blob: 0ba602d9df4085da69b14aaa7f3ff070dc40fed8 [file] [log] [blame]
// RUN: mlir-opt %s -affine-loop-normalize -split-input-file | FileCheck %s
// Normalize steps to 1 and lower bounds to 0.
// CHECK-DAG: [[$MAP0:#map[0-9]+]] = affine_map<(d0) -> (d0 * 3)>
// CHECK-DAG: [[$MAP1:#map[0-9]+]] = affine_map<(d0) -> (d0 * 2 + 1)>
// CHECK-DAG: [[$MAP2:#map[0-9]+]] = affine_map<(d0, d1) -> (d0 + d1)>
// CHECK-LABEL: func @normalize_parallel()
func @normalize_parallel() {
%cst = arith.constant 1.0 : f32
%0 = memref.alloc() : memref<2x4xf32>
// CHECK: affine.parallel (%[[i0:.*]], %[[j0:.*]]) = (0, 0) to (4, 2)
affine.parallel (%i, %j) = (0, 1) to (10, 5) step (3, 2) {
// CHECK: %[[i1:.*]] = affine.apply [[$MAP0]](%[[i0]])
// CHECK: %[[j1:.*]] = affine.apply [[$MAP1]](%[[j0]])
// CHECK: affine.parallel (%[[k0:.*]]) = (0) to (%[[j1]] - %[[i1]])
affine.parallel (%k) = (%i) to (%j) {
// CHECK: %[[k1:.*]] = affine.apply [[$MAP2]](%[[i1]], %[[k0]])
// CHECK: affine.store %{{.*}}, %{{.*}}[%[[i1]], %[[k1]]] : memref<2x4xf32>
affine.store %cst, %0[%i, %k] : memref<2x4xf32>
}
}
return
}
// -----
// Check that single iteration loop is removed and its body is promoted to the
// parent block.
// CHECK-LABEL: func @single_iteration_loop
func @single_iteration_loop(%in: memref<1xf32>, %out: memref<1xf32>) {
affine.for %i = 0 to 1 {
%1 = affine.load %in[%i] : memref<1xf32>
affine.store %1, %out[%i] : memref<1xf32>
}
return
}
// CHECK-NOT: affine.for
// CHECK: affine.load
// CHECK-NEXT: affine.store
// CHECK-NEXT: return
// -----
// CHECK-DAG: [[$IV0:#map[0-9]+]] = affine_map<(d0) -> (d0 * 2 + 2)>
// CHECK-DAG: [[$IV1:#map[0-9]+]] = affine_map<(d0) -> (d0 * 3)>
// CHECK-LABEL: func @simple_loop_nest()
// CHECK-NEXT: affine.for %[[I:.*]] = 0 to 15 {
// CHECK-NEXT: %[[IIV:.*]] = affine.apply [[$IV0]](%[[I]])
// CHECK-NEXT: affine.for %[[II:.*]] = 0 to 11 {
// CHECK-NEXT: %[[IIIV:.*]] = affine.apply [[$IV1]](%[[II]])
// CHECK-NEXT: "test.foo"(%[[IIV]], %[[IIIV]])
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
func @simple_loop_nest(){
affine.for %i0 = 2 to 32 step 2 {
affine.for %i1 = 0 to 32 step 3 {
"test.foo"(%i0, %i1) : (index, index) -> ()
}
}
return
}
// -----
// CHECK-DAG: [[$IV00:#map[0-9]+]] = affine_map<(d0) -> (d0 * 32 + 2)>
// CHECK-DAG: [[$IV11:#map[0-9]+]] = affine_map<(d0) -> (d0 * 2)>
// CHECK-DAG: [[$UB00:#map[0-9]+]] = affine_map<()[s0] -> ((s0 - 2) ceildiv 32)>
// CHECK-DAG: [[$UB11:#map[0-9]+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
// CHECK-LABEL: func @loop_with_unknown_upper_bound
// CHECK-SAME: (%[[ARG0:.*]]: memref<?x?xf32>, %[[ARG1:.*]]: index)
// CHECK-NEXT: %{{.*}} = arith.constant 0 : index
// CHECK-NEXT: %[[DIM:.*]] = memref.dim %arg0, %c0 : memref<?x?xf32>
// CHECK-NEXT: affine.for %[[I:.*]] = 0 to [[$UB00]]()[%[[DIM]]] {
// CHECK-NEXT: %[[IIV:.*]] = affine.apply [[$IV00]](%[[I]])
// CHECK-NEXT: affine.for %[[II:.*]] = 0 to [[$UB11]]()[%[[ARG1]]] {
// CHECK-NEXT: %[[IIIV:.*]] = affine.apply [[$IV11]](%[[II]])
// CHECK-NEXT: "test.foo"(%[[IIV]], %[[IIIV]])
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
func @loop_with_unknown_upper_bound(%arg0: memref<?x?xf32>, %arg1: index) {
%c0 = arith.constant 0 : index
%0 = memref.dim %arg0, %c0 : memref<?x?xf32>
affine.for %i0 = 2 to %0 step 32 {
affine.for %i1 = 0 to %arg1 step 2 {
"test.foo"(%i0, %i1) : (index, index) -> ()
}
}
return
}
// -----
// CHECK-DAG: [[$OUTERIV:#map[0-9]+]] = affine_map<(d0) -> (d0 * 32 + 2)>
// CHECK-DAG: [[$INNERIV:#map[0-9]+]] = affine_map<(d0) -> (d0 + 2)>
// CHECK-DAG: [[$OUTERUB:#map[0-9]+]] = affine_map<()[s0] -> ((s0 - 2) ceildiv 32)>
// CHECK-DAG: [[$INNERUB:#map[0-9]+]] = affine_map<(d0) -> (d0 - 2, 510)>
// CHECK-LABEL: func @loop_with_multiple_upper_bounds
// CHECK-SAME: (%[[ARG0:.*]]: memref<?x?xf32>, %[[ARG1:.*]]: index)
// CHECK-NEXT: %{{.*}} = arith.constant 0 : index
// CHECK-NEXT: %[[DIM:.*]] = memref.dim %arg0, %c0 : memref<?x?xf32>
// CHECK-NEXT: affine.for %[[I:.*]] = 0 to [[$OUTERUB]]()[%[[DIM]]] {
// CHECK-NEXT: %[[IIV:.*]] = affine.apply [[$OUTERIV]](%[[I]])
// CHECK-NEXT: affine.for %[[II:.*]] = 0 to min [[$INNERUB]](%[[ARG1]]) {
// CHECK-NEXT: %[[IIIV:.*]] = affine.apply [[$INNERIV]](%[[II]])
// CHECK-NEXT: "test.foo"(%[[IIV]], %[[IIIV]])
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
func @loop_with_multiple_upper_bounds(%arg0: memref<?x?xf32>, %arg1 : index) {
%c0 = arith.constant 0 : index
%0 = memref.dim %arg0, %c0 : memref<?x?xf32>
affine.for %i0 = 2 to %0 step 32{
affine.for %i1 = 2 to min affine_map<(d0)[] -> (d0, 512)>(%arg1) {
"test.foo"(%i0, %i1) : (index, index) -> ()
}
}
return
}
// -----
// CHECK-DAG: [[$INTERUB:#map[0-9]+]] = affine_map<()[s0] -> (s0 ceildiv 32)>
// CHECK-DAG: [[$INTERIV:#map[0-9]+]] = affine_map<(d0) -> (d0 * 32)>
// CHECK-DAG: [[$INTRAUB:#map[0-9]+]] = affine_map<(d0, d1)[s0] -> (32, -d0 + s0)>
// CHECK-DAG: [[$INTRAIV:#map[0-9]+]] = affine_map<(d0, d1) -> (d1 + d0)>
// CHECK-LABEL: func @tiled_matmul
// CHECK-SAME: (%[[ARG0:.*]]: memref<1024x1024xf32>, %[[ARG1:.*]]: memref<1024x1024xf32>, %[[ARG2:.*]]: memref<1024x1024xf32>)
// CHECK-NEXT: %{{.*}} = arith.constant 0 : index
// CHECK-NEXT: %{{.*}} = arith.constant 1 : index
// CHECK-NEXT: %[[DIM0:.*]] = memref.dim %[[ARG0]], %{{.*}}
// CHECK-NEXT: %[[DIM1:.*]] = memref.dim %[[ARG1]], %{{.*}}
// CHECK-NEXT: %[[DIM2:.*]] = memref.dim %[[ARG0]], %{{.*}}
// CHECK-NEXT: affine.for %[[I:.*]] = 0 to [[$INTERUB]]()[%[[DIM0]]] {
// CHECK-NEXT: %[[IIV:.*]] = affine.apply [[$INTERIV]](%[[I]])
// CHECK-NEXT: affine.for %[[J:.*]] = 0 to [[$INTERUB]]()[%[[DIM1]]] {
// CHECK-NEXT: %[[JIV:.*]] = affine.apply [[$INTERIV]](%[[J]])
// CHECK-NEXT: affine.for %[[K:.*]] = 0 to [[$INTERUB]]()[%[[DIM2]]] {
// CHECK-NEXT: %[[KIV:.*]] = affine.apply [[$INTERIV]](%[[K]])
// CHECK-NEXT: affine.for %[[II:.*]] = 0 to min [[$INTRAUB]](%[[IIV]], %[[IIV]])[%[[DIM0]]] {
// CHECK-NEXT: %[[IIIV:.*]] = affine.apply [[$INTRAIV]](%[[IIV]], %[[II]])
// CHECK-NEXT: affine.for %[[JJ:.*]] = 0 to min [[$INTRAUB]](%[[JIV]], %[[JIV]])[%[[DIM1]]] {
// CHECK-NEXT: %[[JJIV:.*]] = affine.apply [[$INTRAIV]](%[[JIV]], %[[JJ]])
// CHECK-NEXT: affine.for %[[KK:.*]] = 0 to min [[$INTRAUB]](%[[KIV]], %[[KIV]])[%[[DIM2]]] {
// CHECK-NEXT: %[[KKIV:.*]] = affine.apply [[$INTRAIV]](%[[KIV]], %[[KK]])
// CHECK-NEXT: %{{.*}} = affine.load %[[ARG0]][%[[IIIV]], %[[KKIV]]] : memref<1024x1024xf32>
// CHECK-NEXT: %{{.*}} = affine.load %[[ARG1]][%[[KKIV]], %[[JJIV]]] : memref<1024x1024xf32>
// CHECK-NEXT: %{{.*}} = affine.load %[[ARG2]][%[[IIIV]], %[[JJIV]]] : memref<1024x1024xf32>
// CHECK-NEXT: %{{.*}} = arith.mulf %9, %10 : f32
// CHECK-NEXT: %{{.*}} = arith.addf %11, %12 : f32
// CHECK-NEXT: affine.store %{{.*}}, %[[ARG2]][%6, %7] : memref<1024x1024xf32>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
#map0 = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0) -> (d0)>
#map2 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
#map3 = affine_map<() -> (0)>
#map4 = affine_map<()[s0] -> (s0)>
func @tiled_matmul(%0: memref<1024x1024xf32>, %1: memref<1024x1024xf32>, %2: memref<1024x1024xf32>) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%3 = memref.dim %0, %c0 : memref<1024x1024xf32>
%4 = memref.dim %1, %c1 : memref<1024x1024xf32>
%5 = memref.dim %0, %c1 : memref<1024x1024xf32>
affine.for %arg0 = 0 to %3 step 32 {
affine.for %arg1 = 0 to %4 step 32 {
affine.for %arg2 = 0 to %5 step 32 {
affine.for %arg3 = #map1(%arg0) to min #map2(%arg0)[%3] {
affine.for %arg4 = #map1(%arg1) to min #map2(%arg1)[%4] {
affine.for %arg5 = #map1(%arg2) to min #map2(%arg2)[%5] {
%6 = affine.load %0[%arg3, %arg5] : memref<1024x1024xf32>
%7 = affine.load %1[%arg5, %arg4] : memref<1024x1024xf32>
%8 = affine.load %2[%arg3, %arg4] : memref<1024x1024xf32>
%9 = arith.mulf %6, %7 : f32
%10 = arith.addf %8, %9 : f32
affine.store %10, %2[%arg3, %arg4] : memref<1024x1024xf32>
}
}
}
}
}
}
return
}