blob: 4b31159d768e65f9943876112694a734955053de [file] [log] [blame]
//===-- DWARFDebugInfo.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SymbolFileDWARF.h"
#include <algorithm>
#include <set>
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Stream.h"
#include "DWARFDebugInfo.h"
#include "DWARFCompileUnit.h"
#include "DWARFDebugAranges.h"
#include "DWARFDebugInfoEntry.h"
#include "DWARFFormValue.h"
using namespace lldb_private;
using namespace std;
//----------------------------------------------------------------------
// Constructor
//----------------------------------------------------------------------
DWARFDebugInfo::DWARFDebugInfo() :
m_dwarf2Data(NULL),
m_compile_units()
{
}
//----------------------------------------------------------------------
// SetDwarfData
//----------------------------------------------------------------------
void
DWARFDebugInfo::SetDwarfData(SymbolFileDWARF* dwarf2Data)
{
m_dwarf2Data = dwarf2Data;
m_compile_units.clear();
}
//----------------------------------------------------------------------
// BuildDIEAddressRangeTable
//----------------------------------------------------------------------
bool
DWARFDebugInfo::BuildFunctionAddressRangeTable(DWARFDebugAranges* debug_aranges)
{
const uint32_t num_compile_units = GetNumCompileUnits();
uint32_t idx;
for (idx = 0; idx < num_compile_units; ++idx)
{
DWARFCompileUnit* cu = GetCompileUnitAtIndex (idx);
if (cu)
{
cu->DIE()->BuildFunctionAddressRangeTable(m_dwarf2Data, cu, debug_aranges);
}
}
return !debug_aranges->IsEmpty();
}
//----------------------------------------------------------------------
// LookupAddress
//----------------------------------------------------------------------
bool
DWARFDebugInfo::LookupAddress
(
const dw_addr_t address,
const dw_offset_t hint_die_offset,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry** function_die,
DWARFDebugInfoEntry** block_die
)
{
if (hint_die_offset != DW_INVALID_OFFSET)
cu_sp = GetCompileUnit(hint_die_offset);
else
{
// Get a non const version of the address ranges
DWARFDebugAranges* debug_aranges = ((SymbolFileDWARF*)m_dwarf2Data)->DebugAranges();
if (debug_aranges != NULL)
{
// If we have an empty address ranges section, lets build a sorted
// table ourselves by going through all of the debug information so we
// can do quick subsequent searches.
if (debug_aranges->IsEmpty())
{
const uint32_t num_compile_units = GetNumCompileUnits();
uint32_t idx;
for (idx = 0; idx < num_compile_units; ++idx)
{
DWARFCompileUnit* cu = GetCompileUnitAtIndex(idx);
if (cu)
cu->DIE()->BuildAddressRangeTable(m_dwarf2Data, cu, debug_aranges);
}
}
cu_sp = GetCompileUnit(debug_aranges->FindAddress(address));
}
}
if (cu_sp.get())
{
if (cu_sp->LookupAddress(address, function_die, block_die))
return true;
cu_sp.reset();
}
else
{
// The hint_die_offset may have been a pointer to the actual item that
// we are looking for
DWARFDebugInfoEntry* die_ptr = GetDIEPtr(hint_die_offset, &cu_sp);
if (die_ptr)
{
if (cu_sp.get())
{
if (function_die || block_die)
return die_ptr->LookupAddress(address, m_dwarf2Data, cu_sp.get(), function_die, block_die);
// We only wanted the compile unit that contained this address
return true;
}
}
}
return false;
}
void
DWARFDebugInfo::ParseCompileUnitHeadersIfNeeded()
{
if (m_compile_units.empty())
{
if (m_dwarf2Data != NULL)
{
uint32_t offset = 0;
const DataExtractor &debug_info_data = m_dwarf2Data->get_debug_info_data();
while (debug_info_data.ValidOffset(offset))
{
DWARFCompileUnitSP cu_sp(new DWARFCompileUnit(m_dwarf2Data));
// Out of memory?
if (cu_sp.get() == NULL)
break;
if (cu_sp->Extract(debug_info_data, &offset) == false)
break;
m_compile_units.push_back(cu_sp);
offset = cu_sp->GetNextCompileUnitOffset();
}
}
}
}
uint32_t
DWARFDebugInfo::GetNumCompileUnits()
{
ParseCompileUnitHeadersIfNeeded();
return m_compile_units.size();
}
DWARFCompileUnit*
DWARFDebugInfo::GetCompileUnitAtIndex(uint32_t idx)
{
DWARFCompileUnit* cu = NULL;
if (idx < GetNumCompileUnits())
cu = m_compile_units[idx].get();
return cu;
}
static bool CompileUnitOffsetLessThan (const DWARFCompileUnitSP& a, const DWARFCompileUnitSP& b)
{
return a->GetOffset() < b->GetOffset();
}
static int
CompareDWARFCompileUnitSPOffset (const void *key, const void *arrmem)
{
const dw_offset_t key_cu_offset = *(dw_offset_t*) key;
const dw_offset_t cu_offset = ((DWARFCompileUnitSP *)arrmem)->get()->GetOffset();
if (key_cu_offset < cu_offset)
return -1;
if (key_cu_offset > cu_offset)
return 1;
return 0;
}
DWARFCompileUnitSP
DWARFDebugInfo::GetCompileUnit(dw_offset_t cu_offset, uint32_t* idx_ptr)
{
DWARFCompileUnitSP cu_sp;
uint32_t cu_idx = DW_INVALID_INDEX;
if (cu_offset != DW_INVALID_OFFSET)
{
ParseCompileUnitHeadersIfNeeded();
DWARFCompileUnitSP* match = (DWARFCompileUnitSP*)bsearch(&cu_offset, &m_compile_units[0], m_compile_units.size(), sizeof(DWARFCompileUnitSP), CompareDWARFCompileUnitSPOffset);
if (match)
{
cu_sp = *match;
cu_idx = match - &m_compile_units[0];
}
}
if (idx_ptr)
*idx_ptr = cu_idx;
return cu_sp;
}
DWARFCompileUnitSP
DWARFDebugInfo::GetCompileUnitContainingDIE(dw_offset_t die_offset)
{
DWARFCompileUnitSP cu_sp;
if (die_offset != DW_INVALID_OFFSET)
{
ParseCompileUnitHeadersIfNeeded();
CompileUnitColl::const_iterator end_pos = m_compile_units.end();
CompileUnitColl::const_iterator pos;
for (pos = m_compile_units.begin(); pos != end_pos; ++pos)
{
dw_offset_t cu_start_offset = (*pos)->GetOffset();
dw_offset_t cu_end_offset = (*pos)->GetNextCompileUnitOffset();
if (cu_start_offset <= die_offset && die_offset < cu_end_offset)
{
cu_sp = *pos;
break;
}
}
}
return cu_sp;
}
//----------------------------------------------------------------------
// Compare function DWARFDebugAranges::Range structures
//----------------------------------------------------------------------
static bool CompareDIEOffset (const DWARFDebugInfoEntry& die1, const DWARFDebugInfoEntry& die2)
{
return die1.GetOffset() < die2.GetOffset();
}
//----------------------------------------------------------------------
// GetDIE()
//
// Get the DIE (Debug Information Entry) with the specified offset.
//----------------------------------------------------------------------
DWARFDebugInfoEntry*
DWARFDebugInfo::GetDIEPtr(dw_offset_t die_offset, DWARFCompileUnitSP* cu_sp_ptr)
{
DWARFCompileUnitSP cu_sp(GetCompileUnitContainingDIE(die_offset));
if (cu_sp_ptr)
*cu_sp_ptr = cu_sp;
if (cu_sp.get())
return cu_sp->GetDIEPtr(die_offset);
return NULL; // Not found in any compile units
}
const DWARFDebugInfoEntry*
DWARFDebugInfo::GetDIEPtrContainingOffset(dw_offset_t die_offset, DWARFCompileUnitSP* cu_sp_ptr)
{
DWARFCompileUnitSP cu_sp(GetCompileUnitContainingDIE(die_offset));
if (cu_sp_ptr)
*cu_sp_ptr = cu_sp;
if (cu_sp.get())
return cu_sp->GetDIEPtrContainingOffset(die_offset);
return NULL; // Not found in any compile units
}
//----------------------------------------------------------------------
// DWARFDebugInfo_ParseCallback
//
// A callback function for the static DWARFDebugInfo::Parse() function
// that gets parses all compile units and DIE's into an internate
// representation for further modification.
//----------------------------------------------------------------------
static dw_offset_t
DWARFDebugInfo_ParseCallback
(
SymbolFileDWARF* dwarf2Data,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry* die,
const dw_offset_t next_offset,
const uint32_t curr_depth,
void* userData
)
{
DWARFDebugInfo* debug_info = (DWARFDebugInfo*)userData;
DWARFCompileUnit* cu = cu_sp.get();
if (die)
{
cu->AddDIE(*die);
}
else if (cu)
{
debug_info->AddCompileUnit(cu_sp);
}
// Just return the current offset to parse the next CU or DIE entry
return next_offset;
}
//----------------------------------------------------------------------
// AddCompileUnit
//----------------------------------------------------------------------
void
DWARFDebugInfo::AddCompileUnit(DWARFCompileUnitSP& cu)
{
m_compile_units.push_back(cu);
}
/*
void
DWARFDebugInfo::AddDIE(DWARFDebugInfoEntry& die)
{
m_die_array.push_back(die);
}
*/
//----------------------------------------------------------------------
// Parse
//
// Parses the .debug_info section and uses the .debug_abbrev section
// and various other sections in the SymbolFileDWARF class and calls the
// supplied callback function each time a compile unit header, or debug
// information entry is successfully parsed. This function can be used
// for different tasks such as parsing the file contents into a
// structured data, dumping, verifying and much more.
//----------------------------------------------------------------------
void
DWARFDebugInfo::Parse(SymbolFileDWARF* dwarf2Data, Callback callback, void* userData)
{
if (dwarf2Data)
{
uint32_t offset = 0;
uint32_t depth = 0;
DWARFCompileUnitSP cu(new DWARFCompileUnit(dwarf2Data));
if (cu.get() == NULL)
return;
DWARFDebugInfoEntry die;
while (cu->Extract(dwarf2Data->get_debug_info_data(), &offset))
{
const dw_offset_t next_cu_offset = cu->GetNextCompileUnitOffset();
depth = 0;
// Call the callback function with no DIE pointer for the compile unit
// and get the offset that we are to continue to parse from
offset = callback(dwarf2Data, cu, NULL, offset, depth, userData);
// Make sure we are within our compile unit
if (offset < next_cu_offset)
{
// We are in our compile unit, parse starting at the offset
// we were told to parse
bool done = false;
while (!done && die.Extract(dwarf2Data, cu.get(), &offset))
{
// Call the callback function with DIE pointer that falls within the compile unit
offset = callback(dwarf2Data, cu, &die, offset, depth, userData);
if (die.IsNULL())
{
if (depth)
--depth;
else
done = true; // We are done with this compile unit!
}
else if (die.HasChildren())
++depth;
}
}
// Make sure the offset returned is valid, and if not stop parsing.
// Returning DW_INVALID_OFFSET from this callback is a good way to end
// all parsing
if (!dwarf2Data->get_debug_info_data().ValidOffset(offset))
break;
// See if during the callback anyone retained a copy of the compile
// unit other than ourselves and if so, let whomever did own the object
// and create a new one for our own use!
if (!cu.unique())
cu.reset(new DWARFCompileUnit(dwarf2Data));
// Make sure we start on a proper
offset = next_cu_offset;
}
}
}
/*
typedef struct AddressRangeTag
{
dw_addr_t lo_pc;
dw_addr_t hi_pc;
dw_offset_t die_offset;
} AddressRange;
*/
struct DIERange
{
DIERange() :
range(),
lo_die_offset(),
hi_die_offset()
{
}
DWARFDebugAranges::Range range;
dw_offset_t lo_die_offset;
dw_offset_t hi_die_offset;
};
typedef struct DwarfStat
{
DwarfStat() : count(0), byte_size(0) {}
uint32_t count;
uint32_t byte_size;
} DwarfStat;
typedef map<dw_attr_t, DwarfStat> DwarfAttrStatMap;
typedef struct DIEStat
{
DIEStat() : count(0), byte_size(0), attr_stats() {}
uint32_t count;
uint32_t byte_size;
DwarfAttrStatMap attr_stats;
} DIEStat;
typedef map<dw_tag_t, DIEStat> DIEStatMap;
struct VerifyInfo
{
VerifyInfo(Stream* the_strm) :
strm(the_strm),
die_ranges(),
addr_range_errors(0),
sibling_errors(0),
die_stats()
{
}
Stream* strm;
vector<DIERange> die_ranges;
uint32_t addr_range_errors;
uint32_t sibling_errors;
DIEStatMap die_stats;
DISALLOW_COPY_AND_ASSIGN(VerifyInfo);
};
//----------------------------------------------------------------------
// VerifyCallback
//
// A callback function for the static DWARFDebugInfo::Parse() function
// that gets called each time a compile unit header or debug information
// entry is successfully parsed.
//
// This function will verify the DWARF information is well formed by
// making sure that any DW_TAG_compile_unit tags that have valid address
// ranges (DW_AT_low_pc and DW_AT_high_pc) have no gaps in the address
// ranges of it contained DW_TAG_subprogram tags. Also the sibling chain
// and relationships are verified to make sure nothing gets hosed up
// when dead stripping occurs.
//----------------------------------------------------------------------
static dw_offset_t
VerifyCallback
(
SymbolFileDWARF* dwarf2Data,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry* die,
const dw_offset_t next_offset,
const uint32_t curr_depth,
void* userData
)
{
VerifyInfo* verifyInfo = (VerifyInfo*)userData;
const DWARFCompileUnit* cu = cu_sp.get();
Stream *s = verifyInfo->strm;
bool verbose = s->GetVerbose();
if (die)
{
// die->Dump(dwarf2Data, cu, f);
const DWARFAbbreviationDeclaration* abbrevDecl = die->GetAbbreviationDeclarationPtr();
// We have a DIE entry
if (abbrevDecl)
{
const dw_offset_t die_offset = die->GetOffset();
const dw_offset_t sibling = die->GetAttributeValueAsReference(dwarf2Data, cu, DW_AT_sibling, DW_INVALID_OFFSET);
if (sibling != DW_INVALID_OFFSET)
{
if (sibling <= next_offset)
{
if (verifyInfo->sibling_errors++ == 0)
s->Printf("ERROR\n");
s->Printf(" 0x%8.8x: sibling attribute (0x%8.8x) in this die is not valid: it is less than this DIE or some of its contents.\n", die->GetOffset(), sibling);
}
else if (sibling > verifyInfo->die_ranges.back().hi_die_offset)
{
if (verifyInfo->sibling_errors++ == 0)
s->Printf("ERROR\n");
s->Printf(" 0x%8.8x: sibling attribute (0x%8.8x) in this DIE is not valid: it is greater than the end of the parent scope.\n", die->GetOffset(), sibling);
}
}
if ((die_offset < verifyInfo->die_ranges.back().lo_die_offset) || (die_offset >= verifyInfo->die_ranges.back().hi_die_offset))
{
if (verifyInfo->sibling_errors++ == 0)
s->Printf("ERROR\n");
s->Printf(" 0x%8.8x: DIE offset is not within the parent DIE range {0x%8.8x}: (0x%8.8x - 0x%8.8x)\n",
die->GetOffset(),
verifyInfo->die_ranges.back().range.offset,
verifyInfo->die_ranges.back().lo_die_offset,
verifyInfo->die_ranges.back().hi_die_offset);
}
dw_tag_t tag = abbrevDecl->Tag();
// Keep some stats on this DWARF file
verifyInfo->die_stats[tag].count++;
verifyInfo->die_stats[tag].byte_size += (next_offset - die->GetOffset());
if (verbose)
{
DIEStat& tag_stat = verifyInfo->die_stats[tag];
const DataExtractor& debug_info = dwarf2Data->get_debug_info_data();
dw_offset_t offset = die->GetOffset();
// Skip the abbreviation code so we are at the data for the attributes
debug_info.Skip_LEB128(&offset);
const uint32_t numAttributes = abbrevDecl->NumAttributes();
dw_attr_t attr;
dw_form_t form;
for (uint32_t idx = 0; idx < numAttributes; ++idx)
{
dw_offset_t start_offset = offset;
abbrevDecl->GetAttrAndFormByIndexUnchecked(idx, attr, form);
DWARFFormValue::SkipValue(form, debug_info, &offset, cu);
if (tag_stat.attr_stats.find(attr) == tag_stat.attr_stats.end())
{
tag_stat.attr_stats[attr].count = 0;
tag_stat.attr_stats[attr].byte_size = 0;
}
tag_stat.attr_stats[attr].count++;
tag_stat.attr_stats[attr].byte_size += offset - start_offset;
}
}
DWARFDebugAranges::Range range;
range.offset = die->GetOffset();
switch (tag)
{
case DW_TAG_compile_unit:
// Check for previous subroutines that were within a previous
//
// VerifyAddressRangesForCU(verifyInfo);
// Remember which compile unit we are dealing with so we can verify
// the address ranges within it (if any) are contiguous. The DWARF
// spec states that if a compile unit TAG has high and low PC
// attributes, there must be no gaps in the address ranges of it's
// contained subroutines. If there are gaps, the high and low PC
// must not be in the DW_TAG_compile_unit's attributes. Errors like
// this can crop up when optimized code is dead stripped and the debug
// information isn't properly fixed up for output.
range.lo_pc = die->GetAttributeValueAsUnsigned(dwarf2Data, cu, DW_AT_low_pc, DW_INVALID_ADDRESS);
if (range.lo_pc != DW_INVALID_ADDRESS)
{
range.hi_pc = die->GetAttributeValueAsUnsigned(dwarf2Data, cu, DW_AT_high_pc, DW_INVALID_ADDRESS);
if (s->GetVerbose())
{
s->Printf("\n CU ");
range.Dump(s);
}
}
else
{
range.lo_pc = die->GetAttributeValueAsUnsigned(dwarf2Data, cu, DW_AT_entry_pc, DW_INVALID_ADDRESS);
}
break;
case DW_TAG_subprogram:
// If the DW_TAG_compile_unit that contained this function had a
// valid address range, add all of the valid subroutine address
// ranges to a collection of addresses which will be sorted
// and verified right before the next DW_TAG_compile_unit is
// processed to make sure that there are no gaps in the address
// range.
range.lo_pc = die->GetAttributeValueAsUnsigned(dwarf2Data, cu, DW_AT_low_pc, DW_INVALID_ADDRESS);
if (range.lo_pc != DW_INVALID_ADDRESS)
{
range.hi_pc = die->GetAttributeValueAsUnsigned(dwarf2Data, cu, DW_AT_high_pc, DW_INVALID_ADDRESS);
if (range.hi_pc != DW_INVALID_ADDRESS)
{
range.offset = die->GetOffset();
bool valid = range.ValidRange();
if (!valid || s->GetVerbose())
{
s->Printf("\n FUNC ");
range.Dump(s);
if (!valid)
{
++verifyInfo->addr_range_errors;
s->Printf(" ERROR: Invalid address range for function.");
}
}
// Only add to our subroutine ranges if our compile unit has a valid address range
// if (valid && verifyInfo->die_ranges.size() >= 2 && verifyInfo->die_ranges[1].range.ValidRange())
// verifyInfo->subroutine_ranges.InsertRange(range);
}
}
break;
case DW_TAG_lexical_block:
case DW_TAG_inlined_subroutine:
{
range.lo_pc = die->GetAttributeValueAsUnsigned(dwarf2Data, cu, DW_AT_low_pc, DW_INVALID_ADDRESS);
if (range.lo_pc != DW_INVALID_ADDRESS)
{
range.hi_pc = die->GetAttributeValueAsUnsigned(dwarf2Data, cu, DW_AT_high_pc, DW_INVALID_ADDRESS);
if (range.hi_pc != DW_INVALID_ADDRESS)
{
range.offset = die->GetOffset();
bool valid = range.ValidRange();
if (!valid || s->GetVerbose())
{
s->Printf("\n BLCK ");
range.Dump(s);
if (!valid)
{
++verifyInfo->addr_range_errors;
s->Printf(" ERROR: Invalid address range for block or inlined subroutine.");
}
}
}
}
}
break;
}
if (range.ValidRange() && verifyInfo->die_ranges.back().range.ValidRange())
{
if (!verifyInfo->die_ranges.back().range.Contains(range))
{
++verifyInfo->addr_range_errors;
s->Printf("\n ");
range.Dump(s);
s->Printf(" ERROR: Range is not in parent");
verifyInfo->die_ranges.back().range.Dump(s);
}
}
if (die->HasChildren())
{
// Keep tabs on the valid address ranges for the current item to make
// sure that it all fits (make sure the sibling offsets got fixed up
// correctly if any functions were dead stripped).
DIERange die_range;
die_range.range = range;
die_range.lo_die_offset = next_offset;
die_range.hi_die_offset = sibling;
if (die_range.hi_die_offset == DW_INVALID_OFFSET)
die_range.hi_die_offset = verifyInfo->die_ranges.back().hi_die_offset;
verifyInfo->die_ranges.push_back(die_range);
}
}
else
{
// NULL entry
verifyInfo->die_ranges.pop_back();
}
}
else
{
// cu->Dump(ostrm_ptr); // Dump the compile unit for the DIE
// We have a new compile unit header
verifyInfo->die_ranges.clear();
DIERange die_range;
die_range.range.offset = cu->GetOffset();
die_range.lo_die_offset = next_offset;
die_range.hi_die_offset = cu->GetNextCompileUnitOffset();
verifyInfo->die_ranges.push_back(die_range);
}
// Just return the current offset to parse the next CU or DIE entry
return next_offset;
}
class CompareDIEStatSizes
{
public:
bool operator() (const DIEStatMap::const_iterator& pos1, const DIEStatMap::const_iterator& pos2) const
{
return pos1->second.byte_size <= pos2->second.byte_size;
}
};
class CompareAttrDIEStatSizes
{
public:
bool operator() (const DwarfAttrStatMap::const_iterator& pos1, const DwarfAttrStatMap::const_iterator& pos2) const
{
return pos1->second.byte_size <= pos2->second.byte_size;
}
};
//----------------------------------------------------------------------
// Verify
//
// Verifies the DWARF information is valid.
//----------------------------------------------------------------------
void
DWARFDebugInfo::Verify(Stream *s, SymbolFileDWARF* dwarf2Data)
{
s->Printf("Verifying Compile Unit Header chain.....");
VerifyInfo verifyInfo(s);
verifyInfo.addr_range_errors = 0;
verifyInfo.sibling_errors = 0;
bool verbose = s->GetVerbose();
uint32_t offset = 0;
if (verbose)
s->EOL();
// vector<dw_offset_t> valid_cu_offsets;
DWARFCompileUnit cu (dwarf2Data);
bool success = true;
while ( success && dwarf2Data->get_debug_info_data().ValidOffset(offset+cu.Size()) )
{
success = cu.Extract (dwarf2Data->get_debug_info_data(), &offset);
if (!success)
s->Printf("ERROR\n");
// else
// valid_cu_offsets.push_back(cu.GetOffset());
cu.Verify(verifyInfo.strm);
offset = cu.GetNextCompileUnitOffset();
}
if (success)
s->Printf("OK\n");
s->Printf("Verifying address ranges and siblings...");
if (verbose)
s->EOL();
DWARFDebugInfo::Parse(dwarf2Data, VerifyCallback, &verifyInfo);
// VerifyAddressRangesForCU(&verifyInfo);
if (verifyInfo.addr_range_errors > 0)
s->Printf("\nERRORS - %u error(s) were found.\n", verifyInfo.addr_range_errors);
else
s->Printf("OK\n");
uint32_t total_category_sizes[kNumTagCategories] = {0};
uint32_t total_category_count[kNumTagCategories] = {0};
uint32_t total_die_count = 0;
uint32_t total_die_size = 0;
typedef set<DIEStatMap::const_iterator, CompareDIEStatSizes> DIEStatBySizeMap;
s->PutCString( "\n"
"DWARF Statistics\n"
"Count Size Size % Tag\n"
"-------- -------- -------- -------------------------------------------\n");
DIEStatBySizeMap statBySizeMap;
DIEStatMap::const_iterator pos;
DIEStatMap::const_iterator end_pos = verifyInfo.die_stats.end();
for (pos = verifyInfo.die_stats.begin(); pos != end_pos; ++pos)
{
const uint32_t die_count = pos->second.count;
const uint32_t die_size = pos->second.byte_size;
statBySizeMap.insert(pos);
total_die_count += die_count;
total_die_size += die_size;
DW_TAG_CategoryEnum category = get_tag_category(pos->first);
total_category_sizes[category] += die_size;
total_category_count[category] += die_count;
}
float total_die_size_float = total_die_size;
DIEStatBySizeMap::const_reverse_iterator size_pos;
DIEStatBySizeMap::const_reverse_iterator size_pos_end = statBySizeMap.rend();
float percentage;
for (size_pos = statBySizeMap.rbegin(); size_pos != size_pos_end; ++size_pos)
{
pos = *size_pos;
const DIEStat& tag_stat = pos->second;
const uint32_t die_count = tag_stat.count;
const uint32_t die_size = tag_stat.byte_size;
percentage = ((float)die_size/total_die_size_float)*100.0;
s->Printf("%7u %8u %2.2f%% %s\n", die_count, die_size, percentage, DW_TAG_value_to_name(pos->first));
const DwarfAttrStatMap& attr_stats = tag_stat.attr_stats;
if (!attr_stats.empty())
{
typedef set<DwarfAttrStatMap::const_iterator, CompareAttrDIEStatSizes> DwarfAttrStatBySizeMap;
DwarfAttrStatBySizeMap attrStatBySizeMap;
DwarfAttrStatMap::const_iterator attr_stat_pos;
DwarfAttrStatMap::const_iterator attr_stat_pos_end = attr_stats.end();
for (attr_stat_pos = attr_stats.begin(); attr_stat_pos != attr_stat_pos_end; ++attr_stat_pos)
{
attrStatBySizeMap.insert(attr_stat_pos);
}
DwarfAttrStatBySizeMap::const_reverse_iterator attr_size_pos;
DwarfAttrStatBySizeMap::const_reverse_iterator attr_size_pos_end = attrStatBySizeMap.rend();
for (attr_size_pos = attrStatBySizeMap.rbegin(); attr_size_pos != attr_size_pos_end; ++attr_size_pos)
{
attr_stat_pos = *attr_size_pos;
percentage = ((float)attr_stat_pos->second.byte_size/die_size)*100.0;
s->Printf("%7u %8u %2.2f%% %s\n", attr_stat_pos->second.count, attr_stat_pos->second.byte_size, percentage, DW_AT_value_to_name(attr_stat_pos->first));
}
s->EOL();
}
}
s->Printf("-------- -------- -------- -------------------------------------------\n");
s->Printf("%7u %8u 100.00% Total for all DIEs\n", total_die_count, total_die_size);
float total_category_percentages[kNumTagCategories] =
{
((float)total_category_sizes[TagCategoryVariable]/total_die_size_float)*100.0,
((float)total_category_sizes[TagCategoryType]/total_die_size_float)*100.0,
((float)total_category_sizes[TagCategoryProgram]/total_die_size_float)*100.0
};
s->EOL();
s->Printf("%7u %8u %2.2f%% %s\n", total_category_count[TagCategoryVariable], total_category_sizes[TagCategoryVariable], total_category_percentages[TagCategoryVariable], "Total for variable related DIEs");
s->Printf("%7u %8u %2.2f%% %s\n", total_category_count[TagCategoryType], total_category_sizes[TagCategoryType], total_category_percentages[TagCategoryType], "Total for type related DIEs");
s->Printf("%7u %8u %2.2f%% %s\n", total_category_count[TagCategoryProgram], total_category_sizes[TagCategoryProgram], total_category_percentages[TagCategoryProgram], "Total for program related DIEs");
s->Printf("\n\n");
}
typedef struct DumpInfo
{
DumpInfo(Stream* init_strm, uint32_t off, uint32_t depth) :
strm(init_strm),
die_offset(off),
recurse_depth(depth),
found_depth(UINT32_MAX),
found_die(false),
ancestors()
{
}
Stream* strm;
const uint32_t die_offset;
const uint32_t recurse_depth;
uint32_t found_depth;
bool found_die;
std::vector<DWARFDebugInfoEntry> ancestors;
DISALLOW_COPY_AND_ASSIGN(DumpInfo);
} DumpInfo;
//----------------------------------------------------------------------
// DumpCallback
//
// A callback function for the static DWARFDebugInfo::Parse() function
// that gets called each time a compile unit header or debug information
// entry is successfully parsed.
//
// This function dump DWARF information and obey recurse depth and
// whether a single DIE is to be dumped (or all of the data).
//----------------------------------------------------------------------
static dw_offset_t DumpCallback
(
SymbolFileDWARF* dwarf2Data,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry* die,
const dw_offset_t next_offset,
const uint32_t curr_depth,
void* userData
)
{
DumpInfo* dumpInfo = (DumpInfo*)userData;
const DWARFCompileUnit* cu = cu_sp.get();
Stream *s = dumpInfo->strm;
bool show_parents = s->GetFlags().Test(DWARFDebugInfo::eDumpFlag_ShowAncestors);
if (die)
{
// Are we dumping everything?
if (dumpInfo->die_offset == DW_INVALID_OFFSET)
{
// Yes we are dumping everything. Obey our recurse level though
if (curr_depth < dumpInfo->recurse_depth)
die->Dump(dwarf2Data, cu, s, 0);
}
else
{
// We are dumping a specific DIE entry by offset
if (dumpInfo->die_offset == die->GetOffset())
{
// We found the DIE we were looking for, dump it!
if (show_parents)
{
s->SetIndentLevel(0);
const uint32_t num_ancestors = dumpInfo->ancestors.size();
if (num_ancestors > 0)
{
for (uint32_t i=0; i<num_ancestors-1; ++i)
{
dumpInfo->ancestors[i].Dump(dwarf2Data, cu, s, 0);
s->IndentMore();
}
}
}
dumpInfo->found_depth = curr_depth;
die->Dump(dwarf2Data, cu, s, 0);
// Note that we found the DIE we were looking for
dumpInfo->found_die = true;
// Since we are dumping a single DIE, if there are no children we are done!
if (!die->HasChildren() || dumpInfo->recurse_depth == 0)
return DW_INVALID_OFFSET; // Return an invalid address to end parsing
}
else if (dumpInfo->found_die)
{
// Are we done with all the children?
if (curr_depth <= dumpInfo->found_depth)
return DW_INVALID_OFFSET;
// We have already found our DIE and are printing it's children. Obey
// our recurse depth and return an invalid offset if we get done
// dumping all the the children
if (dumpInfo->recurse_depth == UINT32_MAX || curr_depth <= dumpInfo->found_depth + dumpInfo->recurse_depth)
die->Dump(dwarf2Data, cu, s, 0);
}
else if (dumpInfo->die_offset > die->GetOffset())
{
if (show_parents)
dumpInfo->ancestors.back() = *die;
}
}
// Keep up with our indent level
if (die->IsNULL())
{
if (show_parents)
dumpInfo->ancestors.pop_back();
if (curr_depth <= 1)
return cu->GetNextCompileUnitOffset();
else
s->IndentLess();
}
else if (die->HasChildren())
{
if (show_parents)
{
DWARFDebugInfoEntry null_die;
dumpInfo->ancestors.push_back(null_die);
}
s->IndentMore();
}
}
else
{
if (cu == NULL)
s->PutCString("NULL - cu");
// We have a compile unit, reset our indent level to zero just in case
s->SetIndentLevel(0);
// See if we are dumping everything?
if (dumpInfo->die_offset == DW_INVALID_OFFSET)
{
// We are dumping everything
cu->Dump(s);
return cu->GetFirstDIEOffset(); // Return true to parse all DIEs in this Compile Unit
}
else
{
if (show_parents)
{
dumpInfo->ancestors.clear();
dumpInfo->ancestors.resize(1);
}
// We are dumping only a single DIE possibly with it's children and
// we must find it's compile unit before we can dump it properly
if (dumpInfo->die_offset < cu->GetFirstDIEOffset())
{
// Not found, maybe the DIE offset provided wasn't correct?
// *ostrm_ptr << "DIE at offset " << HEX32 << dumpInfo->die_offset << " was not found." << endl;
return DW_INVALID_OFFSET;
}
else
{
// See if the DIE is in this compile unit?
if (dumpInfo->die_offset < cu->GetNextCompileUnitOffset())
{
// This DIE is in this compile unit!
if (s->GetVerbose())
cu->Dump(s); // Dump the compile unit for the DIE in verbose mode
return next_offset;
// // We found our compile unit that contains our DIE, just skip to dumping the requested DIE...
// return dumpInfo->die_offset;
}
else
{
// Skip to the next compile unit as the DIE isn't in the current one!
return cu->GetNextCompileUnitOffset();
}
}
}
}
// Just return the current offset to parse the next CU or DIE entry
return next_offset;
}
//----------------------------------------------------------------------
// Dump
//
// Dump the information in the .debug_info section to the specified
// ostream. If die_offset is valid, a single DIE will be dumped. If the
// die_offset is invalid, all the DWARF information will be dumped. Both
// cases will obey a "recurse_depth" or how deep to traverse into the
// children of each DIE entry. A recurse_depth of zero will dump all
// compile unit headers. A recurse_depth of 1 will dump all compile unit
// headers and the DW_TAG_compile unit tags. A depth of 2 will also
// dump all types and functions.
//----------------------------------------------------------------------
void
DWARFDebugInfo::Dump
(
Stream *s,
SymbolFileDWARF* dwarf2Data,
const uint32_t die_offset,
const uint32_t recurse_depth
)
{
DumpInfo dumpInfo(s, die_offset, recurse_depth);
s->PutCString(".debug_info contents");
if (dwarf2Data->get_debug_info_data().GetByteSize() > 0)
{
if (die_offset == DW_INVALID_OFFSET)
s->PutCString(":\n");
else
{
s->Printf(" for DIE entry at .debug_info[0x%8.8x]", die_offset);
if (recurse_depth != UINT32_MAX)
s->Printf(" recursing %u levels deep.", recurse_depth);
s->EOL();
}
}
else
{
s->PutCString(": < EMPTY >\n");
return;
}
DWARFDebugInfo::Parse(dwarf2Data, DumpCallback, &dumpInfo);
}
//----------------------------------------------------------------------
// Dump
//
// Dump the contents of this DWARFDebugInfo object as has been parsed
// and/or modified after it has been parsed.
//----------------------------------------------------------------------
void
DWARFDebugInfo::Dump (Stream *s, const uint32_t die_offset, const uint32_t recurse_depth)
{
DumpInfo dumpInfo(s, die_offset, recurse_depth);
s->PutCString("Dumping .debug_info section from internal representation\n");
CompileUnitColl::const_iterator pos;
uint32_t curr_depth = 0;
ParseCompileUnitHeadersIfNeeded();
for (pos = m_compile_units.begin(); pos != m_compile_units.end(); ++pos)
{
const DWARFCompileUnitSP& cu_sp = *pos;
DumpCallback(m_dwarf2Data, (DWARFCompileUnitSP&)cu_sp, NULL, 0, curr_depth, &dumpInfo);
cu_sp->DIE()->Dump(m_dwarf2Data, cu_sp.get(), s, recurse_depth);
}
}
//----------------------------------------------------------------------
// FindCallbackString
//
// A callback function for the static DWARFDebugInfo::Parse() function
// that gets called each time a compile unit header or debug information
// entry is successfully parsed.
//
// This function will find the die_offset of any items whose DW_AT_name
// matches the given string
//----------------------------------------------------------------------
typedef struct FindCallbackStringInfoTag
{
const char* name;
bool ignore_case;
RegularExpression* regex;
vector<dw_offset_t>& die_offsets;
} FindCallbackStringInfo;
static dw_offset_t FindCallbackString
(
SymbolFileDWARF* dwarf2Data,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry* die,
const dw_offset_t next_offset,
const uint32_t curr_depth,
void* userData
)
{
FindCallbackStringInfo* info = (FindCallbackStringInfo*)userData;
const DWARFCompileUnit* cu = cu_sp.get();
if (die)
{
const char* die_name = die->GetName(dwarf2Data, cu);
if (die_name)
{
if (info->regex)
{
if (info->regex->Execute(die_name))
info->die_offsets.push_back(die->GetOffset());
}
else
{
if ((info->ignore_case ? strcasecmp(die_name, info->name) : strcmp(die_name, info->name)) == 0)
info->die_offsets.push_back(die->GetOffset());
}
}
}
// Just return the current offset to parse the next CU or DIE entry
return next_offset;
}
//----------------------------------------------------------------------
// Find
//
// Finds all DIE that have a specific DW_AT_name attribute by manually
// searching through the debug information (not using the
// .debug_pubnames section). The string must match the entire name
// and case sensitive searches are an option.
//----------------------------------------------------------------------
bool
DWARFDebugInfo::Find(const char* name, bool ignore_case, vector<dw_offset_t>& die_offsets) const
{
die_offsets.clear();
if (name && name[0])
{
FindCallbackStringInfo info = { name, ignore_case, NULL, die_offsets };
DWARFDebugInfo::Parse(m_dwarf2Data, FindCallbackString, &info);
}
return !die_offsets.empty();
}
//----------------------------------------------------------------------
// Find
//
// Finds all DIE that have a specific DW_AT_name attribute by manually
// searching through the debug information (not using the
// .debug_pubnames section). The string must match the supplied regular
// expression.
//----------------------------------------------------------------------
bool
DWARFDebugInfo::Find(RegularExpression& re, vector<dw_offset_t>& die_offsets) const
{
die_offsets.clear();
FindCallbackStringInfo info = { NULL, false, &re, die_offsets };
DWARFDebugInfo::Parse(m_dwarf2Data, FindCallbackString, &info);
return !die_offsets.empty();
}