blob: a479031c95ea527f5e698872aceb281fb5de8bba [file] [log] [blame]
//===-- DNBArchImplX86_64.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__i386__) || defined (__x86_64__)
#include <sys/cdefs.h>
#include "MacOSX/x86_64/DNBArchImplX86_64.h"
#include "DNBLog.h"
#include "MachThread.h"
#include "MachProcess.h"
#include <mach/mach.h>
uint64_t
DNBArchImplX86_64::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__rip;
return failValue;
}
kern_return_t
DNBArchImplX86_64::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__rip = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchImplX86_64::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__rsp;
return failValue;
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_GPR_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
kern_return_t
DNBArchImplX86_64::GetGPRState(bool force)
{
if (force || m_state.GetError(e_regSetGPR, Read))
{
kern_return_t kret = ::thread_abort_safely(m_thread->ThreadID());
DNBLogThreaded("thread = 0x%4.4x calling thread_abort_safely (tid) => %u (GetGPRState() for stop_count = %u)", m_thread->ThreadID(), kret, m_thread->Process()->StopCount());
#if DEBUG_GPR_VALUES
m_state.context.gpr.__rax = ('a' << 8) + 'x';
m_state.context.gpr.__rbx = ('b' << 8) + 'x';
m_state.context.gpr.__rcx = ('c' << 8) + 'x';
m_state.context.gpr.__rdx = ('d' << 8) + 'x';
m_state.context.gpr.__rdi = ('d' << 8) + 'i';
m_state.context.gpr.__rsi = ('s' << 8) + 'i';
m_state.context.gpr.__rbp = ('b' << 8) + 'p';
m_state.context.gpr.__rsp = ('s' << 8) + 'p';
m_state.context.gpr.__r8 = ('r' << 8) + '8';
m_state.context.gpr.__r9 = ('r' << 8) + '9';
m_state.context.gpr.__r10 = ('r' << 8) + 'a';
m_state.context.gpr.__r11 = ('r' << 8) + 'b';
m_state.context.gpr.__r12 = ('r' << 8) + 'c';
m_state.context.gpr.__r13 = ('r' << 8) + 'd';
m_state.context.gpr.__r14 = ('r' << 8) + 'e';
m_state.context.gpr.__r15 = ('r' << 8) + 'f';
m_state.context.gpr.__rip = ('i' << 8) + 'p';
m_state.context.gpr.__rflags = ('f' << 8) + 'l';
m_state.context.gpr.__cs = ('c' << 8) + 's';
m_state.context.gpr.__fs = ('f' << 8) + 's';
m_state.context.gpr.__gs = ('g' << 8) + 's';
m_state.SetError(e_regSetGPR, Read, 0);
#else
mach_msg_type_number_t count = x86_THREAD_STATE64_COUNT;
m_state.SetError(e_regSetGPR, Read, ::thread_get_state(m_thread->ThreadID(), x86_THREAD_STATE64, (thread_state_t)&m_state.context.gpr, &count));
DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &gpr, %u) => 0x%8.8x"
"\n\trax = %16.16llx rbx = %16.16llx rcx = %16.16llx rdx = %16.16llx"
"\n\trdi = %16.16llx rsi = %16.16llx rbp = %16.16llx rsp = %16.16llx"
"\n\t r8 = %16.16llx r9 = %16.16llx r10 = %16.16llx r11 = %16.16llx"
"\n\tr12 = %16.16llx r13 = %16.16llx r14 = %16.16llx r15 = %16.16llx"
"\n\trip = %16.16llx"
"\n\tflg = %16.16llx cs = %16.16llx fs = %16.16llx gs = %16.16llx",
m_thread->ThreadID(), x86_THREAD_STATE64, x86_THREAD_STATE64_COUNT,
m_state.GetError(e_regSetGPR, Read),
m_state.context.gpr.__rax,m_state.context.gpr.__rbx,m_state.context.gpr.__rcx,
m_state.context.gpr.__rdx,m_state.context.gpr.__rdi,m_state.context.gpr.__rsi,
m_state.context.gpr.__rbp,m_state.context.gpr.__rsp,m_state.context.gpr.__r8,
m_state.context.gpr.__r9, m_state.context.gpr.__r10,m_state.context.gpr.__r11,
m_state.context.gpr.__r12,m_state.context.gpr.__r13,m_state.context.gpr.__r14,
m_state.context.gpr.__r15,m_state.context.gpr.__rip,m_state.context.gpr.__rflags,
m_state.context.gpr.__cs,m_state.context.gpr.__fs, m_state.context.gpr.__gs);
// DNBLogThreadedIf (LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x"
// "\n\trax = %16.16llx"
// "\n\trbx = %16.16llx"
// "\n\trcx = %16.16llx"
// "\n\trdx = %16.16llx"
// "\n\trdi = %16.16llx"
// "\n\trsi = %16.16llx"
// "\n\trbp = %16.16llx"
// "\n\trsp = %16.16llx"
// "\n\t r8 = %16.16llx"
// "\n\t r9 = %16.16llx"
// "\n\tr10 = %16.16llx"
// "\n\tr11 = %16.16llx"
// "\n\tr12 = %16.16llx"
// "\n\tr13 = %16.16llx"
// "\n\tr14 = %16.16llx"
// "\n\tr15 = %16.16llx"
// "\n\trip = %16.16llx"
// "\n\tflg = %16.16llx"
// "\n\t cs = %16.16llx"
// "\n\t fs = %16.16llx"
// "\n\t gs = %16.16llx",
// m_thread->ThreadID(),
// x86_THREAD_STATE64,
// x86_THREAD_STATE64_COUNT,
// m_state.GetError(e_regSetGPR, Read),
// m_state.context.gpr.__rax,
// m_state.context.gpr.__rbx,
// m_state.context.gpr.__rcx,
// m_state.context.gpr.__rdx,
// m_state.context.gpr.__rdi,
// m_state.context.gpr.__rsi,
// m_state.context.gpr.__rbp,
// m_state.context.gpr.__rsp,
// m_state.context.gpr.__r8,
// m_state.context.gpr.__r9,
// m_state.context.gpr.__r10,
// m_state.context.gpr.__r11,
// m_state.context.gpr.__r12,
// m_state.context.gpr.__r13,
// m_state.context.gpr.__r14,
// m_state.context.gpr.__r15,
// m_state.context.gpr.__rip,
// m_state.context.gpr.__rflags,
// m_state.context.gpr.__cs,
// m_state.context.gpr.__fs,
// m_state.context.gpr.__gs);
#endif
}
return m_state.GetError(e_regSetGPR, Read);
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_FPU_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
kern_return_t
DNBArchImplX86_64::GetFPUState(bool force)
{
if (force || m_state.GetError(e_regSetFPU, Read))
{
#if DEBUG_FPU_VALUES
m_state.context.fpu.__fpu_reserved[0] = -1;
m_state.context.fpu.__fpu_reserved[1] = -1;
*(uint16_t *)&(m_state.context.fpu.__fpu_fcw) = 0x1234;
*(uint16_t *)&(m_state.context.fpu.__fpu_fsw) = 0x5678;
m_state.context.fpu.__fpu_ftw = 1;
m_state.context.fpu.__fpu_rsrv1 = UINT8_MAX;
m_state.context.fpu.__fpu_fop = 2;
m_state.context.fpu.__fpu_ip = 3;
m_state.context.fpu.__fpu_cs = 4;
m_state.context.fpu.__fpu_rsrv2 = 5;
m_state.context.fpu.__fpu_dp = 6;
m_state.context.fpu.__fpu_ds = 7;
m_state.context.fpu.__fpu_rsrv3 = UINT16_MAX;
m_state.context.fpu.__fpu_mxcsr = 8;
m_state.context.fpu.__fpu_mxcsrmask = 9;
int i;
for (i=0; i<16; ++i)
{
if (i<10)
{
m_state.context.fpu.__fpu_stmm0.__mmst_reg[i] = 'a';
m_state.context.fpu.__fpu_stmm1.__mmst_reg[i] = 'b';
m_state.context.fpu.__fpu_stmm2.__mmst_reg[i] = 'c';
m_state.context.fpu.__fpu_stmm3.__mmst_reg[i] = 'd';
m_state.context.fpu.__fpu_stmm4.__mmst_reg[i] = 'e';
m_state.context.fpu.__fpu_stmm5.__mmst_reg[i] = 'f';
m_state.context.fpu.__fpu_stmm6.__mmst_reg[i] = 'g';
m_state.context.fpu.__fpu_stmm7.__mmst_reg[i] = 'h';
}
else
{
m_state.context.fpu.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
}
m_state.context.fpu.__fpu_xmm0.__xmm_reg[i] = '0';
m_state.context.fpu.__fpu_xmm1.__xmm_reg[i] = '1';
m_state.context.fpu.__fpu_xmm2.__xmm_reg[i] = '2';
m_state.context.fpu.__fpu_xmm3.__xmm_reg[i] = '3';
m_state.context.fpu.__fpu_xmm4.__xmm_reg[i] = '4';
m_state.context.fpu.__fpu_xmm5.__xmm_reg[i] = '5';
m_state.context.fpu.__fpu_xmm6.__xmm_reg[i] = '6';
m_state.context.fpu.__fpu_xmm7.__xmm_reg[i] = '7';
m_state.context.fpu.__fpu_xmm8.__xmm_reg[i] = '8';
m_state.context.fpu.__fpu_xmm9.__xmm_reg[i] = '9';
m_state.context.fpu.__fpu_xmm10.__xmm_reg[i] = 'A';
m_state.context.fpu.__fpu_xmm11.__xmm_reg[i] = 'B';
m_state.context.fpu.__fpu_xmm12.__xmm_reg[i] = 'C';
m_state.context.fpu.__fpu_xmm13.__xmm_reg[i] = 'D';
m_state.context.fpu.__fpu_xmm14.__xmm_reg[i] = 'E';
m_state.context.fpu.__fpu_xmm15.__xmm_reg[i] = 'F';
}
for (i=0; i<sizeof(m_state.context.fpu.__fpu_rsrv4); ++i)
m_state.context.fpu.__fpu_rsrv4[i] = INT8_MIN;
m_state.context.fpu.__fpu_reserved1 = -1;
m_state.SetError(e_regSetFPU, Read, 0);
#else
mach_msg_type_number_t count = x86_FLOAT_STATE64_COUNT;
m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->ThreadID(), x86_FLOAT_STATE64, (thread_state_t)&m_state.context.fpu, &count));
#endif
}
return m_state.GetError(e_regSetFPU, Read);
}
kern_return_t
DNBArchImplX86_64::GetEXCState(bool force)
{
if (force || m_state.GetError(e_regSetEXC, Read))
{
mach_msg_type_number_t count = X86_EXCEPTION_STATE64_COUNT;
m_state.SetError(e_regSetEXC, Read, ::thread_get_state(m_thread->ThreadID(), x86_EXCEPTION_STATE64, (thread_state_t)&m_state.context.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t
DNBArchImplX86_64::SetGPRState()
{
kern_return_t kret = ::thread_abort_safely(m_thread->ThreadID());
DNBLogThreaded("thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->ThreadID(), kret, m_thread->Process()->StopCount());
m_state.SetError(e_regSetGPR, Write, ::thread_set_state(m_thread->ThreadID(), x86_THREAD_STATE64, (thread_state_t)&m_state.context.gpr, x86_THREAD_STATE64_COUNT));
DNBLogThreadedIf (LOG_THREAD, "::thread_set_state (0x%4.4x, %u, &gpr, %u) => 0x%8.8x"
"\n\trax = %16.16llx rbx = %16.16llx rcx = %16.16llx rdx = %16.16llx"
"\n\trdi = %16.16llx rsi = %16.16llx rbp = %16.16llx rsp = %16.16llx"
"\n\t r8 = %16.16llx r9 = %16.16llx r10 = %16.16llx r11 = %16.16llx"
"\n\tr12 = %16.16llx r13 = %16.16llx r14 = %16.16llx r15 = %16.16llx"
"\n\trip = %16.16llx"
"\n\tflg = %16.16llx cs = %16.16llx fs = %16.16llx gs = %16.16llx",
m_thread->ThreadID(), x86_THREAD_STATE64, x86_THREAD_STATE64_COUNT,
m_state.GetError(e_regSetGPR, Write),
m_state.context.gpr.__rax,m_state.context.gpr.__rbx,m_state.context.gpr.__rcx,
m_state.context.gpr.__rdx,m_state.context.gpr.__rdi,m_state.context.gpr.__rsi,
m_state.context.gpr.__rbp,m_state.context.gpr.__rsp,m_state.context.gpr.__r8,
m_state.context.gpr.__r9, m_state.context.gpr.__r10,m_state.context.gpr.__r11,
m_state.context.gpr.__r12,m_state.context.gpr.__r13,m_state.context.gpr.__r14,
m_state.context.gpr.__r15,m_state.context.gpr.__rip,m_state.context.gpr.__rflags,
m_state.context.gpr.__cs, m_state.context.gpr.__fs, m_state.context.gpr.__gs);
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t
DNBArchImplX86_64::SetFPUState()
{
m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->ThreadID(), x86_FLOAT_STATE64, (thread_state_t)&m_state.context.fpu, x86_FLOAT_STATE64_COUNT));
return m_state.GetError(e_regSetFPU, Write);
}
kern_return_t
DNBArchImplX86_64::SetEXCState()
{
m_state.SetError(e_regSetEXC, Write, ::thread_set_state(m_thread->ThreadID(), x86_EXCEPTION_STATE64, (thread_state_t)&m_state.context.exc, X86_EXCEPTION_STATE64_COUNT));
return m_state.GetError(e_regSetEXC, Write);
}
void
DNBArchImplX86_64::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
// This is the primary thread, let the arch do anything it needs
EnableHardwareSingleStep(true) == KERN_SUCCESS;
}
}
bool
DNBArchImplX86_64::ThreadDidStop()
{
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool
DNBArchImplX86_64::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
case EXC_BAD_ACCESS:
break;
case EXC_BAD_INSTRUCTION:
break;
case EXC_ARITHMETIC:
break;
case EXC_EMULATION:
break;
case EXC_SOFTWARE:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2)
{
nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
if (pc != INVALID_NUB_ADDRESS && pc > 0)
{
pc -= 1;
// Check for a breakpoint at one byte prior to the current PC value
// since the PC will be just past the trap.
nub_break_t breakID = m_thread->Process()->Breakpoints().FindIDByAddress(pc);
if (NUB_BREAK_ID_IS_VALID(breakID))
{
// Backup the PC for i386 since the trap was taken and the PC
// is at the address following the single byte trap instruction.
if (m_state.context.gpr.__rip > 0)
{
m_state.context.gpr.__rip = pc;
// Write the new PC back out
SetGPRState ();
}
}
return true;
}
}
break;
case EXC_SYSCALL:
break;
case EXC_MACH_SYSCALL:
break;
case EXC_RPC_ALERT:
break;
}
return false;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchImplX86_64::EnableHardwareSingleStep (bool enable)
{
if (GetGPRState(false) == KERN_SUCCESS)
{
const uint32_t trace_bit = 0x100u;
if (enable)
m_state.context.gpr.__rflags |= trace_bit;
else
m_state.context.gpr.__rflags &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information defintions
//----------------------------------------------------------------------
enum
{
gpr_rax = 0,
gpr_rbx,
gpr_rcx,
gpr_rdx,
gpr_rdi,
gpr_rsi,
gpr_rbp,
gpr_rsp,
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_r13,
gpr_r14,
gpr_r15,
gpr_rip,
gpr_rflags,
gpr_cs,
gpr_fs,
gpr_gs,
k_num_gpr_regs
};
enum {
fpu_fcw,
fpu_fsw,
fpu_ftw,
fpu_fop,
fpu_ip,
fpu_cs,
fpu_dp,
fpu_ds,
fpu_mxcsr,
fpu_mxcsrmask,
fpu_stmm0,
fpu_stmm1,
fpu_stmm2,
fpu_stmm3,
fpu_stmm4,
fpu_stmm5,
fpu_stmm6,
fpu_stmm7,
fpu_xmm0,
fpu_xmm1,
fpu_xmm2,
fpu_xmm3,
fpu_xmm4,
fpu_xmm5,
fpu_xmm6,
fpu_xmm7,
fpu_xmm8,
fpu_xmm9,
fpu_xmm10,
fpu_xmm11,
fpu_xmm12,
fpu_xmm13,
fpu_xmm14,
fpu_xmm15,
k_num_fpu_regs,
// Aliases
fpu_fctrl = fpu_fcw,
fpu_fstat = fpu_fsw,
fpu_ftag = fpu_ftw,
fpu_fiseg = fpu_cs,
fpu_fioff = fpu_ip,
fpu_foseg = fpu_ds,
fpu_fooff = fpu_dp
};
enum {
exc_trapno,
exc_err,
exc_faultvaddr,
k_num_exc_regs,
};
enum gcc_dwarf_regnums
{
gcc_dwarf_rax = 0,
gcc_dwarf_rdx,
gcc_dwarf_rcx,
gcc_dwarf_rbx,
gcc_dwarf_rsi,
gcc_dwarf_rdi,
gcc_dwarf_rbp,
gcc_dwarf_rsp,
gcc_dwarf_r8,
gcc_dwarf_r9,
gcc_dwarf_r10,
gcc_dwarf_r11,
gcc_dwarf_r12,
gcc_dwarf_r13,
gcc_dwarf_r14,
gcc_dwarf_r15,
gcc_dwarf_rip,
gcc_dwarf_xmm0,
gcc_dwarf_xmm1,
gcc_dwarf_xmm2,
gcc_dwarf_xmm3,
gcc_dwarf_xmm4,
gcc_dwarf_xmm5,
gcc_dwarf_xmm6,
gcc_dwarf_xmm7,
gcc_dwarf_xmm8,
gcc_dwarf_xmm9,
gcc_dwarf_xmm10,
gcc_dwarf_xmm11,
gcc_dwarf_xmm12,
gcc_dwarf_xmm13,
gcc_dwarf_xmm14,
gcc_dwarf_xmm15,
gcc_dwarf_stmm0,
gcc_dwarf_stmm1,
gcc_dwarf_stmm2,
gcc_dwarf_stmm3,
gcc_dwarf_stmm4,
gcc_dwarf_stmm5,
gcc_dwarf_stmm6,
gcc_dwarf_stmm7,
};
enum gdb_regnums
{
gdb_rax = 0,
gdb_rbx = 1,
gdb_rcx = 2,
gdb_rdx = 3,
gdb_rsi = 4,
gdb_rdi = 5,
gdb_rbp = 6,
gdb_rsp = 7,
gdb_r8 = 8,
gdb_r9 = 9,
gdb_r10 = 10,
gdb_r11 = 11,
gdb_r12 = 12,
gdb_r13 = 13,
gdb_r14 = 14,
gdb_r15 = 15,
gdb_rip = 16,
gdb_rflags = 17,
gdb_cs = 18,
gdb_ss = 19,
gdb_ds = 20,
gdb_es = 21,
gdb_fs = 22,
gdb_gs = 23,
gdb_stmm0 = 24,
gdb_stmm1 = 25,
gdb_stmm2 = 26,
gdb_stmm3 = 27,
gdb_stmm4 = 28,
gdb_stmm5 = 29,
gdb_stmm6 = 30,
gdb_stmm7 = 31,
gdb_fctrl = 32, gdb_fcw = gdb_fctrl,
gdb_fstat = 33, gdb_fsw = gdb_fstat,
gdb_ftag = 34, gdb_ftw = gdb_ftag,
gdb_fiseg = 35, gdb_fpu_cs = gdb_fiseg,
gdb_fioff = 36, gdb_ip = gdb_fioff,
gdb_foseg = 37, gdb_fpu_ds = gdb_foseg,
gdb_fooff = 38, gdb_dp = gdb_fooff,
gdb_fop = 39,
gdb_xmm0 = 40,
gdb_xmm1 = 41,
gdb_xmm2 = 42,
gdb_xmm3 = 43,
gdb_xmm4 = 44,
gdb_xmm5 = 45,
gdb_xmm6 = 46,
gdb_xmm7 = 47,
gdb_xmm8 = 48,
gdb_xmm9 = 49,
gdb_xmm10 = 50,
gdb_xmm11 = 51,
gdb_xmm12 = 52,
gdb_xmm13 = 53,
gdb_xmm14 = 54,
gdb_xmm15 = 55,
gdb_mxcsr = 56,
};
#define GPR_OFFSET(reg) (offsetof (DNBArchImplX86_64::GPR, __##reg))
#define FPU_OFFSET(reg) (offsetof (DNBArchImplX86_64::FPU, __fpu_##reg) + offsetof (DNBArchImplX86_64::Context, fpu))
#define EXC_OFFSET(reg) (offsetof (DNBArchImplX86_64::EXC, __##reg) + offsetof (DNBArchImplX86_64::Context, exc))
#define GPR_SIZE(reg) (sizeof(((DNBArchImplX86_64::GPR *)NULL)->__##reg))
#define FPU_SIZE_UINT(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg))
#define FPU_SIZE_MMST(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg.__mmst_reg))
#define FPU_SIZE_XMM(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg.__xmm_reg))
#define EXC_SIZE(reg) (sizeof(((DNBArchImplX86_64::EXC *)NULL)->__##reg))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR(reg) { e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, INVALID_NUB_REGNUM, gdb_##reg }
#define DEFINE_GPR_ALT(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, gen, gdb_##reg }
#define DEFINE_GPR_ALT2(reg, alt) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gdb_##reg }
// General purpose registers for 64 bit
const DNBRegisterInfo
DNBArchImplX86_64::g_gpr_registers[] =
{
DEFINE_GPR (rax),
DEFINE_GPR (rbx),
DEFINE_GPR (rcx),
DEFINE_GPR (rdx),
DEFINE_GPR (rdi),
DEFINE_GPR (rsi),
DEFINE_GPR_ALT (rbp, "fp", GENERIC_REGNUM_FP),
DEFINE_GPR_ALT (rsp, "sp", GENERIC_REGNUM_SP),
DEFINE_GPR (r8),
DEFINE_GPR (r9),
DEFINE_GPR (r10),
DEFINE_GPR (r11),
DEFINE_GPR (r12),
DEFINE_GPR (r13),
DEFINE_GPR (r14),
DEFINE_GPR (r15),
DEFINE_GPR_ALT (rip, "pc", GENERIC_REGNUM_PC),
DEFINE_GPR_ALT2 (rflags, "flags"),
DEFINE_GPR_ALT2 (cs, NULL),
DEFINE_GPR_ALT2 (fs, NULL),
DEFINE_GPR_ALT2 (gs, NULL),
};
// Floating point registers 64 bit
const DNBRegisterInfo
DNBArchImplX86_64::g_fpu_registers[] =
{
{ e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , FPU_OFFSET(fcw) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , FPU_OFFSET(fsw) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , FPU_OFFSET(ftw) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , FPU_OFFSET(fop) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , FPU_OFFSET(ip) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , FPU_OFFSET(cs) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , FPU_OFFSET(dp) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , FPU_OFFSET(ds) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , FPU_OFFSET(mxcsr) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , FPU_OFFSET(mxcsrmask) , -1, -1, -1, -1 },
{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), gcc_dwarf_stmm0, gcc_dwarf_stmm0, -1, gdb_stmm0 },
{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), gcc_dwarf_stmm1, gcc_dwarf_stmm1, -1, gdb_stmm1 },
{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), gcc_dwarf_stmm2, gcc_dwarf_stmm2, -1, gdb_stmm2 },
{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), gcc_dwarf_stmm3, gcc_dwarf_stmm3, -1, gdb_stmm3 },
{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), gcc_dwarf_stmm4, gcc_dwarf_stmm4, -1, gdb_stmm4 },
{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), gcc_dwarf_stmm5, gcc_dwarf_stmm5, -1, gdb_stmm5 },
{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), gcc_dwarf_stmm6, gcc_dwarf_stmm6, -1, gdb_stmm6 },
{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), gcc_dwarf_stmm7, gcc_dwarf_stmm7, -1, gdb_stmm7 },
{ e_regSetFPU, fpu_xmm0 , "xmm0" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0) , FPU_OFFSET(xmm0) , gcc_dwarf_xmm0 , gcc_dwarf_xmm0 , -1, gdb_xmm0 },
{ e_regSetFPU, fpu_xmm1 , "xmm1" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1) , FPU_OFFSET(xmm1) , gcc_dwarf_xmm1 , gcc_dwarf_xmm1 , -1, gdb_xmm1 },
{ e_regSetFPU, fpu_xmm2 , "xmm2" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2) , FPU_OFFSET(xmm2) , gcc_dwarf_xmm2 , gcc_dwarf_xmm2 , -1, gdb_xmm2 },
{ e_regSetFPU, fpu_xmm3 , "xmm3" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3) , FPU_OFFSET(xmm3) , gcc_dwarf_xmm3 , gcc_dwarf_xmm3 , -1, gdb_xmm3 },
{ e_regSetFPU, fpu_xmm4 , "xmm4" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4) , FPU_OFFSET(xmm4) , gcc_dwarf_xmm4 , gcc_dwarf_xmm4 , -1, gdb_xmm4 },
{ e_regSetFPU, fpu_xmm5 , "xmm5" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5) , FPU_OFFSET(xmm5) , gcc_dwarf_xmm5 , gcc_dwarf_xmm5 , -1, gdb_xmm5 },
{ e_regSetFPU, fpu_xmm6 , "xmm6" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6) , FPU_OFFSET(xmm6) , gcc_dwarf_xmm6 , gcc_dwarf_xmm6 , -1, gdb_xmm6 },
{ e_regSetFPU, fpu_xmm7 , "xmm7" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7) , FPU_OFFSET(xmm7) , gcc_dwarf_xmm7 , gcc_dwarf_xmm7 , -1, gdb_xmm7 },
{ e_regSetFPU, fpu_xmm8 , "xmm8" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm8) , FPU_OFFSET(xmm8) , gcc_dwarf_xmm8 , gcc_dwarf_xmm8 , -1, gdb_xmm8 },
{ e_regSetFPU, fpu_xmm9 , "xmm9" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm9) , FPU_OFFSET(xmm9) , gcc_dwarf_xmm9 , gcc_dwarf_xmm9 , -1, gdb_xmm9 },
{ e_regSetFPU, fpu_xmm10, "xmm10" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm10) , FPU_OFFSET(xmm10), gcc_dwarf_xmm10, gcc_dwarf_xmm10, -1, gdb_xmm10 },
{ e_regSetFPU, fpu_xmm11, "xmm11" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm11) , FPU_OFFSET(xmm11), gcc_dwarf_xmm11, gcc_dwarf_xmm11, -1, gdb_xmm11 },
{ e_regSetFPU, fpu_xmm12, "xmm12" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm12) , FPU_OFFSET(xmm12), gcc_dwarf_xmm12, gcc_dwarf_xmm12, -1, gdb_xmm12 },
{ e_regSetFPU, fpu_xmm13, "xmm13" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm13) , FPU_OFFSET(xmm13), gcc_dwarf_xmm13, gcc_dwarf_xmm13, -1, gdb_xmm13 },
{ e_regSetFPU, fpu_xmm14, "xmm14" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm14) , FPU_OFFSET(xmm14), gcc_dwarf_xmm14, gcc_dwarf_xmm14, -1, gdb_xmm14 },
{ e_regSetFPU, fpu_xmm15, "xmm15" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm15) , FPU_OFFSET(xmm15), gcc_dwarf_xmm15, gcc_dwarf_xmm15, -1, gdb_xmm15 },
};
// Exception registers
const DNBRegisterInfo
DNBArchImplX86_64::g_exc_registers[] =
{
{ e_regSetEXC, exc_trapno, "trapno" , NULL, Uint, Hex, EXC_SIZE (trapno) , EXC_OFFSET (trapno) , -1, -1, -1, -1 },
{ e_regSetEXC, exc_err, "err" , NULL, Uint, Hex, EXC_SIZE (err) , EXC_OFFSET (err) , -1, -1, -1, -1 },
{ e_regSetEXC, exc_faultvaddr, "faultvaddr", NULL, Uint, Hex, EXC_SIZE (faultvaddr), EXC_OFFSET (faultvaddr) , -1, -1, -1, -1 }
};
// Number of registers in each register set
const size_t DNBArchImplX86_64::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplX86_64::k_num_fpu_registers = sizeof(g_fpu_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplX86_64::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplX86_64::k_num_all_registers = k_num_gpr_registers + k_num_fpu_registers + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchImplX86_64::g_reg_sets[] =
{
{ "x86_64 Registers", NULL, k_num_all_registers },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_fpu_registers, k_num_fpu_registers },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchImplX86_64::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
DNBArchProtocol *
DNBArchImplX86_64::Create (MachThread *thread)
{
return new DNBArchImplX86_64 (thread);
}
const uint8_t * const
DNBArchImplX86_64::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
static const uint8_t g_breakpoint_opcode[] = { 0xCC };
if (byte_size == 1)
return g_breakpoint_opcode;
return NULL;
}
const DNBRegisterSetInfo *
DNBArchImplX86_64::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
void
DNBArchImplX86_64::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_X86_64,
DNBArchImplX86_64::Create,
DNBArchImplX86_64::GetRegisterSetInfo,
DNBArchImplX86_64::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
bool
DNBArchImplX86_64::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_rip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_rsp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_rbp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_rflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint64 = ((uint64_t*)(&m_state.context.gpr))[reg];
return true;
}
break;
case e_regSetFPU:
switch (reg)
{
case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.__fpu_fcw)); return true;
case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.__fpu_fsw)); return true;
case fpu_ftw: value->value.uint8 = m_state.context.fpu.__fpu_ftw; return true;
case fpu_fop: value->value.uint16 = m_state.context.fpu.__fpu_fop; return true;
case fpu_ip: value->value.uint32 = m_state.context.fpu.__fpu_ip; return true;
case fpu_cs: value->value.uint16 = m_state.context.fpu.__fpu_cs; return true;
case fpu_dp: value->value.uint32 = m_state.context.fpu.__fpu_dp; return true;
case fpu_ds: value->value.uint16 = m_state.context.fpu.__fpu_ds; return true;
case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.__fpu_mxcsr; return true;
case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.__fpu_mxcsrmask; return true;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
memcpy(&value->value.uint8, &m_state.context.fpu.__fpu_stmm0 + (reg - fpu_stmm0), 10);
return true;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
case fpu_xmm8:
case fpu_xmm9:
case fpu_xmm10:
case fpu_xmm11:
case fpu_xmm12:
case fpu_xmm13:
case fpu_xmm14:
case fpu_xmm15:
memcpy(&value->value.uint8, &m_state.context.fpu.__fpu_xmm0 + (reg - fpu_xmm0), 16);
return true;
}
break;
case e_regSetEXC:
switch (reg)
{
case exc_trapno: value->value.uint32 = m_state.context.exc.__trapno; return true;
case exc_err: value->value.uint32 = m_state.context.exc.__err; return true;
case exc_faultvaddr:value->value.uint64 = m_state.context.exc.__faultvaddr; return true;
}
break;
}
}
return false;
}
bool
DNBArchImplX86_64::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_rip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_rsp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_rbp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_rflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
((uint64_t*)(&m_state.context.gpr))[reg] = value->value.uint64;
success = true;
}
break;
case e_regSetFPU:
switch (reg)
{
case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.__fpu_fcw)) = value->value.uint16; success = true; break;
case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.__fpu_fsw)) = value->value.uint16; success = true; break;
case fpu_ftw: m_state.context.fpu.__fpu_ftw = value->value.uint8; success = true; break;
case fpu_fop: m_state.context.fpu.__fpu_fop = value->value.uint16; success = true; break;
case fpu_ip: m_state.context.fpu.__fpu_ip = value->value.uint32; success = true; break;
case fpu_cs: m_state.context.fpu.__fpu_cs = value->value.uint16; success = true; break;
case fpu_dp: m_state.context.fpu.__fpu_dp = value->value.uint32; success = true; break;
case fpu_ds: m_state.context.fpu.__fpu_ds = value->value.uint16; success = true; break;
case fpu_mxcsr: m_state.context.fpu.__fpu_mxcsr = value->value.uint32; success = true; break;
case fpu_mxcsrmask: m_state.context.fpu.__fpu_mxcsrmask = value->value.uint32; success = true; break;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
memcpy (&m_state.context.fpu.__fpu_stmm0 + (reg - fpu_stmm0), &value->value.uint8, 10);
success = true;
break;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
case fpu_xmm8:
case fpu_xmm9:
case fpu_xmm10:
case fpu_xmm11:
case fpu_xmm12:
case fpu_xmm13:
case fpu_xmm14:
case fpu_xmm15:
memcpy (&m_state.context.fpu.__fpu_xmm0 + (reg - fpu_xmm0), &value->value.uint8, 16);
success = true;
break;
}
break;
case e_regSetEXC:
switch (reg)
{
case exc_trapno: m_state.context.exc.__trapno = value->value.uint32; success = true; break;
case exc_err: m_state.context.exc.__err = value->value.uint32; success = true; break;
case exc_faultvaddr:m_state.context.exc.__faultvaddr = value->value.uint64; success = true; break;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
nub_size_t
DNBArchImplX86_64::GetRegisterContext (void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf && buf_len)
{
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetFPUState(force) | GetEXCState(force))
return 0;
::memcpy (buf, &m_state.context, size);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchImplX86_64::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
::memcpy (&m_state.context, buf, size);
SetGPRState();
SetFPUState();
SetEXCState();
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
return size;
}
kern_return_t
DNBArchImplX86_64::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) | GetFPUState(force) | GetEXCState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetFPU: return GetFPUState(force);
case e_regSetEXC: return GetEXCState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchImplX86_64::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
if (RegisterSetStateIsValid(set))
{
switch (set)
{
case e_regSetALL: return SetGPRState() | SetFPUState() | SetEXCState();
case e_regSetGPR: return SetGPRState();
case e_regSetFPU: return SetFPUState();
case e_regSetEXC: return SetEXCState();
default: break;
}
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchImplX86_64::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
#endif // #if defined (__i386__) || defined (__x86_64__)