Reland "[LLVM] Add IRNormalizer Pass" (#113780)

`IRNormalizer` will reorder instructions. Thus, we need to invalidate
analyses. Done in cd500d28cba3177c213f2f2faf50f14ea56e230b. This should
resolve the [BuildBot
failure](https://github.com/llvm/llvm-project/pull/68176#issuecomment-2428243474).

---

Original PR: #68176
Original commit: 1295d2e6da2fe90f3b770ab1d35bf5caecd38bed
Reverted with: 8a12e0131f3d84b470fac63af042aa96a1b19f56

---

Add the llvm-canon tool. Description from the [original
PR](https://reviews.llvm.org/D66029#change-wZv3yOpDdxIu):

> Added a new llvm-canon tool which aims to transform LLVM Modules into
a canonical form by reordering and renaming instructions while
preserving the same semantics. This tool makes it easier to spot
semantic differences while diffing two modules which have undergone
different transformation passes.

The current version of this tool can:

- Reorder instructions within a function.
- Rename instructions based on the operands.
- Sort commutative operands.

This code was originally written by @michalpaszkowski and [submitted to
mainline
LLVM](https://github.com/llvm/llvm-project/commit/14d358537f124a732adad1ec6edf3981dc9baece).
However, it was quickly
[reverted](https://github.com/llvm/llvm-project/commit/335de55fa3384946f1e62050f2545c0966163236)
to do BuildBot errors.

Michal presented his version of the tool in [LLVM-Canon: Shooting for
Clear Diffs](https://www.youtube.com/watch?v=c9WMijSOEUg).

@AidanGoldfarb and I ported the code to the new pass manager, added more
tests, and fixed some bugs related to PHI nodes that may have been the
root cause of the BuildBot errors that caused the patch to be reverted.
Additionally, we rewrote the implementation of instruction reordering to
fix cases where the original algorithm would break use-def chains.

Note that this is @AidanGoldfarb and I's first time submitting to LLVM.
Please liberally critique the PR!

CC @plotfi for initial review.

---------

Co-authored-by: Aidan <aidan.goldfarb@mail.mcgill.ca>
17 files changed
tree: 6c111215264ce0bb002820fc9729cd3d586bc7ff
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.