blob: fa88b184a311c76fdb329b1785cffa0f5388397c [file] [log] [blame]
//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/MachO.h"
#include "ObjectFileMachO.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBuffer.h"
#include "lldb/Host/FileSpec.h"
#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/Timer.h"
#include "lldb/Core/UUID.h"
#include "lldb/Symbol/ObjectFile.h"
using namespace lldb;
using namespace lldb_private;
using namespace llvm::MachO;
void
ObjectFileMachO::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
}
void
ObjectFileMachO::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
const char *
ObjectFileMachO::GetPluginNameStatic()
{
return "object-file.mach-o";
}
const char *
ObjectFileMachO::GetPluginDescriptionStatic()
{
return "Mach-o object file reader (32 and 64 bit)";
}
ObjectFile *
ObjectFileMachO::CreateInstance (Module* module, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length)
{
if (ObjectFileMachO::MagicBytesMatch(dataSP))
{
std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module, dataSP, file, offset, length));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
static uint32_t
MachHeaderSizeFromMagic(uint32_t magic)
{
switch (magic)
{
case HeaderMagic32:
case HeaderMagic32Swapped:
return sizeof(struct mach_header);
case HeaderMagic64:
case HeaderMagic64Swapped:
return sizeof(struct mach_header_64);
break;
default:
break;
}
return 0;
}
bool
ObjectFileMachO::MagicBytesMatch (DataBufferSP& dataSP)
{
DataExtractor data(dataSP, lldb::endian::InlHostByteOrder(), 4);
uint32_t offset = 0;
uint32_t magic = data.GetU32(&offset);
return MachHeaderSizeFromMagic(magic) != 0;
}
ObjectFileMachO::ObjectFileMachO(Module* module, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length) :
ObjectFile(module, file, offset, length, dataSP),
m_mutex (Mutex::eMutexTypeRecursive),
m_header(),
m_sections_ap(),
m_symtab_ap(),
m_entry_point_address ()
{
::memset (&m_header, 0, sizeof(m_header));
::memset (&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::~ObjectFileMachO()
{
}
bool
ObjectFileMachO::ParseHeader ()
{
lldb_private::Mutex::Locker locker(m_mutex);
bool can_parse = false;
uint32_t offset = 0;
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
// Leave magic in the original byte order
m_header.magic = m_data.GetU32(&offset);
switch (m_header.magic)
{
case HeaderMagic32:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(8);
can_parse = true;
break;
case HeaderMagic32Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(8);
can_parse = true;
break;
default:
break;
}
if (can_parse)
{
m_data.GetU32(&offset, &m_header.cputype, 6);
ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
if (SetModulesArchitecture (mach_arch))
{
// Read in all only the load command data
DataBufferSP data_sp(m_file.ReadFileContents(m_offset, m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic)));
m_data.SetData (data_sp);
return true;
}
}
else
{
memset(&m_header, 0, sizeof(struct mach_header));
}
return false;
}
ByteOrder
ObjectFileMachO::GetByteOrder () const
{
lldb_private::Mutex::Locker locker(m_mutex);
return m_data.GetByteOrder ();
}
bool
ObjectFileMachO::IsExecutable() const
{
return m_header.filetype == HeaderFileTypeExecutable;
}
size_t
ObjectFileMachO::GetAddressByteSize () const
{
lldb_private::Mutex::Locker locker(m_mutex);
return m_data.GetAddressByteSize ();
}
Symtab *
ObjectFileMachO::GetSymtab()
{
lldb_private::Mutex::Locker symfile_locker(m_mutex);
if (m_symtab_ap.get() == NULL)
{
m_symtab_ap.reset(new Symtab(this));
Mutex::Locker symtab_locker (m_symtab_ap->GetMutex());
ParseSymtab (true);
}
return m_symtab_ap.get();
}
SectionList *
ObjectFileMachO::GetSectionList()
{
lldb_private::Mutex::Locker locker(m_mutex);
if (m_sections_ap.get() == NULL)
{
m_sections_ap.reset(new SectionList());
ParseSections();
}
return m_sections_ap.get();
}
size_t
ObjectFileMachO::ParseSections ()
{
lldb::user_id_t segID = 0;
lldb::user_id_t sectID = 0;
struct segment_command_64 load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
//bool dump_sections = false;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64)
{
if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16))
{
load_cmd.vmaddr = m_data.GetAddress(&offset);
load_cmd.vmsize = m_data.GetAddress(&offset);
load_cmd.fileoff = m_data.GetAddress(&offset);
load_cmd.filesize = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &load_cmd.maxprot, 4))
{
const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0;
// Keep a list of mach segments around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_segments.push_back (load_cmd);
ConstString segment_name (load_cmd.segname, std::min<int>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
// Use a segment ID of the segment index shifted left by 8 so they
// never conflict with any of the sections.
SectionSP segment_sp;
if (segment_name)
{
segment_sp.reset(new Section (NULL,
GetModule(), // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
load_cmd.vmaddr, // File VM address == addresses as they are found in the object file
load_cmd.vmsize, // VM size in bytes of this section
load_cmd.fileoff, // Offset to the data for this section in the file
load_cmd.filesize, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsEncrypted (segment_is_encrypted);
m_sections_ap->AddSection(segment_sp);
}
struct section_64 sect64;
::memset (&sect64, 0, sizeof(sect64));
// Push a section into our mach sections for the section at
// index zero (NListSectionNoSection) if we don't have any
// mach sections yet...
if (m_mach_sections.empty())
m_mach_sections.push_back(sect64);
uint32_t segment_sect_idx;
const lldb::user_id_t first_segment_sectID = sectID + 1;
const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8;
for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx)
{
if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL)
break;
if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL)
break;
sect64.addr = m_data.GetAddress(&offset);
sect64.size = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
break;
// Keep a list of mach sections around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_sections.push_back (sect64);
ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
if (!segment_name)
{
// We have a segment with no name so we need to conjure up
// segments that correspond to the section's segname if there
// isn't already such a section. If there is such a section,
// we resize the section so that it spans all sections.
// We also mark these sections as fake so address matches don't
// hit if they land in the gaps between the child sections.
segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname));
segment_sp = m_sections_ap->FindSectionByName (segment_name);
if (segment_sp.get())
{
Section *segment = segment_sp.get();
// Grow the section size as needed.
const lldb::addr_t sect64_min_addr = sect64.addr;
const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size;
if (sect64_min_addr >= curr_seg_min_addr)
{
const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr;
// Only grow the section size if needed
if (new_seg_byte_size > curr_seg_byte_size)
segment->SetByteSize (new_seg_byte_size);
}
else
{
// We need to change the base address of the segment and
// adjust the child section offsets for all existing children.
const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr;
segment->Slide(slide_amount, false);
segment->GetChildren().Slide (-slide_amount, false);
segment->SetByteSize (curr_seg_max_addr - sect64_min_addr);
}
// Grow the section size as needed.
if (sect64.offset)
{
const lldb::addr_t segment_min_file_offset = segment->GetFileOffset();
const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize();
const lldb::addr_t section_min_file_offset = sect64.offset;
const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size;
const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset);
const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset;
segment->SetFileOffset (new_file_offset);
segment->SetFileSize (new_file_size);
}
}
else
{
// Create a fake section for the section's named segment
segment_sp.reset(new Section(segment_sp.get(), // Parent section
GetModule(), // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
sect64.addr, // File VM address == addresses as they are found in the object file
sect64.size, // VM size in bytes of this section
sect64.offset, // Offset to the data for this section in the file
sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsFake(true);
m_sections_ap->AddSection(segment_sp);
segment_sp->SetIsEncrypted (segment_is_encrypted);
}
}
assert (segment_sp.get());
uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType;
static ConstString g_sect_name_objc_data ("__objc_data");
static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs");
static ConstString g_sect_name_objc_selrefs ("__objc_selrefs");
static ConstString g_sect_name_objc_classrefs ("__objc_classrefs");
static ConstString g_sect_name_objc_superrefs ("__objc_superrefs");
static ConstString g_sect_name_objc_const ("__objc_const");
static ConstString g_sect_name_objc_classlist ("__objc_classlist");
static ConstString g_sect_name_cfstring ("__cfstring");
static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev");
static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges");
static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame");
static ConstString g_sect_name_dwarf_debug_info ("__debug_info");
static ConstString g_sect_name_dwarf_debug_line ("__debug_line");
static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc");
static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo");
static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames");
static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes");
static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges");
static ConstString g_sect_name_dwarf_debug_str ("__debug_str");
static ConstString g_sect_name_eh_frame ("__eh_frame");
static ConstString g_sect_name_DATA ("__DATA");
static ConstString g_sect_name_TEXT ("__TEXT");
SectionType sect_type = eSectionTypeOther;
if (section_name == g_sect_name_dwarf_debug_abbrev)
sect_type = eSectionTypeDWARFDebugAbbrev;
else if (section_name == g_sect_name_dwarf_debug_aranges)
sect_type = eSectionTypeDWARFDebugAranges;
else if (section_name == g_sect_name_dwarf_debug_frame)
sect_type = eSectionTypeDWARFDebugFrame;
else if (section_name == g_sect_name_dwarf_debug_info)
sect_type = eSectionTypeDWARFDebugInfo;
else if (section_name == g_sect_name_dwarf_debug_line)
sect_type = eSectionTypeDWARFDebugLine;
else if (section_name == g_sect_name_dwarf_debug_loc)
sect_type = eSectionTypeDWARFDebugLoc;
else if (section_name == g_sect_name_dwarf_debug_macinfo)
sect_type = eSectionTypeDWARFDebugMacInfo;
else if (section_name == g_sect_name_dwarf_debug_pubnames)
sect_type = eSectionTypeDWARFDebugPubNames;
else if (section_name == g_sect_name_dwarf_debug_pubtypes)
sect_type = eSectionTypeDWARFDebugPubTypes;
else if (section_name == g_sect_name_dwarf_debug_ranges)
sect_type = eSectionTypeDWARFDebugRanges;
else if (section_name == g_sect_name_dwarf_debug_str)
sect_type = eSectionTypeDWARFDebugStr;
else if (section_name == g_sect_name_objc_selrefs)
sect_type = eSectionTypeDataCStringPointers;
else if (section_name == g_sect_name_objc_msgrefs)
sect_type = eSectionTypeDataObjCMessageRefs;
else if (section_name == g_sect_name_eh_frame)
sect_type = eSectionTypeEHFrame;
else if (section_name == g_sect_name_cfstring)
sect_type = eSectionTypeDataObjCCFStrings;
else if (section_name == g_sect_name_objc_data ||
section_name == g_sect_name_objc_classrefs ||
section_name == g_sect_name_objc_superrefs ||
section_name == g_sect_name_objc_const ||
section_name == g_sect_name_objc_classlist)
{
sect_type = eSectionTypeDataPointers;
}
if (sect_type == eSectionTypeOther)
{
switch (mach_sect_type)
{
// TODO: categorize sections by other flags for regular sections
case SectionTypeRegular:
if (segment_sp->GetName() == g_sect_name_TEXT)
sect_type = eSectionTypeCode;
else if (segment_sp->GetName() == g_sect_name_DATA)
sect_type = eSectionTypeData;
else
sect_type = eSectionTypeOther;
break;
case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break;
case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings
case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals
case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination
case SectionTypeCoalesced: sect_type = eSectionTypeOther; break;
case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break;
case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break;
case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break;
default: break;
}
}
SectionSP section_sp(new Section(segment_sp.get(),
GetModule(),
++sectID,
section_name,
sect_type,
sect64.addr - segment_sp->GetFileAddress(),
sect64.size,
sect64.offset,
sect64.offset == 0 ? 0 : sect64.size,
sect64.flags));
// Set the section to be encrypted to match the segment
section_sp->SetIsEncrypted (segment_is_encrypted);
segment_sp->GetChildren().AddSection(section_sp);
if (segment_sp->IsFake())
{
segment_sp.reset();
segment_name.Clear();
}
}
if (m_header.filetype == HeaderFileTypeDSYM)
{
if (first_segment_sectID <= sectID)
{
lldb::user_id_t sect_uid;
for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid)
{
SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid));
SectionSP next_section_sp;
if (sect_uid + 1 <= sectID)
next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1);
if (curr_section_sp.get())
{
if (curr_section_sp->GetByteSize() == 0)
{
if (next_section_sp.get() != NULL)
curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() );
else
curr_section_sp->SetByteSize ( load_cmd.vmsize );
}
}
}
}
}
}
}
}
else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo)
{
m_dysymtab.cmd = load_cmd.cmd;
m_dysymtab.cmdsize = load_cmd.cmdsize;
m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
}
offset = load_cmd_offset + load_cmd.cmdsize;
}
// if (dump_sections)
// {
// StreamFile s(stdout);
// m_sections_ap->Dump(&s, true);
// }
return sectID; // Return the number of sections we registered with the module
}
class MachSymtabSectionInfo
{
public:
MachSymtabSectionInfo (SectionList *section_list) :
m_section_list (section_list),
m_section_infos()
{
// Get the number of sections down to a depth of 1 to include
// all segments and their sections, but no other sections that
// may be added for debug map or
m_section_infos.resize(section_list->GetNumSections(1));
}
Section *
GetSection (uint8_t n_sect, addr_t file_addr)
{
if (n_sect == 0)
return NULL;
if (n_sect < m_section_infos.size())
{
if (m_section_infos[n_sect].section == NULL)
{
Section *section = m_section_list->FindSectionByID (n_sect).get();
m_section_infos[n_sect].section = section;
assert (section != NULL);
m_section_infos[n_sect].vm_range.SetBaseAddress (section->GetFileAddress());
m_section_infos[n_sect].vm_range.SetByteSize (section->GetByteSize());
}
if (m_section_infos[n_sect].vm_range.Contains(file_addr))
return m_section_infos[n_sect].section;
}
return m_section_list->FindSectionContainingFileAddress(file_addr).get();
}
protected:
struct SectionInfo
{
SectionInfo () :
vm_range(),
section (NULL)
{
}
VMRange vm_range;
Section *section;
};
SectionList *m_section_list;
std::vector<SectionInfo> m_section_infos;
};
size_t
ObjectFileMachO::ParseSymtab (bool minimize)
{
Timer scoped_timer(__PRETTY_FUNCTION__,
"ObjectFileMachO::ParseSymtab () module = %s",
m_file.GetFilename().AsCString(""));
struct symtab_command symtab_load_command;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
// Read in the load command and load command size
if (m_data.GetU32(&offset, &symtab_load_command, 2) == NULL)
break;
// Watch for the symbol table load command
if (symtab_load_command.cmd == LoadCommandSymtab)
{
// Read in the rest of the symtab load command
if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4)) // fill in symoff, nsyms, stroff, strsize fields
{
Symtab *symtab = m_symtab_ap.get();
SectionList *section_list = GetSectionList();
assert(section_list);
const size_t addr_size = m_data.GetAddressByteSize();
const ByteOrder endian = m_data.GetByteOrder();
bool bit_width_32 = addr_size == 4;
const size_t nlist_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
DataBufferSP symtab_data_sp(m_file.ReadFileContents(m_offset + symtab_load_command.symoff, symtab_load_command.nsyms * nlist_size));
DataBufferSP strtab_data_sp(m_file.ReadFileContents(m_offset + symtab_load_command.stroff, symtab_load_command.strsize));
const char *strtab_data = (const char *)strtab_data_sp->GetBytes();
// DataExtractor symtab_data(symtab_data_sp, endian, addr_size);
// DataExtractor strtab_data(strtab_data_sp, endian, addr_size);
static ConstString g_segment_name_TEXT ("__TEXT");
static ConstString g_segment_name_DATA ("__DATA");
static ConstString g_segment_name_OBJC ("__OBJC");
static ConstString g_section_name_eh_frame ("__eh_frame");
SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT));
SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA));
SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC));
SectionSP eh_frame_section_sp;
if (text_section_sp.get())
eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame);
else
eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame);
uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection;
//uint32_t symtab_offset = 0;
const uint8_t* nlist_data = symtab_data_sp->GetBytes();
assert (symtab_data_sp->GetByteSize()/nlist_size >= symtab_load_command.nsyms);
if (endian != lldb::endian::InlHostByteOrder())
{
// ...
assert (!"UNIMPLEMENTED: Swap all nlist entries");
}
uint32_t N_SO_index = UINT32_MAX;
MachSymtabSectionInfo section_info (section_list);
std::vector<uint32_t> N_FUN_indexes;
std::vector<uint32_t> N_NSYM_indexes;
std::vector<uint32_t> N_INCL_indexes;
std::vector<uint32_t> N_BRAC_indexes;
std::vector<uint32_t> N_COMM_indexes;
typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap;
typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap;
ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
// Any symbols that get merged into another will get an entry
// in this map so we know
NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
uint32_t nlist_idx = 0;
Symbol *symbol_ptr = NULL;
uint32_t sym_idx = 0;
Symbol *sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
uint32_t num_syms = symtab->GetNumSymbols();
//symtab->Reserve (symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms; ++nlist_idx)
{
struct nlist_64 nlist;
if (bit_width_32)
{
struct nlist* nlist32_ptr = (struct nlist*)(nlist_data + (nlist_idx * nlist_size));
nlist.n_strx = nlist32_ptr->n_strx;
nlist.n_type = nlist32_ptr->n_type;
nlist.n_sect = nlist32_ptr->n_sect;
nlist.n_desc = nlist32_ptr->n_desc;
nlist.n_value = nlist32_ptr->n_value;
}
else
{
nlist = *((struct nlist_64*)(nlist_data + (nlist_idx * nlist_size)));
}
SymbolType type = eSymbolTypeInvalid;
const char* symbol_name = &strtab_data[nlist.n_strx];
if (symbol_name[0] == '\0')
symbol_name = NULL;
Section* symbol_section = NULL;
bool add_nlist = true;
bool is_debug = ((nlist.n_type & NlistMaskStab) != 0);
assert (sym_idx < num_syms);
sym[sym_idx].SetDebug (is_debug);
if (is_debug)
{
switch (nlist.n_type)
{
case StabGlobalSymbol:
// N_GSYM -- global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
sym[sym_idx].SetExternal(true);
if (nlist.n_value != 0)
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
break;
case StabFunctionName:
// N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabFunction:
// N_FUN -- procedure: name,,n_sect,linenumber,address
if (symbol_name)
{
type = eSymbolTypeCode;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx;
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_FUN_indexes.push_back(sym_idx);
}
else
{
type = eSymbolTypeCompiler;
if ( !N_FUN_indexes.empty() )
{
// Copy the size of the function into the original STAB entry so we don't have
// to hunt for it later
symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as it contains the size which
// we already placed with the original symbol, so don't add it if we want a
// minimal symbol table
if (minimize)
add_nlist = false;
}
}
break;
case StabStaticSymbol:
// N_STSYM -- static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
break;
case StabLocalCommon:
// N_LCSYM -- .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case StabBeginSymbol:
// N_BNSYM
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_NSYM_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
}
break;
case StabEndSymbol:
// N_ENSYM
// Set the size of the N_BNSYM to the terminating index of this N_ENSYM
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
if ( !N_NSYM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_NSYM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
}
break;
case StabSourceFileOptions:
// N_OPT - emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case StabRegisterSymbol:
// N_RSYM - register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case StabSourceLine:
// N_SLINE - src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case StabStructureType:
// N_SSYM - structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case StabSourceFileName:
// N_SO - source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL)
{
if (minimize)
add_nlist = false;
if (N_SO_index != UINT32_MAX)
{
// Set the size of the N_SO to the terminating index of this N_SO
// so that we can always skip the entire N_SO if we need to navigate
// more quickly at the source level when parsing STABS
symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1));
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
}
else
{
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (symbol_name[0] == '/')
N_SO_index = sym_idx;
else if (minimize && (N_SO_index == sym_idx - 1))
{
const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
if (so_path && so_path[0])
{
std::string full_so_path (so_path);
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(full_so_path.c_str(), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
}
}
break;
case StabObjectFileName:
// N_OSO - object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case StabLocalSymbol:
// N_LSYM - local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
//----------------------------------------------------------------------
// INCL scopes
//----------------------------------------------------------------------
case StabBeginIncludeFileName:
// N_BINCL - include file beginning: name,,NO_SECT,0,sum
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabEndIncludeFile:
// N_EINCL - include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating index of this N_EINCL
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_INCL_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabIncludeFileName:
// N_SOL - #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
if (minimize)
add_nlist = false;
break;
case StabCompilerParameters:
// N_PARAMS - compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerVersion:
// N_VERSION - compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerOptLevel:
// N_OLEVEL - compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabParameter:
// N_PSYM - parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case StabAlternateEntry:
// N_ENTRY - alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
//----------------------------------------------------------------------
// Left and Right Braces
//----------------------------------------------------------------------
case StabLeftBracket:
// N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabRightBracket:
// N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address
// Set the size of the N_LBRAC to the terminating index of this N_RBRAC
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if ( !N_BRAC_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabDeletedIncludeFile:
// N_EXCL - deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
//----------------------------------------------------------------------
// COMM scopes
//----------------------------------------------------------------------
case StabBeginCommon:
// N_BCOMM - begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case StabEndCommonLocal:
// N_ECOML - end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
// Fall through
case StabEndCommon:
// N_ECOMM - end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_COMM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabLength:
// N_LENG - second stab entry with length information
type = eSymbolTypeAdditional;
break;
default: break;
}
}
else
{
//uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type;
uint8_t n_type = NlistMaskType & nlist.n_type;
sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0);
if (symbol_name && ::strstr (symbol_name, ".objc") == symbol_name)
{
type = eSymbolTypeRuntime;
}
else
{
switch (n_type)
{
case NListTypeIndirect: // N_INDR - Fall through
case NListTypePreboundUndefined:// N_PBUD - Fall through
case NListTypeUndefined: // N_UNDF
type = eSymbolTypeExtern;
break;
case NListTypeAbsolute: // N_ABS
type = eSymbolTypeAbsolute;
break;
case NListTypeSection: // N_SECT
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
assert(symbol_section != NULL);
if (TEXT_eh_frame_sectID == nlist.n_sect)
{
type = eSymbolTypeException;
}
else
{
uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType;
switch (section_type)
{
case SectionTypeRegular: break; // regular section
//case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section
case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings
case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals
case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination
//case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced
//case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes)
case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break;
case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break;
default: break;
}
if (type == eSymbolTypeInvalid)
{
const char *symbol_sect_name = symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant (text_section_sp.get()))
{
if (symbol_section->IsClear(SectionAttrUserPureInstructions |
SectionAttrUserSelfModifyingCode |
SectionAttrSytemSomeInstructions))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
}
else
if (symbol_section->IsDescendant(data_section_sp.get()))
{
if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name)
{
type = eSymbolTypeRuntime;
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name)
{
type = eSymbolTypeException;
}
else
{
type = eSymbolTypeData;
}
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name)
{
type = eSymbolTypeTrampoline;
}
else
if (symbol_section->IsDescendant(objc_section_sp.get()))
{
type = eSymbolTypeRuntime;
}
}
}
break;
}
}
}
if (add_nlist)
{
bool symbol_name_is_mangled = false;
if (symbol_name && symbol_name[0] == '_')
{
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
uint64_t symbol_value = nlist.n_value;
if (symbol_name)
sym[sym_idx].GetMangled().SetValue(symbol_name, symbol_name_is_mangled);
if (is_debug == false)
{
if (type == eSymbolTypeCode)
{
// See if we can find a N_FUN entry for any code symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the function symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_FUN_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_FUN flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
else if (type == eSymbolTypeData)
{
// See if we can find a N_STSYM entry for any data symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the Static symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_STSYM_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_STSYM flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
if (symbol_section != NULL)
symbol_value -= symbol_section->GetFileAddress();
sym[sym_idx].SetID (nlist_idx);
sym[sym_idx].SetType (type);
sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetSection (symbol_section);
sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetOffset (symbol_value);
sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc);
++sym_idx;
}
else
{
sym[sym_idx].Clear();
}
}
// STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value
// is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all
// such entries by figuring out what the address for the global is by looking up this non-STAB
// entry and copying the value into the debug symbol's value to save us the hassle in the
// debug symbol parser.
Symbol *global_symbol = NULL;
for (nlist_idx = 0;
nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL;
nlist_idx++)
{
if (global_symbol->GetValue().GetFileAddress() == 0)
{
std::vector<uint32_t> indexes;
if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0)
{
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
for (pos = indexes.begin(); pos != end; ++pos)
{
symbol_ptr = symtab->SymbolAtIndex(*pos);
if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false)
{
global_symbol->SetValue(symbol_ptr->GetValue());
break;
}
}
}
}
}
// Trim our symbols down to just what we ended up with after
// removing any symbols.
if (sym_idx < num_syms)
{
num_syms = sym_idx;
sym = symtab->Resize (num_syms);
}
// Now synthesize indirect symbols
if (m_dysymtab.nindirectsyms != 0)
{
DataBufferSP indirect_symbol_indexes_sp(m_file.ReadFileContents(m_offset + m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4));
if (indirect_symbol_indexes_sp && indirect_symbol_indexes_sp->GetByteSize())
{
NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end();
DataExtractor indirect_symbol_index_data (indirect_symbol_indexes_sp, m_data.GetByteOrder(), m_data.GetAddressByteSize());
for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx)
{
if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs)
{
uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
if (symbol_stub_byte_size == 0)
continue;
const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size;
if (num_symbol_stubs == 0)
continue;
const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1;
uint32_t synthetic_stub_sym_id = symtab_load_command.nsyms;
for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx)
{
const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx;
const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size);
uint32_t symbol_stub_offset = symbol_stub_index * 4;
if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4))
{
const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset);
if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal))
continue;
NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id);
Symbol *stub_symbol = NULL;
if (index_pos != end_index_pos)
{
// We have a remapping from the original nlist index to
// a current symbol index, so just look this up by index
stub_symbol = symtab->SymbolAtIndex (index_pos->second);
}
else
{
// We need to lookup a symbol using the original nlist
// symbol index since this index is coming from the
// S_SYMBOL_STUBS
stub_symbol = symtab->FindSymbolByID (stub_sym_id);
}
assert (stub_symbol);
if (stub_symbol)
{
Address so_addr(symbol_stub_addr, section_list);
if (stub_symbol->GetType() == eSymbolTypeExtern)
{
// Change the external symbol into a trampoline that makes sense
// These symbols were N_UNDF N_EXT, and are useless to us, so we
// can re-use them so we don't have to make up a synthetic symbol
// for no good reason.
stub_symbol->SetType (eSymbolTypeTrampoline);
stub_symbol->SetExternal (false);
stub_symbol->GetAddressRangeRef().GetBaseAddress() = so_addr;
stub_symbol->GetAddressRangeRef().SetByteSize (symbol_stub_byte_size);
}
else
{
// Make a synthetic symbol to describe the trampoline stub
if (sym_idx >= num_syms)
sym = symtab->Resize (++num_syms);
sym[sym_idx].SetID (synthetic_stub_sym_id++);
sym[sym_idx].GetMangled() = stub_symbol->GetMangled();
sym[sym_idx].SetType (eSymbolTypeTrampoline);
sym[sym_idx].SetIsSynthetic (true);
sym[sym_idx].GetAddressRangeRef().GetBaseAddress() = so_addr;
sym[sym_idx].GetAddressRangeRef().SetByteSize (symbol_stub_byte_size);
++sym_idx;
}
}
}
}
}
}
}
}
return symtab->GetNumSymbols();
}
}
offset = cmd_offset + symtab_load_command.cmdsize;
}
return 0;
}
void
ObjectFileMachO::Dump (Stream *s)
{
lldb_private::Mutex::Locker locker(m_mutex);
s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped)
s->PutCString("ObjectFileMachO64");
else
s->PutCString("ObjectFileMachO32");
ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
*s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n";
if (m_sections_ap.get())
m_sections_ap->Dump(s, NULL, true, UINT32_MAX);
if (m_symtab_ap.get())
m_symtab_ap->Dump(s, NULL, eSortOrderNone);
}
bool
ObjectFileMachO::GetUUID (lldb_private::UUID* uuid)
{
lldb_private::Mutex::Locker locker(m_mutex);
struct uuid_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandUUID)
{
const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
if (uuid_bytes)
{
uuid->SetBytes (uuid_bytes);
return true;
}
return false;
}
offset = cmd_offset + load_cmd.cmdsize;
}
return false;
}
uint32_t
ObjectFileMachO::GetDependentModules (FileSpecList& files)
{
lldb_private::Mutex::Locker locker(m_mutex);
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t count = 0;
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandDylibLoad:
case LoadCommandDylibLoadWeak:
case LoadCommandDylibReexport:
case LoadCommandDynamicLinkerLoad:
case LoadCommandFixedVMShlibLoad:
case LoadCommandDylibLoadUpward:
{
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
// Skip any path that starts with '@' since these are usually:
// @executable_path/.../file
// @rpath/.../file
if (path && path[0] != '@')
{
FileSpec file_spec(path, true);
if (files.AppendIfUnique(file_spec))
count++;
}
}
break;
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
return count;
}
lldb_private::Address
ObjectFileMachO::GetEntryPointAddress ()
{
// If the object file is not an executable it can't hold the entry point. m_entry_point_address
// is initialized to an invalid address, so we can just return that.
// If m_entry_point_address is valid it means we've found it already, so return the cached value.
if (!IsExecutable() || m_entry_point_address.IsValid())
return m_entry_point_address;
// Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in
// /usr/include/mach-o.h, but it is basically:
//
// uint32_t flavor - this is the flavor argument you would pass to thread_get_state
// uint32_t count - this is the count of longs in the thread state data
// struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor.
// <repeat this trio>
//
// So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there.
// FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers
// out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin,
// and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here.
//
// For now we hard-code the offsets and flavors we need:
//
//
lldb_private::Mutex::Locker locker(m_mutex);
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
bool done = false;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandUnixThread:
case LoadCommandThread:
{
while (offset < cmd_offset + load_cmd.cmdsize)
{
uint32_t flavor = m_data.GetU32(&offset);
uint32_t count = m_data.GetU32(&offset);
if (count == 0)
{
// We've gotten off somehow, log and exit;
return m_entry_point_address;
}
switch (m_header.cputype)
{
case llvm::MachO::CPUTypeARM:
if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h
{
offset += 60; // This is the offset of pc in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeI386:
if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
{
offset += 40; // This is the offset of eip in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeX86_64:
if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
{
offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
default:
return m_entry_point_address;
}
// Haven't found the GPR flavor yet, skip over the data for this flavor:
if (done)
break;
offset += count * 4;
}
}
break;
default:
break;
}
if (done)
break;
// Go to the next load command:
offset = cmd_offset + load_cmd.cmdsize;
}
if (start_address != LLDB_INVALID_ADDRESS)
{
// We got the start address from the load commands, so now resolve that address in the sections
// of this ObjectFile:
if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList()))
{
m_entry_point_address.Clear();
}
}
else
{
// We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the
// "start" symbol in the main executable.
SymbolContextList contexts;
SymbolContext context;
if (!m_module->FindSymbolsWithNameAndType(ConstString ("start"), lldb::eSymbolTypeCode, contexts))
return m_entry_point_address;
contexts.GetContextAtIndex(0, context);
m_entry_point_address = context.symbol->GetValue();
}
return m_entry_point_address;
}
bool
ObjectFileMachO::GetArchitecture (ArchSpec &arch)
{
lldb_private::Mutex::Locker locker(m_mutex);
arch.SetArchitecture (lldb::eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
return true;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ObjectFileMachO::GetPluginName()
{
return "ObjectFileMachO";
}
const char *
ObjectFileMachO::GetShortPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ObjectFileMachO::GetPluginVersion()
{
return 1;
}
void
ObjectFileMachO::GetPluginCommandHelp (const char *command, Stream *strm)
{
}
Error
ObjectFileMachO::ExecutePluginCommand (Args &command, Stream *strm)
{
Error error;
error.SetErrorString("No plug-in command are currently supported.");
return error;
}
Log *
ObjectFileMachO::EnablePluginLogging (Stream *strm, Args &command)
{
return NULL;
}