*]] = affine_map<()[s0, s1, s2, s3] -> (s0 * s1 + s3 - (-s0 + s3) mod s2)>
// CHECK-LABEL: func @semiaffine_simplification_mod
// CHECK-SAME: (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: index)
func @semiaffine_simplification_mod(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index) -> (index, index, index) {
%a = affine.apply affine_map<(d0, d1)[s0, s1, s2, s3] -> ((-(d1 * s0 - (s0 - s1) mod s2) + s3) + (d0 * s1 + d1 * s0))>(%arg0, %arg1)[%arg2, %arg3, %arg4, %arg5]
%b = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> (d0 mod (s0 - s1 * s2 + s3 - s0))>(%arg0)[%arg0, %arg1, %arg2, %arg3]
%c = affine.apply affine_map<(d0)[s0, s1, s2] -> (d0 + (d0 + s0) mod s2 + s0 * s1 - (d0 + s0) mod s2 - (d0 - s0) mod s2)>(%arg0)[%arg1, %arg2, %arg3]
return %a, %b, %c : index, index, index
}
// CHECK-NEXT: %[[RESULT0:.*]] = affine.apply #[[$MOD]]()[%[[ARG2]], %[[ARG3]], %[[ARG4]], %[[ARG5]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT1:.*]] = affine.apply #[[$SIMPLIFIED_MOD_RHS]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT2:.*]] = affine.apply #[[$MODULO_AND_PRODUCT]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: return %[[RESULT0]], %[[RESULT1]], %[[RESULT2]]
// -----
// Test simplification of floordiv and ceildiv expressions.
// CHECK-DAG: #[[$SIMPLIFIED_FLOORDIV_RHS:.*]] = affine_map<()[s0, s1, s2, s3] -> (s3 floordiv (s2 - s0 * s1))>
// CHECK-DAG: #[[$FLOORDIV:.*]] = affine_map<()[s0, s1, s2, s3] -> (s0 + s3 + (s0 - s1) floordiv s2)>
// CHECK-DAG: #[[$SIMPLIFIED_CEILDIV_RHS:.*]] = affine_map<()[s0, s1, s2, s3] -> (s3 ceildiv (s2 - s0 * s1))>
// CHECK-LABEL: func @semiaffine_simplification_floordiv_and_ceildiv
// CHECK-SAME: (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index)
func @semiaffine_simplification_floordiv_and_ceildiv(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index) -> (index, index, index) {
%a = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> (d0 floordiv (s0 - s1 * s2 + s3 - s0))>(%arg0)[%arg0, %arg1, %arg2, %arg3]
%b = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> ((-(d0 * s1 - (s0 - s1) floordiv s2) + s3) + (d0 * s1 + s0))>(%arg0)[%arg1, %arg2, %arg3, %arg4]
%c = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> (d0 ceildiv (s0 - s1 * s2 + s3 - s0))>(%arg0)[%arg0, %arg1, %arg2, %arg3]
return %a, %b, %c : index, index, index
}
// CHECK-NEXT: %[[RESULT0:.*]] = affine.apply #[[$SIMPLIFIED_FLOORDIV_RHS]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT1:.*]] = affine.apply #[[$FLOORDIV]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG4]]]
// CHECK-NEXT: %[[RESULT2:.*]] = affine.apply #[[$SIMPLIFIED_CEILDIV_RHS]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: return %[[RESULT0]], %[[RESULT1]], %[[RESULT2]]
// -----
// Test simplification of product expressions.
// CHECK-DAG: #[[$PRODUCT:.*]] = affine_map<()[s0, s1, s2, s3, s4] -> (s3 + s4 + (s0 - s1) * s2)>
// CHECK-DAG: #[[$SUM_OF_PRODUCTS:.*]] = affine_map<()[s0, s1, s2, s3, s4] -> (s2 * s0 + s2 + s3 * s0 + s3 * s1 + s3 + s4 * s1 + s4)>
// CHECK-LABEL: func @semiaffine_simplification_product
// CHECK-SAME: (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: index)
func @semiaffine_simplification_product(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index) -> (index, index) {
%a = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> ((-(s0 - (s0 - s1) * s2) + s3) + (d0 + s0))>(%arg0)[%arg1, %arg2, %arg3, %arg4]
%b = affine.apply affine_map<(d0, d1, d2)[s0, s1] -> (d0 + d1 * s1 + d1 + d0 * s0 + d1 * s0 + d2 * s1 + d2)>(%arg0, %arg1, %arg2)[%arg3, %arg4]
return %a, %b : index, index
}
// CHECK-NEXT: %[[RESULT0:.*]] = affine.apply #[[$PRODUCT]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG4]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT1:.*]] = affine.apply #[[$SUM_OF_PRODUCTS]]()[%[[ARG3]], %[[ARG4]], %[[ARG0]], %[[ARG1]], %[[ARG2]]]
// CHECK-NEXT: return %[[RESULT0]], %[[RESULT1]]
// -----
// CHECK-DAG: #[[$SIMPLIFIED_MAP:.*]] = affine_map<()[s0, s1, s2, s3] -> ((-s0 + s2 + s3) mod (s0 + s1))>
// CHECK-LABEL: func @semi_affine_simplification_euclidean_lemma
// CHECK-SAME: (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: index)
func @semi_affine_simplification_euclidean_lemma(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index) -> (index, index) {
%a = affine.apply affine_map<(d0, d1)[s0, s1] -> ((d0 + d1) - ((d0 + d1) floordiv (s0 - s1)) * (s0 - s1) - (d0 + d1) mod (s0 - s1))>(%arg0, %arg1)[%arg2, %arg3]
%b = affine.apply affine_map<(d0, d1)[s0, s1] -> ((d0 + d1 - s0) - ((d0 + d1 - s0) floordiv (s0 + s1)) * (s0 + s1))>(%arg0, %arg1)[%arg2, %arg3]
return %a, %b : index, index
}
// CHECK-NEXT: %[[ZERO:.*]] = arith.constant 0 : index
// CHECK-NEXT: %[[RESULT:.*]] = affine.apply #[[$SIMPLIFIED_MAP]]()[%[[ARG2]], %[[ARG3]], %[[ARG0]], %[[ARG1]]]
// CHECK-NEXT: return %[[ZERO]], %[[RESULT]]