[CIR] Upstream DivOp for ComplexType (#153796)
This change adds support for the division operation between two complex
types
Issue: #141365
diff --git a/clang/include/clang/CIR/Dialect/IR/CIROps.td b/clang/include/clang/CIR/Dialect/IR/CIROps.td
index f237642..8ab6020 100644
--- a/clang/include/clang/CIR/Dialect/IR/CIROps.td
+++ b/clang/include/clang/CIR/Dialect/IR/CIROps.td
@@ -3185,7 +3185,7 @@
}
//===----------------------------------------------------------------------===//
-// ComplexMulOp
+// ComplexMulOp & ComplexDivOp
//===----------------------------------------------------------------------===//
def CIR_ComplexRangeKind : CIR_I32EnumAttr<
@@ -3204,12 +3204,13 @@
The `cir.complex.mul` operation takes two complex numbers and returns
their product.
- Range is used to select the implementation used when the operation
- is lowered to the LLVM dialect. For multiplication, 'improved',
- 'promoted', and 'basic' are all handled equivalently, producing the
- algebraic formula with no special handling for NaN value. If 'full' is
- used, a runtime-library function is called if one of the intermediate
- calculations produced a NaN value.
+ For complex types with floating-point components, the `range` attribute
+ specifies the algorithm to be used when the operation is lowered to
+ the LLVM dialect. For multiplication, 'improved', 'promoted', and 'basic'
+ are all handled equivalently, producing the algebraic formula with no
+ special handling for NaN value. If 'full' is used, a runtime-library
+ function is called if one of the intermediate calculations produced
+ a NaN value.
Example:
@@ -3232,6 +3233,48 @@
}];
}
+def CIR_ComplexDivOp : CIR_Op<"complex.div", [
+ Pure, SameOperandsAndResultType
+]> {
+ let summary = "Complex division";
+ let description = [{
+ The `cir.complex.div` operation takes two complex numbers and returns
+ their quotient.
+
+ For complex types with floating-point components, the `range` attribute
+ specifies the algorithm to be used when the operation is lowered to
+ the LLVM dialect. For division, 'improved' produces Smith's algorithms for
+ Complex division with no additional handling for NaN values. If 'promoted'
+ is used, the values are promoted to a higher precision type, if possible,
+ and the calculation is performed using the algebraic formula, with
+ no additional handling for NaN values. We fall back on Smith's algorithm
+ when the target doesn't support a higher precision type. If 'full' is used,
+ a runtime-library function is called if one of the intermediate
+ calculations produced a NaN value. and for 'basic' algebraic formula with
+ no additional handling for the NaN value will be used. For integers types
+ `range` attribute will be ignored.
+
+ Example:
+
+ ```mlir
+ %2 = cir.complex.div %0, %1 range(basic) : !cir.complex<!cir.float>
+ %2 = cir.complex.div %0, %1 range(full) : !cir.complex<!cir.float>
+ ```
+ }];
+
+ let arguments = (ins
+ CIR_ComplexType:$lhs,
+ CIR_ComplexType:$rhs,
+ CIR_ComplexRangeKind:$range
+ );
+
+ let results = (outs CIR_ComplexType:$result);
+
+ let assemblyFormat = [{
+ $lhs `,` $rhs `range` `(` $range `)` `:` qualified(type($result)) attr-dict
+ }];
+}
+
//===----------------------------------------------------------------------===//
// Bit Manipulation Operations
//===----------------------------------------------------------------------===//
diff --git a/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp b/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp
index 98310e6..bb1b55f 100644
--- a/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp
+++ b/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp
@@ -136,17 +136,11 @@
mlir::Value emitBinAdd(const BinOpInfo &op);
mlir::Value emitBinSub(const BinOpInfo &op);
mlir::Value emitBinMul(const BinOpInfo &op);
+ mlir::Value emitBinDiv(const BinOpInfo &op);
QualType getPromotionType(QualType ty, bool isDivOpCode = false) {
if (auto *complexTy = ty->getAs<ComplexType>()) {
QualType elementTy = complexTy->getElementType();
- if (isDivOpCode && elementTy->isFloatingType() &&
- cgf.getLangOpts().getComplexRange() ==
- LangOptions::ComplexRangeKind::CX_Promoted) {
- cgf.cgm.errorNYI("HigherPrecisionTypeForComplexArithmetic");
- return QualType();
- }
-
if (elementTy.UseExcessPrecision(cgf.getContext()))
return cgf.getContext().getComplexType(cgf.getContext().FloatTy);
}
@@ -162,13 +156,14 @@
e->getType(), e->getOpcode() == BinaryOperatorKind::BO_Div); \
mlir::Value result = emitBin##OP(emitBinOps(e, promotionTy)); \
if (!promotionTy.isNull()) \
- cgf.cgm.errorNYI("Binop emitUnPromotedValue"); \
+ result = cgf.emitUnPromotedValue(result, e->getType()); \
return result; \
}
HANDLEBINOP(Add)
HANDLEBINOP(Sub)
HANDLEBINOP(Mul)
+ HANDLEBINOP(Div)
#undef HANDLEBINOP
// Compound assignments.
@@ -866,6 +861,22 @@
return builder.createComplexCreate(op.loc, newReal, newImag);
}
+mlir::Value ComplexExprEmitter::emitBinDiv(const BinOpInfo &op) {
+ assert(!cir::MissingFeatures::fastMathFlags());
+ assert(!cir::MissingFeatures::cgFPOptionsRAII());
+
+ if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
+ mlir::isa<cir::ComplexType>(op.rhs.getType())) {
+ cir::ComplexRangeKind rangeKind =
+ getComplexRangeAttr(op.fpFeatures.getComplexRange());
+ return cir::ComplexDivOp::create(builder, op.loc, op.lhs, op.rhs,
+ rangeKind);
+ }
+
+ cgf.cgm.errorNYI("ComplexExprEmitter::emitBinDiv between Complex & Scalar");
+ return {};
+}
+
LValue CIRGenFunction::emitComplexAssignmentLValue(const BinaryOperator *e) {
assert(e->getOpcode() == BO_Assign && "Expected assign op");
@@ -962,6 +973,14 @@
convertType(promotionType));
}
+mlir::Value CIRGenFunction::emitUnPromotedValue(mlir::Value result,
+ QualType unPromotionType) {
+ assert(!mlir::cast<cir::ComplexType>(result.getType()).isIntegerComplex() &&
+ "integral complex will never be promoted");
+ return builder.createCast(cir::CastKind::float_complex, result,
+ convertType(unPromotionType));
+}
+
LValue CIRGenFunction::emitScalarCompoundAssignWithComplex(
const CompoundAssignOperator *e, mlir::Value &result) {
CompoundFunc op = getComplexOp(e->getOpcode());
diff --git a/clang/lib/CIR/CodeGen/CIRGenFunction.h b/clang/lib/CIR/CodeGen/CIRGenFunction.h
index 0ef8e7b..064b3c1 100644
--- a/clang/lib/CIR/CodeGen/CIRGenFunction.h
+++ b/clang/lib/CIR/CodeGen/CIRGenFunction.h
@@ -1379,6 +1379,8 @@
LValue emitUnaryOpLValue(const clang::UnaryOperator *e);
+ mlir::Value emitUnPromotedValue(mlir::Value result, QualType unPromotionType);
+
/// Emit a reached-unreachable diagnostic if \p loc is valid and runtime
/// checking is enabled. Otherwise, just emit an unreachable instruction.
/// \p createNewBlock indicates whether to create a new block for the IR
diff --git a/clang/lib/CIR/Dialect/Transforms/LoweringPrepare.cpp b/clang/lib/CIR/Dialect/Transforms/LoweringPrepare.cpp
index 66260eb..c15637d 100644
--- a/clang/lib/CIR/Dialect/Transforms/LoweringPrepare.cpp
+++ b/clang/lib/CIR/Dialect/Transforms/LoweringPrepare.cpp
@@ -8,7 +8,7 @@
#include "PassDetail.h"
#include "clang/AST/ASTContext.h"
-#include "clang/AST/CharUnits.h"
+#include "clang/Basic/TargetInfo.h"
#include "clang/CIR/Dialect/Builder/CIRBaseBuilder.h"
#include "clang/CIR/Dialect/IR/CIRDialect.h"
#include "clang/CIR/Dialect/IR/CIROpsEnums.h"
@@ -27,6 +27,7 @@
void runOnOp(mlir::Operation *op);
void lowerCastOp(cir::CastOp op);
+ void lowerComplexDivOp(cir::ComplexDivOp op);
void lowerComplexMulOp(cir::ComplexMulOp op);
void lowerUnaryOp(cir::UnaryOp op);
void lowerArrayDtor(cir::ArrayDtor op);
@@ -182,6 +183,280 @@
}
static llvm::StringRef
+getComplexDivLibCallName(llvm::APFloat::Semantics semantics) {
+ switch (semantics) {
+ case llvm::APFloat::S_IEEEhalf:
+ return "__divhc3";
+ case llvm::APFloat::S_IEEEsingle:
+ return "__divsc3";
+ case llvm::APFloat::S_IEEEdouble:
+ return "__divdc3";
+ case llvm::APFloat::S_PPCDoubleDouble:
+ return "__divtc3";
+ case llvm::APFloat::S_x87DoubleExtended:
+ return "__divxc3";
+ case llvm::APFloat::S_IEEEquad:
+ return "__divtc3";
+ default:
+ llvm_unreachable("unsupported floating point type");
+ }
+}
+
+static mlir::Value
+buildAlgebraicComplexDiv(CIRBaseBuilderTy &builder, mlir::Location loc,
+ mlir::Value lhsReal, mlir::Value lhsImag,
+ mlir::Value rhsReal, mlir::Value rhsImag) {
+ // (a+bi) / (c+di) = ((ac+bd)/(cc+dd)) + ((bc-ad)/(cc+dd))i
+ mlir::Value &a = lhsReal;
+ mlir::Value &b = lhsImag;
+ mlir::Value &c = rhsReal;
+ mlir::Value &d = rhsImag;
+
+ mlir::Value ac = builder.createBinop(loc, a, cir::BinOpKind::Mul, c); // a*c
+ mlir::Value bd = builder.createBinop(loc, b, cir::BinOpKind::Mul, d); // b*d
+ mlir::Value cc = builder.createBinop(loc, c, cir::BinOpKind::Mul, c); // c*c
+ mlir::Value dd = builder.createBinop(loc, d, cir::BinOpKind::Mul, d); // d*d
+ mlir::Value acbd =
+ builder.createBinop(loc, ac, cir::BinOpKind::Add, bd); // ac+bd
+ mlir::Value ccdd =
+ builder.createBinop(loc, cc, cir::BinOpKind::Add, dd); // cc+dd
+ mlir::Value resultReal =
+ builder.createBinop(loc, acbd, cir::BinOpKind::Div, ccdd);
+
+ mlir::Value bc = builder.createBinop(loc, b, cir::BinOpKind::Mul, c); // b*c
+ mlir::Value ad = builder.createBinop(loc, a, cir::BinOpKind::Mul, d); // a*d
+ mlir::Value bcad =
+ builder.createBinop(loc, bc, cir::BinOpKind::Sub, ad); // bc-ad
+ mlir::Value resultImag =
+ builder.createBinop(loc, bcad, cir::BinOpKind::Div, ccdd);
+ return builder.createComplexCreate(loc, resultReal, resultImag);
+}
+
+static mlir::Value
+buildRangeReductionComplexDiv(CIRBaseBuilderTy &builder, mlir::Location loc,
+ mlir::Value lhsReal, mlir::Value lhsImag,
+ mlir::Value rhsReal, mlir::Value rhsImag) {
+ // Implements Smith's algorithm for complex division.
+ // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962).
+
+ // Let:
+ // - lhs := a+bi
+ // - rhs := c+di
+ // - result := lhs / rhs = e+fi
+ //
+ // The algorithm pseudocode looks like follows:
+ // if fabs(c) >= fabs(d):
+ // r := d / c
+ // tmp := c + r*d
+ // e = (a + b*r) / tmp
+ // f = (b - a*r) / tmp
+ // else:
+ // r := c / d
+ // tmp := d + r*c
+ // e = (a*r + b) / tmp
+ // f = (b*r - a) / tmp
+
+ mlir::Value &a = lhsReal;
+ mlir::Value &b = lhsImag;
+ mlir::Value &c = rhsReal;
+ mlir::Value &d = rhsImag;
+
+ auto trueBranchBuilder = [&](mlir::OpBuilder &, mlir::Location) {
+ mlir::Value r = builder.createBinop(loc, d, cir::BinOpKind::Div,
+ c); // r := d / c
+ mlir::Value rd = builder.createBinop(loc, r, cir::BinOpKind::Mul, d); // r*d
+ mlir::Value tmp = builder.createBinop(loc, c, cir::BinOpKind::Add,
+ rd); // tmp := c + r*d
+
+ mlir::Value br = builder.createBinop(loc, b, cir::BinOpKind::Mul, r); // b*r
+ mlir::Value abr =
+ builder.createBinop(loc, a, cir::BinOpKind::Add, br); // a + b*r
+ mlir::Value e = builder.createBinop(loc, abr, cir::BinOpKind::Div, tmp);
+
+ mlir::Value ar = builder.createBinop(loc, a, cir::BinOpKind::Mul, r); // a*r
+ mlir::Value bar =
+ builder.createBinop(loc, b, cir::BinOpKind::Sub, ar); // b - a*r
+ mlir::Value f = builder.createBinop(loc, bar, cir::BinOpKind::Div, tmp);
+
+ mlir::Value result = builder.createComplexCreate(loc, e, f);
+ builder.createYield(loc, result);
+ };
+
+ auto falseBranchBuilder = [&](mlir::OpBuilder &, mlir::Location) {
+ mlir::Value r = builder.createBinop(loc, c, cir::BinOpKind::Div,
+ d); // r := c / d
+ mlir::Value rc = builder.createBinop(loc, r, cir::BinOpKind::Mul, c); // r*c
+ mlir::Value tmp = builder.createBinop(loc, d, cir::BinOpKind::Add,
+ rc); // tmp := d + r*c
+
+ mlir::Value ar = builder.createBinop(loc, a, cir::BinOpKind::Mul, r); // a*r
+ mlir::Value arb =
+ builder.createBinop(loc, ar, cir::BinOpKind::Add, b); // a*r + b
+ mlir::Value e = builder.createBinop(loc, arb, cir::BinOpKind::Div, tmp);
+
+ mlir::Value br = builder.createBinop(loc, b, cir::BinOpKind::Mul, r); // b*r
+ mlir::Value bra =
+ builder.createBinop(loc, br, cir::BinOpKind::Sub, a); // b*r - a
+ mlir::Value f = builder.createBinop(loc, bra, cir::BinOpKind::Div, tmp);
+
+ mlir::Value result = builder.createComplexCreate(loc, e, f);
+ builder.createYield(loc, result);
+ };
+
+ auto cFabs = builder.create<cir::FAbsOp>(loc, c);
+ auto dFabs = builder.create<cir::FAbsOp>(loc, d);
+ cir::CmpOp cmpResult =
+ builder.createCompare(loc, cir::CmpOpKind::ge, cFabs, dFabs);
+ auto ternary = builder.create<cir::TernaryOp>(
+ loc, cmpResult, trueBranchBuilder, falseBranchBuilder);
+
+ return ternary.getResult();
+}
+
+static mlir::Type higherPrecisionElementTypeForComplexArithmetic(
+ mlir::MLIRContext &context, clang::ASTContext &cc,
+ CIRBaseBuilderTy &builder, mlir::Type elementType) {
+
+ auto getHigherPrecisionFPType = [&context](mlir::Type type) -> mlir::Type {
+ if (mlir::isa<cir::FP16Type>(type))
+ return cir::SingleType::get(&context);
+
+ if (mlir::isa<cir::SingleType>(type) || mlir::isa<cir::BF16Type>(type))
+ return cir::DoubleType::get(&context);
+
+ if (mlir::isa<cir::DoubleType>(type))
+ return cir::LongDoubleType::get(&context, type);
+
+ return type;
+ };
+
+ auto getFloatTypeSemantics =
+ [&cc](mlir::Type type) -> const llvm::fltSemantics & {
+ const clang::TargetInfo &info = cc.getTargetInfo();
+ if (mlir::isa<cir::FP16Type>(type))
+ return info.getHalfFormat();
+
+ if (mlir::isa<cir::BF16Type>(type))
+ return info.getBFloat16Format();
+
+ if (mlir::isa<cir::SingleType>(type))
+ return info.getFloatFormat();
+
+ if (mlir::isa<cir::DoubleType>(type))
+ return info.getDoubleFormat();
+
+ if (mlir::isa<cir::LongDoubleType>(type)) {
+ if (cc.getLangOpts().OpenMP && cc.getLangOpts().OpenMPIsTargetDevice)
+ llvm_unreachable("NYI Float type semantics with OpenMP");
+ return info.getLongDoubleFormat();
+ }
+
+ if (mlir::isa<cir::FP128Type>(type)) {
+ if (cc.getLangOpts().OpenMP && cc.getLangOpts().OpenMPIsTargetDevice)
+ llvm_unreachable("NYI Float type semantics with OpenMP");
+ return info.getFloat128Format();
+ }
+
+ assert(false && "Unsupported float type semantics");
+ };
+
+ const mlir::Type higherElementType = getHigherPrecisionFPType(elementType);
+ const llvm::fltSemantics &elementTypeSemantics =
+ getFloatTypeSemantics(elementType);
+ const llvm::fltSemantics &higherElementTypeSemantics =
+ getFloatTypeSemantics(higherElementType);
+
+ // Check that the promoted type can handle the intermediate values without
+ // overflowing. This can be interpreted as:
+ // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal) * 2 <=
+ // LargerType.LargestFiniteVal.
+ // In terms of exponent it gives this formula:
+ // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal
+ // doubles the exponent of SmallerType.LargestFiniteVal)
+ if (llvm::APFloat::semanticsMaxExponent(elementTypeSemantics) * 2 + 1 <=
+ llvm::APFloat::semanticsMaxExponent(higherElementTypeSemantics)) {
+ return higherElementType;
+ }
+
+ // The intermediate values can't be represented in the promoted type
+ // without overflowing.
+ return {};
+}
+
+static mlir::Value
+lowerComplexDiv(LoweringPreparePass &pass, CIRBaseBuilderTy &builder,
+ mlir::Location loc, cir::ComplexDivOp op, mlir::Value lhsReal,
+ mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag,
+ mlir::MLIRContext &mlirCx, clang::ASTContext &cc) {
+ cir::ComplexType complexTy = op.getType();
+ if (mlir::isa<cir::FPTypeInterface>(complexTy.getElementType())) {
+ cir::ComplexRangeKind range = op.getRange();
+ if (range == cir::ComplexRangeKind::Improved)
+ return buildRangeReductionComplexDiv(builder, loc, lhsReal, lhsImag,
+ rhsReal, rhsImag);
+
+ if (range == cir::ComplexRangeKind::Full)
+ return buildComplexBinOpLibCall(pass, builder, &getComplexDivLibCallName,
+ loc, complexTy, lhsReal, lhsImag, rhsReal,
+ rhsImag);
+
+ if (range == cir::ComplexRangeKind::Promoted) {
+ mlir::Type originalElementType = complexTy.getElementType();
+ mlir::Type higherPrecisionElementType =
+ higherPrecisionElementTypeForComplexArithmetic(mlirCx, cc, builder,
+ originalElementType);
+
+ if (!higherPrecisionElementType)
+ return buildRangeReductionComplexDiv(builder, loc, lhsReal, lhsImag,
+ rhsReal, rhsImag);
+
+ cir::CastKind floatingCastKind = cir::CastKind::floating;
+ lhsReal = builder.createCast(floatingCastKind, lhsReal,
+ higherPrecisionElementType);
+ lhsImag = builder.createCast(floatingCastKind, lhsImag,
+ higherPrecisionElementType);
+ rhsReal = builder.createCast(floatingCastKind, rhsReal,
+ higherPrecisionElementType);
+ rhsImag = builder.createCast(floatingCastKind, rhsImag,
+ higherPrecisionElementType);
+
+ mlir::Value algebraicResult = buildAlgebraicComplexDiv(
+ builder, loc, lhsReal, lhsImag, rhsReal, rhsImag);
+
+ mlir::Value resultReal = builder.createComplexReal(loc, algebraicResult);
+ mlir::Value resultImag = builder.createComplexImag(loc, algebraicResult);
+
+ mlir::Value finalReal =
+ builder.createCast(floatingCastKind, resultReal, originalElementType);
+ mlir::Value finalImag =
+ builder.createCast(floatingCastKind, resultImag, originalElementType);
+ return builder.createComplexCreate(loc, finalReal, finalImag);
+ }
+ }
+
+ return buildAlgebraicComplexDiv(builder, loc, lhsReal, lhsImag, rhsReal,
+ rhsImag);
+}
+
+void LoweringPreparePass::lowerComplexDivOp(cir::ComplexDivOp op) {
+ cir::CIRBaseBuilderTy builder(getContext());
+ builder.setInsertionPointAfter(op);
+ mlir::Location loc = op.getLoc();
+ mlir::TypedValue<cir::ComplexType> lhs = op.getLhs();
+ mlir::TypedValue<cir::ComplexType> rhs = op.getRhs();
+ mlir::Value lhsReal = builder.createComplexReal(loc, lhs);
+ mlir::Value lhsImag = builder.createComplexImag(loc, lhs);
+ mlir::Value rhsReal = builder.createComplexReal(loc, rhs);
+ mlir::Value rhsImag = builder.createComplexImag(loc, rhs);
+
+ mlir::Value loweredResult =
+ lowerComplexDiv(*this, builder, loc, op, lhsReal, lhsImag, rhsReal,
+ rhsImag, getContext(), *astCtx);
+ op.replaceAllUsesWith(loweredResult);
+ op.erase();
+}
+
+static llvm::StringRef
getComplexMulLibCallName(llvm::APFloat::Semantics semantics) {
switch (semantics) {
case llvm::APFloat::S_IEEEhalf:
@@ -412,6 +687,8 @@
lowerArrayDtor(arrayDtor);
else if (auto cast = mlir::dyn_cast<cir::CastOp>(op))
lowerCastOp(cast);
+ else if (auto complexDiv = mlir::dyn_cast<cir::ComplexDivOp>(op))
+ lowerComplexDivOp(complexDiv);
else if (auto complexMul = mlir::dyn_cast<cir::ComplexMulOp>(op))
lowerComplexMulOp(complexMul);
else if (auto unary = mlir::dyn_cast<cir::UnaryOp>(op))
@@ -427,7 +704,7 @@
op->walk([&](mlir::Operation *op) {
if (mlir::isa<cir::ArrayCtor, cir::ArrayDtor, cir::CastOp,
- cir::ComplexMulOp, cir::UnaryOp>(op))
+ cir::ComplexMulOp, cir::ComplexDivOp, cir::UnaryOp>(op))
opsToTransform.push_back(op);
});
diff --git a/clang/test/CIR/CodeGen/complex-mul-div.cpp b/clang/test/CIR/CodeGen/complex-mul-div.cpp
index 6330805..0fb82b2 100644
--- a/clang/test/CIR/CodeGen/complex-mul-div.cpp
+++ b/clang/test/CIR/CodeGen/complex-mul-div.cpp
@@ -1,29 +1,29 @@
// complex-range basic
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -fclangir -complex-range=basic -Wno-unused-value -fclangir -emit-cir -mmlir --mlir-print-ir-before=cir-canonicalize -o %t.cir %s 2>&1 | FileCheck --check-prefix=CIR-BEFORE-BASIC %s
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=basic -Wno-unused-value -fclangir -emit-cir %s -o %t.cir
-// RUN: FileCheck --input-file=%t.cir %s --check-prefixes=CIR-AFTER-INT,CIR-AFTER-MUL-COMBINED,CIR-COMBINED
+// RUN: FileCheck --input-file=%t.cir %s --check-prefixes=CIR-AFTER-INT,CIR-AFTER-MUL-COMBINED,CIR-COMBINED,CIR-AFTER-BASIC
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=basic -Wno-unused-value -fclangir -emit-llvm %s -o %t-cir.ll
-// RUN: FileCheck --input-file=%t-cir.ll %s --check-prefixes=LLVM-INT,LLVM-MUL-COMBINED,LLVM-COMBINED
+// RUN: FileCheck --input-file=%t-cir.ll %s --check-prefixes=LLVM-INT,LLVM-MUL-COMBINED,LLVM-COMBINED,LLVM-BASIC
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=basic -Wno-unused-value -emit-llvm %s -o %t.ll
-// RUN: FileCheck --input-file=%t.ll %s --check-prefixes=OGCG-INT,OGCG-MUL-COMBINED,OGCG-COMBINED
+// RUN: FileCheck --input-file=%t.ll %s --check-prefixes=OGCG-INT,OGCG-MUL-COMBINED,OGCG-COMBINED,OGCG-BASIC
// complex-range improved
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -fclangir -complex-range=improved -Wno-unused-value -fclangir -emit-cir -mmlir --mlir-print-ir-before=cir-canonicalize -o %t.cir %s 2>&1 | FileCheck --check-prefix=CIR-BEFORE-IMPROVED %s
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=improved -Wno-unused-value -fclangir -emit-cir %s -o %t.cir
-// RUN: FileCheck --input-file=%t.cir %s --check-prefixes=CIR-AFTER-INT,CIR-AFTER-MUL-COMBINED,CIR-COMBINED
+// RUN: FileCheck --input-file=%t.cir %s --check-prefixes=CIR-AFTER-INT,CIR-AFTER-MUL-COMBINED,CIR-COMBINED,CIR-AFTER-IMPROVED
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=improved -Wno-unused-value -fclangir -emit-llvm %s -o %t-cir.ll
-// RUN: FileCheck --input-file=%t-cir.ll %s --check-prefixes=LLVM-INT,LLVM-MUL-COMBINED,LLVM-COMBINED
+// RUN: FileCheck --input-file=%t-cir.ll %s --check-prefixes=LLVM-INT,LLVM-MUL-COMBINED,LLVM-COMBINED,LLVM-IMPROVED
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=improved -Wno-unused-value -emit-llvm %s -o %t.ll
-// RUN: FileCheck --input-file=%t.ll %s --check-prefixes=OGCG-INT,OGCG-MUL-COMBINED,OGCG-COMBINED
+// RUN: FileCheck --input-file=%t.ll %s --check-prefixes=OGCG-INT,OGCG-MUL-COMBINED,OGCG-COMBINED,OGCG-IMPROVED
// complex-range promoted
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -fclangir -complex-range=promoted -Wno-unused-value -fclangir -emit-cir -mmlir --mlir-print-ir-before=cir-canonicalize -o %t.cir %s 2>&1 | FileCheck --check-prefix=CIR-BEFORE-PROMOTED %s
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=promoted -Wno-unused-value -fclangir -emit-cir %s -o %t.cir
-// RUN: FileCheck --input-file=%t.cir %s --check-prefixes=CIR-AFTER-INT,CIR-AFTER-MUL-COMBINED,CIR-COMBINED
+// RUN: FileCheck --input-file=%t.cir %s --check-prefixes=CIR-AFTER-INT,CIR-AFTER-MUL-COMBINED,CIR-COMBINED,CIR-AFTER-PROMOTED
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=promoted -Wno-unused-value -fclangir -emit-llvm %s -o %t-cir.ll
-// RUN: FileCheck --input-file=%t-cir.ll %s --check-prefixes=LLVM-INT,LLVM-MUL-COMBINED,LLVM-COMBINED
+// RUN: FileCheck --input-file=%t-cir.ll %s --check-prefixes=LLVM-INT,LLVM-MUL-COMBINED,LLVM-COMBINED,LLVM-PROMOTED
// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -complex-range=promoted -Wno-unused-value -emit-llvm %s -o %t.ll
-// RUN: FileCheck --input-file=%t.ll %s --check-prefixes=OGCG-INT,OGCG-MUL-COMBINED,OGCG-COMBINED
+// RUN: FileCheck --input-file=%t.ll %s --check-prefixes=OGCG-INT,OGCG-MUL-COMBINED,OGCG-COMBINED,OGCG-PROMOTED
// complex-range full
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -fclangir -complex-range=full -Wno-unused-value -fclangir -emit-cir -mmlir --mlir-print-ir-before=cir-canonicalize -o %t.cir %s 2>&1 | FileCheck --check-prefix=CIR-BEFORE-FULL %s
@@ -324,3 +324,452 @@
// OGCG-COMBINED: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 1
// OGCG-COMBINED: store float %[[RESULT_REAL]], ptr %[[C_REAL_PTR]], align 4
// OGCG-COMBINED: store float %[[RESULT_IMAG]], ptr %[[C_IMAG_PTR]], align 4
+
+void foo3() {
+ float _Complex a;
+ float _Complex b;
+ float _Complex c = a / b;
+}
+
+// CIR-BEFORE-BASIC: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(basic) : !cir.complex<!cir.float>
+
+// CIR-AFTER-BASIC: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["a"]
+// CIR-AFTER-BASIC: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["b"]
+// CIR-AFTER-BASIC: %[[C_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["c", init]
+// CIR-AFTER-BASIC: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-BASIC: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-BASIC: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-BASIC: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-BASIC: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-BASIC: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-BASIC: %[[MUL_AR_BR:.*]] = cir.binop(mul, %[[A_REAL]], %[[B_REAL]]) : !cir.float
+// CIR-AFTER-BASIC: %[[MUL_AI_BI:.*]] = cir.binop(mul, %[[A_IMAG]], %[[B_IMAG]]) : !cir.float
+// CIR-AFTER-BASIC: %[[MUL_BR_BR:.*]] = cir.binop(mul, %[[B_REAL]], %[[B_REAL]]) : !cir.float
+// CIR-AFTER-BASIC: %[[MUL_BI_BI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[B_IMAG]]) : !cir.float
+// CIR-AFTER-BASIC: %[[ADD_ARBR_AIBI:.*]] = cir.binop(add, %[[MUL_AR_BR]], %[[MUL_AI_BI]]) : !cir.float
+// CIR-AFTER-BASIC: %[[ADD_BRBR_BIBI:.*]] = cir.binop(add, %[[MUL_BR_BR]], %[[MUL_BI_BI]]) : !cir.float
+// CIR-AFTER-BASIC: %[[RESULT_REAL:.*]] = cir.binop(div, %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]) : !cir.float
+// CIR-AFTER-BASIC: %[[MUL_AI_BR:.*]] = cir.binop(mul, %[[A_IMAG]], %[[B_REAL]]) : !cir.float
+// CIR-AFTER-BASIC: %[[MUL_AR_BI:.*]] = cir.binop(mul, %[[A_REAL]], %[[B_IMAG]]) : !cir.float
+// CIR-AFTER-BASIC: %[[SUB_AIBR_ARBI:.*]] = cir.binop(sub, %[[MUL_AI_BR]], %[[MUL_AR_BI]]) : !cir.float
+// CIR-AFTER-BASIC: %[[RESULT_IMAG:.*]] = cir.binop(div, %[[SUB_AIBR_ARBI]], %14) : !cir.float
+// CIR-AFTER-BASIC: %[[RESULT:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !cir.float -> !cir.complex<!cir.float>
+// CIR-AFTER-BASIC: cir.store{{.*}} %[[RESULT]], %[[C_ADDR]] : !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>
+
+// LLVM-BASIC: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-BASIC: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-BASIC: %[[C_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-BASIC: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4
+// LLVM-BASIC: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4
+// LLVM-BASIC: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0
+// LLVM-BASIC: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1
+// LLVM-BASIC: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0
+// LLVM-BASIC: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1
+// LLVM-BASIC: %[[MUL_AR_BR:.*]] = fmul float %[[A_REAL]], %[[B_REAL]]
+// LLVM-BASIC: %[[MUL_AI_BI:.*]] = fmul float %[[A_IMAG]], %[[B_IMAG]]
+// LLVM-BASIC: %[[MUL_BR_BR:.*]] = fmul float %[[B_REAL]], %[[B_REAL]]
+// LLVM-BASIC: %[[MUL_BI_BI:.*]] = fmul float %[[B_IMAG]], %[[B_IMAG]]
+// LLVM-BASIC: %[[ADD_ARBR_AIBI:.*]] = fadd float %[[MUL_AR_BR]], %[[MUL_AI_BI]]
+// LLVM-BASIC: %[[ADD_BRBR_BIBI:.*]] = fadd float %[[MUL_BR_BR]], %[[MUL_BI_BI]]
+// LLVM-BASIC: %[[RESULT_REAL:.*]] = fdiv float %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]
+// LLVM-BASIC: %[[MUL_AI_BR:.*]] = fmul float %[[A_IMAG]], %[[B_REAL]]
+// LLVM-BASIC: %[[MUL_BR_BI:.*]] = fmul float %[[A_REAL]], %[[B_IMAG]]
+// LLVM-BASIC: %[[SUB_AIBR_BRBI:.*]] = fsub float %[[MUL_AI_BR]], %[[MUL_BR_BI]]
+// LLVM-BASIC: %[[RESULT_IMAG:.*]] = fdiv float %[[SUB_AIBR_BRBI]], %[[ADD_BRBR_BIBI]]
+// LLVM-BASIC: %[[TMP_RESULT:.*]] = insertvalue { float, float } {{.*}}, float %[[RESULT_REAL]], 0
+// LLVM-BASIC: %[[RESULT:.*]] = insertvalue { float, float } %[[TMP_RESULT]], float %[[RESULT_IMAG]], 1
+// LLVM-BASIC: store { float, float } %[[RESULT]], ptr %[[C_ADDR]], align 4
+
+// OGCG-BASIC: %[[A_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-BASIC: %[[B_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-BASIC: %[[C_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-BASIC: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
+// OGCG-BASIC: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4
+// OGCG-BASIC: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
+// OGCG-BASIC: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4
+// OGCG-BASIC: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG-BASIC: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4
+// OGCG-BASIC: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG-BASIC: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4
+// OGCG-BASIC: %[[MUL_AR_BR:.*]] = fmul float %[[A_REAL]], %[[B_REAL]]
+// OGCG-BASIC: %[[MUL_AI_BI:.*]] = fmul float %[[A_IMAG]], %[[B_IMAG]]
+// OGCG-BASIC: %[[ADD_ARBR_AIBI:.*]] = fadd float %[[MUL_AR_BR]], %[[MUL_AI_BI]]
+// OGCG-BASIC: %[[MUL_BR_BR:.*]] = fmul float %[[B_REAL]], %[[B_REAL]]
+// OGCG-BASIC: %[[MUL_BI_BI:.*]] = fmul float %[[B_IMAG]], %[[B_IMAG]]
+// OGCG-BASIC: %[[ADD_BRBR_BIBI:.*]] = fadd float %[[MUL_BR_BR]], %[[MUL_BI_BI]]
+// OGCG-BASIC: %[[MUL_AI_BR:.*]] = fmul float %[[A_IMAG]], %[[B_REAL]]
+// OGCG-BASIC: %[[MUL_AR_BI:.*]] = fmul float %[[A_REAL]], %[[B_IMAG]]
+// OGCG-BASIC: %[[SUB_AIBR_BRBI:.*]] = fsub float %[[MUL_AI_BR]], %[[MUL_AR_BI]]
+// OGCG-BASIC: %[[RESULT_REAL:.*]] = fdiv float %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]
+// OGCG-BASIC: %[[RESULT_IMAG:.*]] = fdiv float %[[SUB_AIBR_BRBI]], %[[ADD_BRBR_BIBI]]
+// OGCG-BASIC: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 0
+// OGCG-BASIC: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 1
+// OGCG-BASIC: store float %[[RESULT_REAL]], ptr %[[C_REAL_PTR]], align 4
+// OGCG-BASIC: store float %[[RESULT_IMAG]], ptr %[[C_IMAG_PTR]], align 4
+
+// CIR-BEFORE-IMPROVED: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(improved) : !cir.complex<!cir.float>
+
+// CIR-AFTER-IMPROVED: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["a"]
+// CIR-AFTER-IMPROVED: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["b"]
+// CIR-AFTER-IMPROVED: %[[C_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["c", init]
+// CIR-AFTER-IMPROVED: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-IMPROVED: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-IMPROVED: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-IMPROVED: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-IMPROVED: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-IMPROVED: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-IMPROVED: %[[ABS_B_REAL:.*]] = cir.fabs %[[B_REAL]] : !cir.float
+// CIR-AFTER-IMPROVED: %[[ABS_B_IMAG:.*]] = cir.fabs %[[B_IMAG]] : !cir.float
+// CIR-AFTER-IMPROVED: %[[ABS_B_CMP:.*]] = cir.cmp(ge, %[[ABS_B_REAL]], %[[ABS_B_IMAG]]) : !cir.float, !cir.bool
+// CIR-AFTER-IMPROVED: %[[RESULT:.*]] = cir.ternary(%[[ABS_B_CMP]], true {
+// CIR-AFTER-IMPROVED: %[[DIV_BI_BR:.*]] = cir.binop(div, %[[B_IMAG]], %[[B_REAL]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[MUL_DIV_BIBR_BI:.*]] = cir.binop(mul, %[[DIV_BI_BR]], %[[B_IMAG]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[ADD_BR_MUL_DIV_BIBR_BI:.*]] = cir.binop(add, %[[B_REAL]], %[[MUL_DIV_BIBR_BI]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[MUL_AI_DIV_BIBR:.*]] = cir.binop(mul, %[[A_IMAG]], %[[DIV_BI_BR]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[ADD_AR_MUL_AI_DIV_BIBR:.*]] = cir.binop(add, %[[A_REAL]], %[[MUL_AI_DIV_BIBR]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[RESULT_REAL:.*]] = cir.binop(div, %[[ADD_AR_MUL_AI_DIV_BIBR]], %[[ADD_BR_MUL_DIV_BIBR_BI]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[MUL_AR_DIV_BIBR:.*]] = cir.binop(mul, %[[A_REAL]], %[[DIV_BI_BR]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[SUB_AI_MUL_AR_DIV_BIBR:.*]] = cir.binop(sub, %[[A_IMAG]], %[[MUL_AR_DIV_BIBR]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[RESULT_IMAG:.*]] = cir.binop(div, %[[SUB_AI_MUL_AR_DIV_BIBR]], %[[ADD_BR_MUL_DIV_BIBR_BI]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[RESULT_COMPLEX:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !cir.float -> !cir.complex<!cir.float>
+// CIR-AFTER-IMPROVED: cir.yield %[[RESULT_COMPLEX]] : !cir.complex<!cir.float>
+// CIR-AFTER-IMPROVED: }, false {
+// CIR-AFTER-IMPROVED: %[[DIV_BR_BI:.*]] = cir.binop(div, %[[B_REAL]], %[[B_IMAG]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[MUL_DIV_BRBI_BR:.*]] = cir.binop(mul, %[[DIV_BR_BI]], %[[B_REAL]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[ADD_BI_MUL_DIV_BRBI_BR:.*]] = cir.binop(add, %[[B_IMAG]], %[[MUL_DIV_BRBI_BR]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[MUL_AR_DIV_BIBR:.*]] = cir.binop(mul, %[[A_REAL]], %[[DIV_BR_BI]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[ADD_MUL_AR_DIV_BRBI_AI:.*]] = cir.binop(add, %[[MUL_AR_DIV_BIBR]], %[[A_IMAG]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[RESULT_REAL:.*]] = cir.binop(div, %[[ADD_MUL_AR_DIV_BRBI_AI]], %[[ADD_BI_MUL_DIV_BRBI_BR]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[MUL_AI_DIV_BRBI:.*]] = cir.binop(mul, %[[A_IMAG]], %[[DIV_BR_BI]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[SUB_MUL_AI_DIV_BRBI_AR:.*]] = cir.binop(sub, %[[MUL_AI_DIV_BRBI]], %[[A_REAL]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[RESULT_IMAG:.*]] = cir.binop(div, %[[SUB_MUL_AI_DIV_BRBI_AR]], %[[ADD_BI_MUL_DIV_BRBI_BR]]) : !cir.float
+// CIR-AFTER-IMPROVED: %[[RESULT_COMPLEX:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !cir.float -> !cir.complex<!cir.float>
+// CIR-AFTER-IMPROVED: cir.yield %[[RESULT_COMPLEX]] : !cir.complex<!cir.float>
+// CIR-AFTER-IMPROVED: }) : (!cir.bool) -> !cir.complex<!cir.float>
+// CIR-AFTER-IMPROVED: cir.store{{.*}} %[[RESULT]], %[[C_ADDR]] : !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>
+
+// LLVM-IMPROVED: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-IMPROVED: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-IMPROVED: %[[C_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-IMPROVED: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4
+// LLVM-IMPROVED: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4
+// LLVM-IMPROVED: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0
+// LLVM-IMPROVED: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1
+// LLVM-IMPROVED: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0
+// LLVM-IMPROVED: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1
+// LLVM-IMPROVED: %[[ABS_B_REAL:.*]] = call float @llvm.fabs.f32(float %[[B_REAL]])
+// LLVM-IMPROVED: %[[ABS_B_IMAG:.*]] = call float @llvm.fabs.f32(float %[[B_IMAG]])
+// LLVM-IMPROVED: %[[ABS_B_CMP:.*]] = fcmp oge float %[[ABS_B_REAL]], %[[ABS_B_IMAG]]
+// LLVM-IMPROVED: br i1 %[[ABS_B_CMP]], label %[[ABS_BR_GT_ABS_BI:.*]], label %[[ABS_BR_LT_ABS_BI:.*]]
+// LLVM-IMPROVED: [[ABS_BR_GT_ABS_BI]]:
+// LLVM-IMPROVED: %[[DIV_BI_BR:.*]] = fdiv float %[[B_IMAG]], %[[B_REAL]]
+// LLVM-IMPROVED: %[[MUL_DIV_BIBR_BI:.*]] = fmul float %[[DIV_BI_BR]], %[[B_IMAG]]
+// LLVM-IMPROVED: %[[ADD_BR_MUL_DIV_BIBR_BI:.*]] = fadd float %[[B_REAL]], %[[MUL_DIV_BIBR_BI]]
+// LLVM-IMPROVED: %[[MUL_AI_DIV_BIBR:.*]] = fmul float %[[A_IMAG]], %[[DIV_BI_BR]]
+// LLVM-IMPROVED: %[[ADD_AR_MUL_AI_DIV_BIBR:.*]] = fadd float %[[A_REAL]], %[[MUL_AI_DIV_BIBR]]
+// LLVM-IMPROVED: %[[RESULT_REAL:.*]] = fdiv float %[[ADD_AR_MUL_AI_DIV_BIBR]], %16
+// LLVM-IMPROVED: %[[MUL_AR_DIV_BIBR:.*]] = fmul float %[[A_REAL]], %[[DIV_BI_BR]]
+// LLVM-IMPROVED: %[[SUB_AI_MUL_AR_DIV_BIBR:.*]] = fsub float %[[A_IMAG]], %[[MUL_AR_DIV_BIBR]]
+// LLVM-IMPROVED: %[[RESULT_IMAG:.*]] = fdiv float %[[SUB_AI_MUL_AR_DIV_BIBR]], %[[ADD_BR_MUL_DIV_BIBR_BI]]
+// LLVM-IMPROVED: %[[TMP_THEN_RESULT:.*]] = insertvalue { float, float } {{.*}}, float %[[RESULT_REAL]], 0
+// LLVM-IMPROVED: %[[THEN_RESULT:.*]] = insertvalue { float, float } %[[TMP_THEN_RESULT]], float %[[RESULT_IMAG]], 1
+// LLVM-IMPROVED: br label %[[PHI_RESULT:.*]]
+// LLVM-IMPROVED: [[ABS_BR_LT_ABS_BI]]:
+// LLVM-IMPROVED: %[[DIV_BR_BI:.*]] = fdiv float %[[B_REAL]], %[[B_IMAG]]
+// LLVM-IMPROVED: %[[MUL_DIV_BRBI_BR:.*]] = fmul float %[[DIV_BR_BI]], %[[B_REAL]]
+// LLVM-IMPROVED: %[[ADD_BI_MUL_DIV_BRBI_BR:.*]] = fadd float %[[B_IMAG]], %[[MUL_DIV_BRBI_BR]]
+// LLVM-IMPROVED: %[[MUL_AR_DIV_BRBI:.*]] = fmul float %[[A_REAL]], %[[DIV_BR_BI]]
+// LLVM-IMPROVED: %[[ADD_MUL_AR_DIV_BRBI_AI:.*]] = fadd float %[[MUL_AR_DIV_BRBI]], %[[A_IMAG]]
+// LLVM-IMPROVED: %[[RESULT_REAL:.*]] = fdiv float %[[ADD_MUL_AR_DIV_BRBI_AI]], %[[ADD_BI_MUL_DIV_BRBI_BR]]
+// LLVM-IMPROVED: %[[MUL_AI_DIV_BRBI:.*]] = fmul float %[[A_IMAG]], %[[DIV_BR_BI]]
+// LLVM-IMPROVED: %[[SUB_MUL_AI_DIV_BRBI_AR:.*]] = fsub float %[[MUL_AI_DIV_BRBI]], %[[A_REAL]]
+// LLVM-IMPROVED: %[[RESULT_IMAG:.*]] = fdiv float %[[SUB_MUL_AI_DIV_BRBI_AR]], %[[ADD_BI_MUL_DIV_BRBI_BR]]
+// LLVM-IMPROVED: %[[TMP_ELSE_RESULT:.*]] = insertvalue { float, float } {{.*}}, float %[[RESULT_REAL]], 0
+// LLVM-IMPROVED: %[[ELSE_RESULT:.*]] = insertvalue { float, float } %[[TMP_ELSE_RESULT]], float %[[RESULT_IMAG]], 1
+// LLVM-IMPROVED: br label %[[PHI_RESULT]]
+// LLVM-IMPROVED: [[PHI_RESULT]]:
+// LLVM-IMPROVED: %[[RESULT:.*]] = phi { float, float } [ %[[ELSE_RESULT]], %[[ABS_BR_LT_ABS_BI]] ], [ %[[THEN_RESULT]], %[[ABS_BR_GT_ABS_BI]] ]
+// LLVM-IMPROVED: br label %[[STORE_RESULT:.*]]
+// LLVM-IMPROVED: [[STORE_RESULT]]:
+// LLVM-IMPROVED: store { float, float } %[[RESULT]], ptr %[[C_ADDR]], align 4
+
+// OGCG-IMPROVED: %[[A_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-IMPROVED: %[[B_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-IMPROVED: %[[C_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-IMPROVED: %a.realp = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
+// OGCG-IMPROVED: %a.real = load float, ptr %a.realp, align 4
+// OGCG-IMPROVED: %a.imagp = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
+// OGCG-IMPROVED: %a.imag = load float, ptr %a.imagp, align 4
+// OGCG-IMPROVED: %b.realp = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG-IMPROVED: %b.real = load float, ptr %b.realp, align 4
+// OGCG-IMPROVED: %b.imagp = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG-IMPROVED: %b.imag = load float, ptr %b.imagp, align 4
+// OGCG-IMPROVED: %[[ABS_B_REAL:.*]] = call float @llvm.fabs.f32(float %[[B_REAL]])
+// OGCG-IMPROVED: %[[ABS_B_IMAG:.*]] = call float @llvm.fabs.f32(float %[[B_IMAG]])
+// OGCG-IMPROVED: %[[ABS_B_CMP:.*]] = fcmp ugt float %[[ABS_B_REAL]], %[[ABS_B_IMAG]]
+// OGCG-IMPROVED: br i1 %[[ABS_B_CMP]], label %[[ABS_BR_GT_ABS_BI:.*]], label %[[ABS_BR_LT_ABS_BI:.*]]
+// OGCG-IMPROVED: [[ABS_BR_GT_ABS_BI]]:
+// OGCG-IMPROVED: %[[DIV_BI_BR:.*]] = fdiv float %[[B_IMAG]], %[[B_REAL]]
+// OGCG-IMPROVED: %[[MUL_DIV_BIBR_BI:.*]] = fmul float %[[DIV_BI_BR]], %[[B_IMAG]]
+// OGCG-IMPROVED: %[[ADD_BR_MUL_DIV_BIBR_BI:.*]] = fadd float %[[B_REAL]], %[[MUL_DIV_BIBR_BI]]
+// OGCG-IMPROVED: %[[MUL_AI_DIV_BIBR:.*]] = fmul float %[[A_IMAG]], %[[DIV_BI_BR]]
+// OGCG-IMPROVED: %[[ADD_AR_MUL_AI_DIV_BIBR:.*]] = fadd float %[[A_REAL]], %[[MUL_AI_DIV_BIBR]]
+// OGCG-IMPROVED: %[[THEN_RESULT_REAL:.*]] = fdiv float %[[ADD_AR_MUL_AI_DIV_BIBR]], %[[ADD_BR_MUL_DIV_BIBR_BI]]
+// OGCG-IMPROVED: %[[MUL_AR_DIV_BI_BR:.*]] = fmul float %[[A_REAL]], %[[DIV_BI_BR]]
+// OGCG-IMPROVED: %[[SUB_AI_MUL_AR_DIV_BIBR:.*]] = fsub float %[[A_IMAG]], %[[MUL_AR_DIV_BI_BR]]
+// OGCG-IMPROVED: %[[THEN_RESULT_IMAG:.*]] = fdiv float %[[SUB_AI_MUL_AR_DIV_BIBR]], %[[ADD_BR_MUL_DIV_BIBR_BI]]
+// OGCG-IMPROVED: br label %[[STORE_RESULT:.*]]
+// OGCG-IMPROVED: [[ABS_BR_LT_ABS_BI]]:
+// OGCG-IMPROVED: %[[DIV_BR_BI:.*]] = fdiv float %[[B_REAL]], %[[B_IMAG]]
+// OGCG-IMPROVED: %[[MUL_DIV_BRBI_BR:.*]] = fmul float %[[DIV_BR_BI]], %[[B_REAL]]
+// OGCG-IMPROVED: %[[ADD_BI_MUL_DIV_BRBI_BR:.*]] = fadd float %[[B_IMAG]], %[[MUL_DIV_BRBI_BR]]
+// OGCG-IMPROVED: %[[MUL_AR_DIV_BRBI:.*]] = fmul float %[[A_REAL]], %[[DIV_BR_BI]]
+// OGCG-IMPROVED: %[[ADD_MUL_AR_DIV_BRBI_AI:.*]] = fadd float %[[MUL_AR_DIV_BRBI]], %[[A_IMAG]]
+// OGCG-IMPROVED: %[[ELSE_RESULT_REAL:.*]] = fdiv float %[[ADD_MUL_AR_DIV_BRBI_AI]], %[[ADD_BI_MUL_DIV_BRBI_BR]]
+// OGCG-IMPROVED: %[[MUL_AI_DIV_BRBI:.*]] = fmul float %[[A_IMAG]], %[[DIV_BR_BI]]
+// OGCG-IMPROVED: %[[SUB_MUL_AI_DIV_BRBI_AR:.*]] = fsub float %[[MUL_AI_DIV_BRBI]], %[[A_REAL]]
+// OGCG-IMPROVED: %[[ELSE_RESULT_IMAG:.*]] = fdiv float %[[SUB_MUL_AI_DIV_BRBI_AR]], %[[ADD_BI_MUL_DIV_BRBI_BR]]
+// OGCG-IMPROVED: br label %[[STORE_RESULT]]
+// OGCG-IMPROVED: [[STORE_RESULT]]:
+// OGCG-IMPROVED: %[[RESULT_REAL:.*]] = phi float [ %[[THEN_RESULT_REAL]], %[[ABS_BR_GT_ABS_BI]] ], [ %[[ELSE_RESULT_REAL]], %[[ABS_BR_LT_ABS_BI]] ]
+// OGCG-IMPROVED: %[[RESULT_IMAG:.*]] = phi float [ %[[THEN_RESULT_IMAG]], %[[ABS_BR_GT_ABS_BI]] ], [ %[[ELSE_RESULT_IMAG]], %[[ABS_BR_LT_ABS_BI]] ]
+// OGCG-IMPROVED: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 0
+// OGCG-IMPROVED: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 1
+// OGCG-IMPROVED: store float %[[RESULT_REAL]], ptr %[[C_REAL_PTR]], align 4
+// OGCG-IMPROVED: store float %[[RESULT_IMAG]], ptr %[[C_IMAG_PTR]], align 4
+
+// CIR-BEFORE-PROMOTED: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(promoted) : !cir.complex<!cir.float>
+
+// CIR-AFTER-PROMOTED: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["a"]
+// CIR-AFTER-PROMOTED: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["b"]
+// CIR-AFTER-PROMOTED: %[[C_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["c", init]
+// CIR-AFTER-PROMOTED: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-PROMOTED: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-PROMOTED: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-PROMOTED: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-PROMOTED: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-PROMOTED: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-PROMOTED: %[[A_REAL_F64:.*]] = cir.cast(floating, %[[A_REAL]] : !cir.float), !cir.double
+// CIR-AFTER-PROMOTED: %[[A_IMAG_F64:.*]] = cir.cast(floating, %[[A_IMAG]] : !cir.float), !cir.double
+// CIR-AFTER-PROMOTED: %[[B_REAL_F64:.*]] = cir.cast(floating, %[[B_REAL]] : !cir.float), !cir.double
+// CIR-AFTER-PROMOTED: %[[B_IMAG_F64:.*]] = cir.cast(floating, %[[B_IMAG]] : !cir.float), !cir.double
+// CIR-AFTER-PROMOTED: %[[MUL_AR_BR:.*]] = cir.binop(mul, %[[A_REAL_F64]], %[[B_REAL_F64]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[MUL_AI_BI:.*]] = cir.binop(mul, %[[A_IMAG_F64]], %[[B_IMAG_F64]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[MUL_BR_BR:.*]] = cir.binop(mul, %[[B_REAL_F64]], %[[B_REAL_F64]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[MUL_BI_BI:.*]] = cir.binop(mul, %[[B_IMAG_F64]], %[[B_IMAG_F64]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[ADD_ARBR_AIBI:.*]] = cir.binop(add, %[[MUL_AR_BR]], %[[MUL_AI_BI]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[ADD_BRBR_BIBI:.*]] = cir.binop(add, %[[MUL_BR_BR]], %[[MUL_BI_BI]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[RESULT_REAL:.*]] = cir.binop(div, %[[ADD_ARBR_AIBI]], %18) : !cir.double
+// CIR-AFTER-PROMOTED: %[[MUL_AI_BR:.*]] = cir.binop(mul, %[[A_IMAG_F64]], %[[B_REAL_F64]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[MUL_AR_BI:.*]] = cir.binop(mul, %[[A_REAL_F64]], %[[B_IMAG_F64]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[SUB_AIBR_ARBI:.*]] = cir.binop(sub, %[[MUL_AI_BR]], %[[MUL_AR_BI]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[RESULT_IMAG:.*]] = cir.binop(div, %[[SUB_AIBR_ARBI]], %[[ADD_BRBR_BIBI]]) : !cir.double
+// CIR-AFTER-PROMOTED: %[[RESULT_F64:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !cir.double -> !cir.complex<!cir.double>
+// CIR-AFTER-PROMOTED: %[[RESULT_REAL_F64:.*]] = cir.complex.real %[[RESULT_F64]] : !cir.complex<!cir.double> -> !cir.double
+// CIR-AFTER-PROMOTED: %[[RESULT_IMAG_F64:.*]] = cir.complex.imag %[[RESULT_F64]] : !cir.complex<!cir.double> -> !cir.double
+// CIR-AFTER-PROMOTED: %[[RESULT_REAL_F32:.*]] = cir.cast(floating, %[[RESULT_REAL_F64]] : !cir.double), !cir.float
+// CIR-AFTER-PROMOTED: %[[RESULT_IMAG_F32:.*]] = cir.cast(floating, %[[RESULT_IMAG_F64]] : !cir.double), !cir.float
+// CIR-AFTER-PROMOTED: %[[RESULT_F32:.*]] = cir.complex.create %[[RESULT_REAL_F32]], %[[RESULT_IMAG_F32]] : !cir.float -> !cir.complex<!cir.float>
+// CIR-AFTER-PROMOTED: cir.store{{.*}} %[[RESULT_F32]], %[[C_ADDR]] : !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>
+
+// LLVM-PROMOTED: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-PROMOTED: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-PROMOTED: %[[C_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-PROMOTED: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4
+// LLVM-PROMOTED: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4
+// LLVM-PROMOTED: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0
+// LLVM-PROMOTED: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1
+// LLVM-PROMOTED: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0
+// LLVM-PROMOTED: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1
+// LLVM-PROMOTED: %[[A_REAL_F64:.*]] = fpext float %[[A_REAL]] to double
+// LLVM-PROMOTED: %[[A_IMAG_F64:.*]] = fpext float %[[A_IMAG]] to double
+// LLVM-PROMOTED: %[[B_REAL_F64:.*]] = fpext float %[[B_REAL]] to double
+// LLVM-PROMOTED: %[[B_IMAG_F64:.*]] = fpext float %[[B_IMAG]] to double
+// LLVM-PROMOTED: %[[MUL_AR_BR:.*]] = fmul double %[[A_REAL_F64]], %[[B_REAL_F64]]
+// LLVM-PROMOTED: %[[MUL_AI_BI:.*]] = fmul double %[[A_IMAG_F64]], %[[B_IMAG_F64]]
+// LLVM-PROMOTED: %[[MUL_BR_BR:.*]] = fmul double %[[B_REAL_F64]], %[[B_REAL_F64]]
+// LLVM-PROMOTED: %[[MUL_BI_BI:.*]] = fmul double %[[B_IMAG_F64]], %[[B_IMAG_F64]]
+// LLVM-PROMOTED: %[[ADD_ARBR_AIBI:.*]] = fadd double %[[MUL_AR_BR]], %[[MUL_AI_BI]]
+// LLVM-PROMOTED: %[[ADD_BRBR_BIBI:.*]] = fadd double %[[MUL_BR_BR]], %[[MUL_BI_BI]]
+// LLVM-PROMOTED: %[[RESULT_REAL:.*]] = fdiv double %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]
+// LLVM-PROMOTED: %[[MUL_AI_BR:.*]] = fmul double %[[A_IMAG_F64]], %[[B_REAL_F64]]
+// LLVM-PROMOTED: %[[MUL_AR_BR:.*]] = fmul double %[[A_REAL_F64]], %[[B_IMAG_F64]]
+// LLVM-PROMOTED: %[[SUB_AIBR_ARBI:.*]] = fsub double %[[MUL_AI_BR]], %[[MUL_AR_BR]]
+// LLVM-PROMOTED: %[[RESULT_IMAG:.*]] = fdiv double %[[SUB_AIBR_ARBI]], %[[ADD_BRBR_BIBI]]
+// LLVM-PROMOTED: %[[TMP_RESULT_F64:.*]] = insertvalue { double, double } {{.*}}, double %[[RESULT_REAL]], 0
+// LLVM-PROMOTED: %[[RESULT_F64:.*]] = insertvalue { double, double } %[[TMP_RESULT_F64]], double %[[RESULT_IMAG]], 1
+// LLVM-PROMOTED: %[[RESULT_REAL_F32:.*]] = fptrunc double %[[RESULT_REAL]] to float
+// LLVM-PROMOTED: %[[RESULT_IMAG_F32:.*]] = fptrunc double %[[RESULT_IMAG]] to float
+// LLVM-PROMOTED: %[[TMP_RESULT_F32:.*]] = insertvalue { float, float } {{.*}}, float %[[RESULT_REAL_F32]], 0
+// LLVM-PROMOTED: %[[RESULT_F32:.*]] = insertvalue { float, float } %[[TMP_RESULT_F32]], float %[[RESULT_IMAG_F32]], 1
+// LLVM-PROMOTED: store { float, float } %[[RESULT_F32]], ptr %[[C_ADDR]], align 4
+
+// OGCG-PROMOTED: %[[A_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-PROMOTED: %[[B_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-PROMOTED: %[[C_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-PROMOTED: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
+// OGCG-PROMOTED: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4
+// OGCG-PROMOTED: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
+// OGCG-PROMOTED: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4
+// OGCG-PROMOTED: %[[A_REAL_F64:.*]] = fpext float %[[A_REAL]] to double
+// OGCG-PROMOTED: %[[A_IMAG_F64:.*]] = fpext float %[[A_IMAG]] to double
+// OGCG-PROMOTED: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG-PROMOTED: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4
+// OGCG-PROMOTED: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG-PROMOTED: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4
+// OGCG-PROMOTED: %[[B_REAL_F64:.*]] = fpext float %[[B_REAL]] to double
+// OGCG-PROMOTED: %[[B_IMAG_F64:.*]] = fpext float %[[B_IMAG]] to double
+// OGCG-PROMOTED: %[[MUL_AR_BR:.*]] = fmul double %[[A_REAL_F64]], %[[B_REAL_F64]]
+// OGCG-PROMOTED: %[[MUL_AI_BI:.*]] = fmul double %[[A_IMAG_F64]], %[[B_IMAG_F64]]
+// OGCG-PROMOTED: %[[ADD_ARBR_AIBI:.*]] = fadd double %[[MUL_AR_BR]], %[[MUL_AI_BI]]
+// OGCG-PROMOTED: %[[MUL_BR_BR:.*]] = fmul double %[[B_REAL_F64]], %[[B_REAL_F64]]
+// OGCG-PROMOTED: %[[MUL_BI_BI:.*]] = fmul double %[[B_IMAG_F64]], %[[B_IMAG_F64]]
+// OGCG-PROMOTED: %[[ADD_BRBR_BIBI:.*]] = fadd double %[[MUL_BR_BR]], %[[MUL_BI_BI]]
+// OGCG-PROMOTED: %[[MUL_AI_BR:.*]] = fmul double %[[A_IMAG_F64]], %[[B_REAL_F64]]
+// OGCG-PROMOTED: %[[MUL_AR_BI:.*]] = fmul double %[[A_REAL_F64]], %[[B_IMAG_F64]]
+// OGCG-PROMOTED: %[[SUB_AIBR_ARBI:.*]] = fsub double %[[MUL_AI_BR]], %[[MUL_AR_BI]]
+// OGCG-PROMOTED: %[[RESULT_REAL:.*]] = fdiv double %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]
+// OGCG-PROMOTED: %[[RESULT_IMAG:.*]] = fdiv double %[[SUB_AIBR_ARBI]], %[[ADD_BRBR_BIBI]]
+// OGCG-PROMOTED: %[[UNPROMOTION_RESULT_REAL:.*]] = fptrunc double %[[RESULT_REAL]] to float
+// OGCG-PROMOTED: %[[UNPROMOTION_RESULT_IMAG:.*]] = fptrunc double %[[RESULT_IMAG]] to float
+// OGCG-PROMOTED: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 0
+// OGCG-PROMOTED: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 1
+// OGCG-PROMOTED: store float %[[UNPROMOTION_RESULT_REAL]], ptr %[[C_REAL_PTR]], align 4
+// OGCG-PROMOTED: store float %[[UNPROMOTION_RESULT_IMAG]], ptr %[[C_IMAG_PTR]], align 4
+
+// CIR-BEFORE-FULL: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(full) : !cir.complex<!cir.float>
+
+// CIR-AFTER-FULL: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["a"]
+// CIR-AFTER-FULL: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["b"]
+// CIR-AFTER-FULL: %[[C_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["c", init]
+// CIR-AFTER-FULL: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-FULL: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR-AFTER-FULL: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-FULL: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-FULL: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-FULL: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR-AFTER-FULL: %[[RESULT:.*]] = cir.call @__divsc3(%[[A_REAL]], %[[A_IMAG]], %[[B_REAL]], %[[B_IMAG]]) : (!cir.float, !cir.float, !cir.float, !cir.float) -> !cir.complex<!cir.float>
+// CIR-AFTER-FULL: cir.store{{.*}} %[[RESULT]], %[[C_ADDR]] : !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>
+
+// LLVM-FULL: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-FULL: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-FULL: %[[C_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM-FULL: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4
+// LLVM-FULL: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4
+// LLVM-FULL: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0
+// LLVM-FULL: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1
+// LLVM-FULL: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0
+// LLVM-FULL: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1
+// LLVM-FULL: %[[RESULT:.*]] = call { float, float } @__divsc3(float %[[A_REAL]], float %[[A_IMAG]], float %[[B_REAL]], float %[[B_IMAG]])
+// LLVM-FULL: store { float, float } %[[RESULT]], ptr %[[C_ADDR]], align 4
+
+// OGCG-FULL: %[[A_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-FULL: %[[B_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-FULL: %[[C_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-FULL: %[[RESULT_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG-FULL: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
+// OGCG-FULL: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4
+// OGCG-FULL: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
+// OGCG-FULL: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4
+// OGCG-FULL: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG-FULL: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4
+// OGCG-FULL: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG-FULL: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4
+// OGCG-FULL: %[[RESULT:.*]] = call noundef <2 x float> @__divsc3(float noundef %[[A_REAL]], float noundef %[[A_IMAG]], float noundef %[[B_REAL]], float noundef %[[B_IMAG]]) #2
+// OGCG-FULL: store <2 x float> %[[RESULT]], ptr %[[RESULT_ADDR]], align 4
+// OGCG-FULL: %[[RESULT_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[RESULT_ADDR]], i32 0, i32 0
+// OGCG-FULL: %[[RESULT_REAL:.*]] = load float, ptr %[[RESULT_REAL_PTR]], align 4
+// OGCG-FULL: %[[RESULT_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[RESULT_ADDR]], i32 0, i32 1
+// OGCG-FULL: %[[RESULT_IMAG:.*]] = load float, ptr %[[RESULT_IMAG_PTR]], align 4
+// OGCG-FULL: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 0
+// OGCG-FULL: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[C_ADDR]], i32 0, i32 1
+// OGCG-FULL: store float %[[RESULT_REAL]], ptr %[[C_REAL_PTR]], align 4
+// OGCG-FULL: store float %[[RESULT_IMAG]], ptr %[[C_IMAG_PTR]], align 4
+
+void foo4() {
+ int _Complex a;
+ int _Complex b;
+ int _Complex c = a / b;
+}
+
+// CIR-BEFORE-BASIC: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(basic) : !cir.complex<!s32i>
+
+// CIR-BEFORE-IMPROVED: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(improved) : !cir.complex<!s32i>
+
+// CIR-BEFORE-PROMOTED: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(promoted) : !cir.complex<!s32i>
+
+// CIR-BEFORE-FULL: %{{.*}} = cir.complex.div {{.*}}, {{.*}} range(full) : !cir.complex<!s32i>
+
+// CIR-COMBINED: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>, ["a"]
+// CIR-COMBINED: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>, ["b"]
+// CIR-COMBINED: %[[C_ADDR:.*]] = cir.alloca !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>, ["c", init]
+// CIR-COMBINED: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
+// CIR-COMBINED: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
+// CIR-COMBINED: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!s32i> -> !s32i
+// CIR-COMBINED: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!s32i> -> !s32i
+// CIR-COMBINED: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!s32i> -> !s32i
+// CIR-COMBINED: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!s32i> -> !s32i
+// CIR-COMBINED: %[[MUL_AR_BR:.*]] = cir.binop(mul, %[[A_REAL]], %[[B_REAL]]) : !s32i
+// CIR-COMBINED: %[[MUL_AI_BI:.*]] = cir.binop(mul, %[[A_IMAG]], %[[B_IMAG]]) : !s32i
+// CIR-COMBINED: %[[MUL_BR_BR:.*]] = cir.binop(mul, %[[B_REAL]], %[[B_REAL]]) : !s32i
+// CIR-COMBINED: %[[MUL_BI_BI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[B_IMAG]]) : !s32i
+// CIR-COMBINED: %[[ADD_ARBR_AIBI:.*]] = cir.binop(add, %[[MUL_AR_BR]], %[[MUL_AI_BI]]) : !s32i
+// CIR-COMBINED: %[[ADD_BRBR_BIBI:.*]] = cir.binop(add, %[[MUL_BR_BR]], %[[MUL_BI_BI]]) : !s32i
+// CIR-COMBINED: %[[RESULT_REAL:.*]] = cir.binop(div, %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]) : !s32i
+// CIR-COMBINED: %[[MUL_AI_BR:.*]] = cir.binop(mul, %[[A_IMAG]], %[[B_REAL]]) : !s32i
+// CIR-COMBINED: %[[MUL_AR_BI:.*]] = cir.binop(mul, %[[A_REAL]], %[[B_IMAG]]) : !s32i
+// CIR-COMBINED: %[[SUB_AIBR_ARBI:.*]] = cir.binop(sub, %[[MUL_AI_BR]], %[[MUL_AR_BI]]) : !s32i
+// CIR-COMBINED: %[[RESULT_IMAG:.*]] = cir.binop(div, %[[SUB_AIBR_ARBI]], %14) : !s32i
+// CIR-COMBINED: %[[RESULT:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !s32i -> !cir.complex<!s32i>
+// CIR-COMBINED: cir.store{{.*}} %[[RESULT]], %[[C_ADDR]] : !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>
+
+// LLVM-COMBINED: %[[A_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4
+// LLVM-COMBINED: %[[B_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4
+// LLVM-COMBINED: %[[C_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4
+// LLVM-COMBINED: %[[TMP_A:.*]] = load { i32, i32 }, ptr %[[A_ADDR]], align 4
+// LLVM-COMBINED: %[[TMP_B:.*]] = load { i32, i32 }, ptr %[[B_ADDR]], align 4
+// LLVM-COMBINED: %[[A_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 0
+// LLVM-COMBINED: %[[A_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 1
+// LLVM-COMBINED: %[[B_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 0
+// LLVM-COMBINED: %[[B_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 1
+// LLVM-COMBINED: %[[MUL_AR_BR:.*]] = mul i32 %[[A_REAL]], %[[B_REAL]]
+// LLVM-COMBINED: %[[MUL_AI_BI:.*]] = mul i32 %[[A_IMAG]], %[[B_IMAG]]
+// LLVM-COMBINED: %[[MUL_BR_BR:.*]] = mul i32 %[[B_REAL]], %[[B_REAL]]
+// LLVM-COMBINED: %[[MUL_BI_BI:.*]] = mul i32 %[[B_IMAG]], %[[B_IMAG]]
+// LLVM-COMBINED: %[[ADD_ARBR_AIBI:.*]] = add i32 %[[MUL_AR_BR]], %[[MUL_AI_BI]]
+// LLVM-COMBINED: %[[ADD_BRBR_BIBI:.*]] = add i32 %[[MUL_BR_BR]], %[[MUL_BI_BI]]
+// LLVM-COMBINED: %[[RESULT_REAL:.*]] = sdiv i32 %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]
+// LLVM-COMBINED: %[[MUL_AI_BR:.*]] = mul i32 %[[A_IMAG]], %[[B_REAL]]
+// LLVM-COMBINED: %[[MUL_BR_BI:.*]] = mul i32 %[[A_REAL]], %[[B_IMAG]]
+// LLVM-COMBINED: %[[SUB_AIBR_BRBI:.*]] = sub i32 %[[MUL_AI_BR]], %[[MUL_BR_BI]]
+// LLVM-COMBINED: %[[RESULT_IMAG:.*]] = sdiv i32 %[[SUB_AIBR_BRBI]], %[[ADD_BRBR_BIBI]]
+// LLVM-COMBINED: %[[TMP_RESULT:.*]] = insertvalue { i32, i32 } {{.*}}, i32 %[[RESULT_REAL]], 0
+// LLVM-COMBINED: %[[RESULT:.*]] = insertvalue { i32, i32 } %[[TMP_RESULT]], i32 %[[RESULT_IMAG]], 1
+// LLVM-COMBINED: store { i32, i32 } %[[RESULT]], ptr %[[C_ADDR]], align 4
+
+// OGCG-COMBINED: %[[A_ADDR:.*]] = alloca { i32, i32 }, align 4
+// OGCG-COMBINED: %[[B_ADDR:.*]] = alloca { i32, i32 }, align 4
+// OGCG-COMBINED: %[[C_ADDR:.*]] = alloca { i32, i32 }, align 4
+// OGCG-COMBINED: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 0
+// OGCG-COMBINED: %[[A_REAL:.*]] = load i32, ptr %[[A_REAL_PTR]], align 4
+// OGCG-COMBINED: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 1
+// OGCG-COMBINED: %[[A_IMAG:.*]] = load i32, ptr %[[A_IMAG_PTR]], align 4
+// OGCG-COMBINED: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG-COMBINED: %[[B_REAL:.*]] = load i32, ptr %[[B_REAL_PTR]], align 4
+// OGCG-COMBINED: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG-COMBINED: %[[B_IMAG:.*]] = load i32, ptr %[[B_IMAG_PTR]], align 4
+// OGCG-COMBINED: %[[MUL_AR_BR:.*]] = mul i32 %[[A_REAL]], %[[B_REAL]]
+// OGCG-COMBINED: %[[MUL_AI_BI:.*]] = mul i32 %[[A_IMAG]], %[[B_IMAG]]
+// OGCG-COMBINED: %[[ADD_ARBR_AIBI:.*]] = add i32 %[[MUL_AR_BR]], %[[MUL_AI_BI]]
+// OGCG-COMBINED: %[[MUL_BR_BR:.*]] = mul i32 %[[B_REAL]], %[[B_REAL]]
+// OGCG-COMBINED: %[[MUL_BI_BI:.*]] = mul i32 %[[B_IMAG]], %[[B_IMAG]]
+// OGCG-COMBINED: %[[ADD_BRBR_BIBI:.*]] = add i32 %[[MUL_BR_BR]], %[[MUL_BI_BI]]
+// OGCG-COMBINED: %[[MUL_AI_BR:.*]] = mul i32 %[[A_IMAG]], %[[B_REAL]]
+// OGCG-COMBINED: %[[MUL_AR_BI:.*]] = mul i32 %[[A_REAL]], %[[B_IMAG]]
+// OGCG-COMBINED: %[[SUB_AIBR_BRBI:.*]] = sub i32 %[[MUL_AI_BR]], %[[MUL_AR_BI]]
+// OGCG-COMBINED: %[[RESULT_REAL:.*]] = sdiv i32 %[[ADD_ARBR_AIBI]], %[[ADD_BRBR_BIBI]]
+// OGCG-COMBINED: %[[RESULT_IMAG:.*]] = sdiv i32 %[[SUB_AIBR_BRBI]], %[[ADD_BRBR_BIBI]]
+// OGCG-COMBINED: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[C_ADDR]], i32 0, i32 0
+// OGCG-COMBINED: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[C_ADDR]], i32 0, i32 1
+// OGCG-COMBINED: store i32 %[[RESULT_REAL]], ptr %[[C_REAL_PTR]], align 4
+// OGCG-COMBINED: store i32 %[[RESULT_IMAG]], ptr %[[C_IMAG_PTR]], align 4