| //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/IR/SymbolTable.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/OpImplementation.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringSwitch.h" |
| |
| using namespace mlir; |
| |
| /// Return true if the given operation is unknown and may potentially define a |
| /// symbol table. |
| static bool isPotentiallyUnknownSymbolTable(Operation *op) { |
| return op->getNumRegions() == 1 && !op->getDialect(); |
| } |
| |
| /// Returns the string name of the given symbol, or null if this is not a |
| /// symbol. |
| static StringAttr getNameIfSymbol(Operation *op) { |
| return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); |
| } |
| static StringAttr getNameIfSymbol(Operation *op, StringAttr symbolAttrNameId) { |
| return op->getAttrOfType<StringAttr>(symbolAttrNameId); |
| } |
| |
| /// Computes the nested symbol reference attribute for the symbol 'symbolName' |
| /// that are usable within the symbol table operations from 'symbol' as far up |
| /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. |
| /// Returns success if all references up to 'within' could be computed. |
| static LogicalResult |
| collectValidReferencesFor(Operation *symbol, StringAttr symbolName, |
| Operation *within, |
| SmallVectorImpl<SymbolRefAttr> &results) { |
| assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); |
| MLIRContext *ctx = symbol->getContext(); |
| |
| auto leafRef = FlatSymbolRefAttr::get(symbolName); |
| results.push_back(leafRef); |
| |
| // Early exit for when 'within' is the parent of 'symbol'. |
| Operation *symbolTableOp = symbol->getParentOp(); |
| if (within == symbolTableOp) |
| return success(); |
| |
| // Collect references until 'symbolTableOp' reaches 'within'. |
| SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); |
| StringAttr symbolNameId = |
| StringAttr::get(ctx, SymbolTable::getSymbolAttrName()); |
| do { |
| // Each parent of 'symbol' should define a symbol table. |
| if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) |
| return failure(); |
| // Each parent of 'symbol' should also be a symbol. |
| StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId); |
| if (!symbolTableName) |
| return failure(); |
| results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs)); |
| |
| symbolTableOp = symbolTableOp->getParentOp(); |
| if (symbolTableOp == within) |
| break; |
| nestedRefs.insert(nestedRefs.begin(), |
| FlatSymbolRefAttr::get(symbolTableName)); |
| } while (true); |
| return success(); |
| } |
| |
| /// Walk all of the operations within the given set of regions, without |
| /// traversing into any nested symbol tables. Stops walking if the result of the |
| /// callback is anything other than `WalkResult::advance`. |
| static Optional<WalkResult> |
| walkSymbolTable(MutableArrayRef<Region> regions, |
| function_ref<Optional<WalkResult>(Operation *)> callback) { |
| SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); |
| while (!worklist.empty()) { |
| for (Operation &op : worklist.pop_back_val()->getOps()) { |
| Optional<WalkResult> result = callback(&op); |
| if (result != WalkResult::advance()) |
| return result; |
| |
| // If this op defines a new symbol table scope, we can't traverse. Any |
| // symbol references nested within 'op' are different semantically. |
| if (!op.hasTrait<OpTrait::SymbolTable>()) { |
| for (Region ®ion : op.getRegions()) |
| worklist.push_back(®ion); |
| } |
| } |
| } |
| return WalkResult::advance(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable |
| //===----------------------------------------------------------------------===// |
| |
| /// Build a symbol table with the symbols within the given operation. |
| SymbolTable::SymbolTable(Operation *symbolTableOp) |
| : symbolTableOp(symbolTableOp) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && |
| "expected operation to have SymbolTable trait"); |
| assert(symbolTableOp->getNumRegions() == 1 && |
| "expected operation to have a single region"); |
| assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && |
| "expected operation to have a single block"); |
| |
| StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), |
| SymbolTable::getSymbolAttrName()); |
| for (auto &op : symbolTableOp->getRegion(0).front()) { |
| StringAttr name = getNameIfSymbol(&op, symbolNameId); |
| if (!name) |
| continue; |
| |
| auto inserted = symbolTable.insert({name, &op}); |
| (void)inserted; |
| assert(inserted.second && |
| "expected region to contain uniquely named symbol operations"); |
| } |
| } |
| |
| /// Look up a symbol with the specified name, returning null if no such name |
| /// exists. Names never include the @ on them. |
| Operation *SymbolTable::lookup(StringRef name) const { |
| return lookup(StringAttr::get(symbolTableOp->getContext(), name)); |
| } |
| Operation *SymbolTable::lookup(StringAttr name) const { |
| return symbolTable.lookup(name); |
| } |
| |
| /// Erase the given symbol from the table. |
| void SymbolTable::erase(Operation *symbol) { |
| StringAttr name = getNameIfSymbol(symbol); |
| assert(name && "expected valid 'name' attribute"); |
| assert(symbol->getParentOp() == symbolTableOp && |
| "expected this operation to be inside of the operation with this " |
| "SymbolTable"); |
| |
| auto it = symbolTable.find(name); |
| if (it != symbolTable.end() && it->second == symbol) { |
| symbolTable.erase(it); |
| symbol->erase(); |
| } |
| } |
| |
| // TODO: Consider if this should be renamed to something like insertOrUpdate |
| /// Insert a new symbol into the table and associated operation if not already |
| /// there and rename it as necessary to avoid collisions. Return the name of |
| /// the symbol after insertion as attribute. |
| StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { |
| // The symbol cannot be the child of another op and must be the child of the |
| // symbolTableOp after this. |
| // |
| // TODO: consider if SymbolTable's constructor should behave the same. |
| if (!symbol->getParentOp()) { |
| auto &body = symbolTableOp->getRegion(0).front(); |
| if (insertPt == Block::iterator()) { |
| insertPt = Block::iterator(body.end()); |
| } else { |
| assert((insertPt == body.end() || |
| insertPt->getParentOp() == symbolTableOp) && |
| "expected insertPt to be in the associated module operation"); |
| } |
| // Insert before the terminator, if any. |
| if (insertPt == Block::iterator(body.end()) && !body.empty() && |
| std::prev(body.end())->hasTrait<OpTrait::IsTerminator>()) |
| insertPt = std::prev(body.end()); |
| |
| body.getOperations().insert(insertPt, symbol); |
| } |
| assert(symbol->getParentOp() == symbolTableOp && |
| "symbol is already inserted in another op"); |
| |
| // Add this symbol to the symbol table, uniquing the name if a conflict is |
| // detected. |
| StringAttr name = getSymbolName(symbol); |
| if (symbolTable.insert({name, symbol}).second) |
| return name; |
| // If the symbol was already in the table, also return. |
| if (symbolTable.lookup(name) == symbol) |
| return name; |
| // If a conflict was detected, then the symbol will not have been added to |
| // the symbol table. Try suffixes until we get to a unique name that works. |
| SmallString<128> nameBuffer(name.getValue()); |
| unsigned originalLength = nameBuffer.size(); |
| |
| MLIRContext *context = symbol->getContext(); |
| |
| // Iteratively try suffixes until we find one that isn't used. |
| do { |
| nameBuffer.resize(originalLength); |
| nameBuffer += '_'; |
| nameBuffer += std::to_string(uniquingCounter++); |
| } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol}) |
| .second); |
| setSymbolName(symbol, nameBuffer); |
| return getSymbolName(symbol); |
| } |
| |
| /// Returns the name of the given symbol operation. |
| StringAttr SymbolTable::getSymbolName(Operation *symbol) { |
| StringAttr name = getNameIfSymbol(symbol); |
| assert(name && "expected valid symbol name"); |
| return name; |
| } |
| |
| /// Sets the name of the given symbol operation. |
| void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) { |
| symbol->setAttr(getSymbolAttrName(), name); |
| } |
| |
| /// Returns the visibility of the given symbol operation. |
| SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { |
| // If the attribute doesn't exist, assume public. |
| StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); |
| if (!vis) |
| return Visibility::Public; |
| |
| // Otherwise, switch on the string value. |
| return StringSwitch<Visibility>(vis.getValue()) |
| .Case("private", Visibility::Private) |
| .Case("nested", Visibility::Nested) |
| .Case("public", Visibility::Public); |
| } |
| /// Sets the visibility of the given symbol operation. |
| void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { |
| MLIRContext *ctx = symbol->getContext(); |
| |
| // If the visibility is public, just drop the attribute as this is the |
| // default. |
| if (vis == Visibility::Public) { |
| symbol->removeAttr(StringAttr::get(ctx, getVisibilityAttrName())); |
| return; |
| } |
| |
| // Otherwise, update the attribute. |
| assert((vis == Visibility::Private || vis == Visibility::Nested) && |
| "unknown symbol visibility kind"); |
| |
| StringRef visName = vis == Visibility::Private ? "private" : "nested"; |
| symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); |
| } |
| |
| /// Returns the nearest symbol table from a given operation `from`. Returns |
| /// nullptr if no valid parent symbol table could be found. |
| Operation *SymbolTable::getNearestSymbolTable(Operation *from) { |
| assert(from && "expected valid operation"); |
| if (isPotentiallyUnknownSymbolTable(from)) |
| return nullptr; |
| |
| while (!from->hasTrait<OpTrait::SymbolTable>()) { |
| from = from->getParentOp(); |
| |
| // Check that this is a valid op and isn't an unknown symbol table. |
| if (!from || isPotentiallyUnknownSymbolTable(from)) |
| return nullptr; |
| } |
| return from; |
| } |
| |
| /// Walks all symbol table operations nested within, and including, `op`. For |
| /// each symbol table operation, the provided callback is invoked with the op |
| /// and a boolean signifying if the symbols within that symbol table can be |
| /// treated as if all uses are visible. `allSymUsesVisible` identifies whether |
| /// all of the symbol uses of symbols within `op` are visible. |
| void SymbolTable::walkSymbolTables( |
| Operation *op, bool allSymUsesVisible, |
| function_ref<void(Operation *, bool)> callback) { |
| bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); |
| if (isSymbolTable) { |
| SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); |
| allSymUsesVisible |= !symbol || symbol.isPrivate(); |
| } else { |
| // Otherwise if 'op' is not a symbol table, any nested symbols are |
| // guaranteed to be hidden. |
| allSymUsesVisible = true; |
| } |
| |
| for (Region ®ion : op->getRegions()) |
| for (Block &block : region) |
| for (Operation &nestedOp : block) |
| walkSymbolTables(&nestedOp, allSymUsesVisible, callback); |
| |
| // If 'op' had the symbol table trait, visit it after any nested symbol |
| // tables. |
| if (isSymbolTable) |
| callback(op, allSymUsesVisible); |
| } |
| |
| /// Returns the operation registered with the given symbol name with the |
| /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation |
| /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol |
| /// was found. |
| Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, |
| StringAttr symbol) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); |
| Region ®ion = symbolTableOp->getRegion(0); |
| if (region.empty()) |
| return nullptr; |
| |
| // Look for a symbol with the given name. |
| StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), |
| SymbolTable::getSymbolAttrName()); |
| for (auto &op : region.front()) |
| if (getNameIfSymbol(&op, symbolNameId) == symbol) |
| return &op; |
| return nullptr; |
| } |
| Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, |
| SymbolRefAttr symbol) { |
| SmallVector<Operation *, 4> resolvedSymbols; |
| if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) |
| return nullptr; |
| return resolvedSymbols.back(); |
| } |
| |
| /// Internal implementation of `lookupSymbolIn` that allows for specialized |
| /// implementations of the lookup function. |
| static LogicalResult lookupSymbolInImpl( |
| Operation *symbolTableOp, SymbolRefAttr symbol, |
| SmallVectorImpl<Operation *> &symbols, |
| function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); |
| |
| // Lookup the root reference for this symbol. |
| symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); |
| if (!symbolTableOp) |
| return failure(); |
| symbols.push_back(symbolTableOp); |
| |
| // If there are no nested references, just return the root symbol directly. |
| ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); |
| if (nestedRefs.empty()) |
| return success(); |
| |
| // Verify that the root is also a symbol table. |
| if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) |
| return failure(); |
| |
| // Otherwise, lookup each of the nested non-leaf references and ensure that |
| // each corresponds to a valid symbol table. |
| for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { |
| symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr()); |
| if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) |
| return failure(); |
| symbols.push_back(symbolTableOp); |
| } |
| symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); |
| return success(symbols.back()); |
| } |
| |
| LogicalResult |
| SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, |
| SmallVectorImpl<Operation *> &symbols) { |
| auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) { |
| return lookupSymbolIn(symbolTableOp, symbol); |
| }; |
| return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); |
| } |
| |
| /// Returns the operation registered with the given symbol name within the |
| /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns |
| /// nullptr if no valid symbol was found. |
| Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, |
| StringAttr symbol) { |
| Operation *symbolTableOp = getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, |
| SymbolRefAttr symbol) { |
| Operation *symbolTableOp = getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| |
| raw_ostream &mlir::operator<<(raw_ostream &os, |
| SymbolTable::Visibility visibility) { |
| switch (visibility) { |
| case SymbolTable::Visibility::Public: |
| return os << "public"; |
| case SymbolTable::Visibility::Private: |
| return os << "private"; |
| case SymbolTable::Visibility::Nested: |
| return os << "nested"; |
| } |
| llvm_unreachable("Unexpected visibility"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable Trait Types |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult detail::verifySymbolTable(Operation *op) { |
| if (op->getNumRegions() != 1) |
| return op->emitOpError() |
| << "Operations with a 'SymbolTable' must have exactly one region"; |
| if (!llvm::hasSingleElement(op->getRegion(0))) |
| return op->emitOpError() |
| << "Operations with a 'SymbolTable' must have exactly one block"; |
| |
| // Check that all symbols are uniquely named within child regions. |
| DenseMap<Attribute, Location> nameToOrigLoc; |
| for (auto &block : op->getRegion(0)) { |
| for (auto &op : block) { |
| // Check for a symbol name attribute. |
| auto nameAttr = |
| op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); |
| if (!nameAttr) |
| continue; |
| |
| // Try to insert this symbol into the table. |
| auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); |
| if (!it.second) |
| return op.emitError() |
| .append("redefinition of symbol named '", nameAttr.getValue(), "'") |
| .attachNote(it.first->second) |
| .append("see existing symbol definition here"); |
| } |
| } |
| |
| // Verify any nested symbol user operations. |
| SymbolTableCollection symbolTable; |
| auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> { |
| if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op)) |
| return WalkResult(user.verifySymbolUses(symbolTable)); |
| return WalkResult::advance(); |
| }; |
| |
| Optional<WalkResult> result = |
| walkSymbolTable(op->getRegions(), verifySymbolUserFn); |
| return success(result && !result->wasInterrupted()); |
| } |
| |
| LogicalResult detail::verifySymbol(Operation *op) { |
| // Verify the name attribute. |
| if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) |
| return op->emitOpError() << "requires string attribute '" |
| << mlir::SymbolTable::getSymbolAttrName() << "'"; |
| |
| // Verify the visibility attribute. |
| if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { |
| StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); |
| if (!visStrAttr) |
| return op->emitOpError() << "requires visibility attribute '" |
| << mlir::SymbolTable::getVisibilityAttrName() |
| << "' to be a string attribute, but got " << vis; |
| |
| if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, |
| visStrAttr.getValue())) |
| return op->emitOpError() |
| << "visibility expected to be one of [\"public\", \"private\", " |
| "\"nested\"], but got " |
| << visStrAttr; |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Use Lists |
| //===----------------------------------------------------------------------===// |
| |
| /// Walk all of the symbol references within the given operation, invoking the |
| /// provided callback for each found use. The callbacks takes as arguments: the |
| /// use of the symbol, and the nested access chain to the attribute within the |
| /// operation dictionary. An access chain is a set of indices into nested |
| /// container attributes. For example, a symbol use in an attribute dictionary |
| /// that looks like the following: |
| /// |
| /// {use = [{other_attr, @symbol}]} |
| /// |
| /// May have the following access chain: |
| /// |
| /// [0, 0, 1] |
| /// |
| static WalkResult walkSymbolRefs( |
| Operation *op, |
| function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { |
| // Check to see if the operation has any attributes. |
| DictionaryAttr attrDict = op->getAttrDictionary(); |
| if (attrDict.empty()) |
| return WalkResult::advance(); |
| |
| // A worklist of a container attribute and the current index into the held |
| // attribute list. |
| struct WorklistItem { |
| SubElementAttrInterface container; |
| SmallVector<Attribute> immediateSubElements; |
| |
| explicit WorklistItem(SubElementAttrInterface container) { |
| SmallVector<Attribute> subElements; |
| container.walkImmediateSubElements( |
| [&](Attribute attr) { subElements.push_back(attr); }, [](Type) {}); |
| immediateSubElements = std::move(subElements); |
| } |
| }; |
| |
| SmallVector<WorklistItem, 1> attrWorklist(1, WorklistItem(attrDict)); |
| SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); |
| |
| // Process the symbol references within the given nested attribute range. |
| auto processAttrs = [&](int &index, |
| WorklistItem &worklistItem) -> WalkResult { |
| for (Attribute attr : |
| llvm::drop_begin(worklistItem.immediateSubElements, index)) { |
| /// Check for a nested container attribute, these will also need to be |
| /// walked. |
| if (auto interface = attr.dyn_cast<SubElementAttrInterface>()) { |
| attrWorklist.emplace_back(interface); |
| curAccessChain.push_back(-1); |
| return WalkResult::advance(); |
| } |
| |
| // Invoke the provided callback if we find a symbol use and check for a |
| // requested interrupt. |
| if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) |
| if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) |
| return WalkResult::interrupt(); |
| |
| // Make sure to keep the index counter in sync. |
| ++index; |
| } |
| |
| // Pop this container attribute from the worklist. |
| attrWorklist.pop_back(); |
| curAccessChain.pop_back(); |
| return WalkResult::advance(); |
| }; |
| |
| WalkResult result = WalkResult::advance(); |
| do { |
| WorklistItem &item = attrWorklist.back(); |
| int &index = curAccessChain.back(); |
| ++index; |
| |
| // Process the given attribute, which is guaranteed to be a container. |
| result = processAttrs(index, item); |
| } while (!attrWorklist.empty() && !result.wasInterrupted()); |
| return result; |
| } |
| |
| /// Walk all of the uses, for any symbol, that are nested within the given |
| /// regions, invoking the provided callback for each. This does not traverse |
| /// into any nested symbol tables. |
| static Optional<WalkResult> walkSymbolUses( |
| MutableArrayRef<Region> regions, |
| function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { |
| return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> { |
| // Check that this isn't a potentially unknown symbol table. |
| if (isPotentiallyUnknownSymbolTable(op)) |
| return llvm::None; |
| |
| return walkSymbolRefs(op, callback); |
| }); |
| } |
| /// Walk all of the uses, for any symbol, that are nested within the given |
| /// operation 'from', invoking the provided callback for each. This does not |
| /// traverse into any nested symbol tables. |
| static Optional<WalkResult> walkSymbolUses( |
| Operation *from, |
| function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { |
| // If this operation has regions, and it, as well as its dialect, isn't |
| // registered then conservatively fail. The operation may define a |
| // symbol table, so we can't opaquely know if we should traverse to find |
| // nested uses. |
| if (isPotentiallyUnknownSymbolTable(from)) |
| return llvm::None; |
| |
| // Walk the uses on this operation. |
| if (walkSymbolRefs(from, callback).wasInterrupted()) |
| return WalkResult::interrupt(); |
| |
| // Only recurse if this operation is not a symbol table. A symbol table |
| // defines a new scope, so we can't walk the attributes from within the symbol |
| // table op. |
| if (!from->hasTrait<OpTrait::SymbolTable>()) |
| return walkSymbolUses(from->getRegions(), callback); |
| return WalkResult::advance(); |
| } |
| |
| namespace { |
| /// This class represents a single symbol scope. A symbol scope represents the |
| /// set of operations nested within a symbol table that may reference symbols |
| /// within that table. A symbol scope does not contain the symbol table |
| /// operation itself, just its contained operations. A scope ends at leaf |
| /// operations or another symbol table operation. |
| struct SymbolScope { |
| /// Walk the symbol uses within this scope, invoking the given callback. |
| /// This variant is used when the callback type matches that expected by |
| /// 'walkSymbolUses'. |
| template <typename CallbackT, |
| typename std::enable_if_t<!std::is_same< |
| typename llvm::function_traits<CallbackT>::result_t, |
| void>::value> * = nullptr> |
| Optional<WalkResult> walk(CallbackT cback) { |
| if (Region *region = limit.dyn_cast<Region *>()) |
| return walkSymbolUses(*region, cback); |
| return walkSymbolUses(limit.get<Operation *>(), cback); |
| } |
| /// This variant is used when the callback type matches a stripped down type: |
| /// void(SymbolTable::SymbolUse use) |
| template <typename CallbackT, |
| typename std::enable_if_t<std::is_same< |
| typename llvm::function_traits<CallbackT>::result_t, |
| void>::value> * = nullptr> |
| Optional<WalkResult> walk(CallbackT cback) { |
| return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) { |
| return cback(use), WalkResult::advance(); |
| }); |
| } |
| |
| /// The representation of the symbol within this scope. |
| SymbolRefAttr symbol; |
| |
| /// The IR unit representing this scope. |
| llvm::PointerUnion<Operation *, Region *> limit; |
| }; |
| } // end anonymous namespace |
| |
| /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. |
| static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, |
| Operation *limit) { |
| StringAttr symName = SymbolTable::getSymbolName(symbol); |
| assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); |
| |
| // Compute the ancestors of 'limit'. |
| SetVector<Operation *, SmallVector<Operation *, 4>, |
| SmallPtrSet<Operation *, 4>> |
| limitAncestors; |
| Operation *limitAncestor = limit; |
| do { |
| // Check to see if 'symbol' is an ancestor of 'limit'. |
| if (limitAncestor == symbol) { |
| // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr |
| // doesn't support parent references. |
| if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == |
| symbol->getParentOp()) |
| return {{SymbolRefAttr::get(symName), limit}}; |
| return {}; |
| } |
| |
| limitAncestors.insert(limitAncestor); |
| } while ((limitAncestor = limitAncestor->getParentOp())); |
| |
| // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. |
| Operation *commonAncestor = symbol->getParentOp(); |
| do { |
| if (limitAncestors.count(commonAncestor)) |
| break; |
| } while ((commonAncestor = commonAncestor->getParentOp())); |
| assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); |
| |
| // Compute the set of valid nested references for 'symbol' as far up to the |
| // common ancestor as possible. |
| SmallVector<SymbolRefAttr, 2> references; |
| bool collectedAllReferences = succeeded( |
| collectValidReferencesFor(symbol, symName, commonAncestor, references)); |
| |
| // Handle the case where the common ancestor is 'limit'. |
| if (commonAncestor == limit) { |
| SmallVector<SymbolScope, 2> scopes; |
| |
| // Walk each of the ancestors of 'symbol', calling the compute function for |
| // each one. |
| Operation *limitIt = symbol->getParentOp(); |
| for (size_t i = 0, e = references.size(); i != e; |
| ++i, limitIt = limitIt->getParentOp()) { |
| assert(limitIt->hasTrait<OpTrait::SymbolTable>()); |
| scopes.push_back({references[i], &limitIt->getRegion(0)}); |
| } |
| return scopes; |
| } |
| |
| // Otherwise, we just need the symbol reference for 'symbol' that will be |
| // used within 'limit'. This is the last reference in the list we computed |
| // above if we were able to collect all references. |
| if (!collectedAllReferences) |
| return {}; |
| return {{references.back(), limit}}; |
| } |
| static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, |
| Region *limit) { |
| auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); |
| |
| // If we collected some scopes to walk, make sure to constrain the one for |
| // limit to the specific region requested. |
| if (!scopes.empty()) |
| scopes.back().limit = limit; |
| return scopes; |
| } |
| template <typename IRUnit> |
| static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol, |
| IRUnit *limit) { |
| return {{SymbolRefAttr::get(symbol), limit}}; |
| } |
| |
| /// Returns true if the given reference 'SubRef' is a sub reference of the |
| /// reference 'ref', i.e. 'ref' is a further qualified reference. |
| static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { |
| if (ref == subRef) |
| return true; |
| |
| // If the references are not pointer equal, check to see if `subRef` is a |
| // prefix of `ref`. |
| if (ref.isa<FlatSymbolRefAttr>() || |
| ref.getRootReference() != subRef.getRootReference()) |
| return false; |
| |
| auto refLeafs = ref.getNestedReferences(); |
| auto subRefLeafs = subRef.getNestedReferences(); |
| return subRefLeafs.size() < refLeafs.size() && |
| subRefLeafs == refLeafs.take_front(subRefLeafs.size()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::getSymbolUses |
| |
| /// The implementation of SymbolTable::getSymbolUses below. |
| template <typename FromT> |
| static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { |
| std::vector<SymbolTable::SymbolUse> uses; |
| auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { |
| uses.push_back(symbolUse); |
| return WalkResult::advance(); |
| }; |
| auto result = walkSymbolUses(from, walkFn); |
| return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None; |
| } |
| |
| /// Get an iterator range for all of the uses, for any symbol, that are nested |
| /// within the given operation 'from'. This does not traverse into any nested |
| /// symbol tables, and will also only return uses on 'from' if it does not |
| /// also define a symbol table. This is because we treat the region as the |
| /// boundary of the symbol table, and not the op itself. This function returns |
| /// None if there are any unknown operations that may potentially be symbol |
| /// tables. |
| auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { |
| return getSymbolUsesImpl(from); |
| } |
| auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> { |
| return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::getSymbolUses |
| |
| /// The implementation of SymbolTable::getSymbolUses below. |
| template <typename SymbolT, typename IRUnitT> |
| static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, |
| IRUnitT *limit) { |
| std::vector<SymbolTable::SymbolUse> uses; |
| for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { |
| if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { |
| if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) |
| uses.push_back(symbolUse); |
| })) |
| return llvm::None; |
| } |
| return SymbolTable::UseRange(std::move(uses)); |
| } |
| |
| /// Get all of the uses of the given symbol that are nested within the given |
| /// operation 'from', invoking the provided callback for each. This does not |
| /// traverse into any nested symbol tables. This function returns None if there |
| /// are any unknown operations that may potentially be symbol tables. |
| auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from) |
| -> Optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) |
| -> Optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from) |
| -> Optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) |
| -> Optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::symbolKnownUseEmpty |
| |
| /// The implementation of SymbolTable::symbolKnownUseEmpty below. |
| template <typename SymbolT, typename IRUnitT> |
| static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { |
| for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { |
| // Walk all of the symbol uses looking for a reference to 'symbol'. |
| if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { |
| return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) |
| ? WalkResult::interrupt() |
| : WalkResult::advance(); |
| }) != WalkResult::advance()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Return if the given symbol is known to have no uses that are nested within |
| /// the given operation 'from'. This does not traverse into any nested symbol |
| /// tables. This function will also return false if there are any unknown |
| /// operations that may potentially be symbol tables. |
| bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::replaceAllSymbolUses |
| |
| /// Rebuild the given attribute container after replacing all references to a |
| /// symbol with the updated attribute in 'accesses'. |
| static SubElementAttrInterface rebuildAttrAfterRAUW( |
| SubElementAttrInterface container, |
| ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses, |
| unsigned depth) { |
| // Given a range of Attributes, update the ones referred to by the given |
| // access chains to point to the new symbol attribute. |
| |
| SmallVector<std::pair<size_t, Attribute>> replacements; |
| |
| SmallVector<Attribute> subElements; |
| container.walkImmediateSubElements( |
| [&](Attribute attribute) { subElements.push_back(attribute); }, |
| [](Type) {}); |
| for (unsigned i = 0, e = accesses.size(); i != e;) { |
| ArrayRef<int> access = accesses[i].first; |
| |
| // Check to see if this is a leaf access, i.e. a SymbolRef. |
| if (access.size() == depth + 1) { |
| replacements.emplace_back(access.back(), accesses[i].second); |
| ++i; |
| continue; |
| } |
| |
| // Otherwise, this is a container. Collect all of the accesses for this |
| // index and recurse. The recursion here is bounded by the size of the |
| // largest access array. |
| auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { |
| ArrayRef<int> nextAccess = it.first; |
| return nextAccess.size() > depth + 1 && |
| nextAccess[depth] == access[depth]; |
| }); |
| auto result = rebuildAttrAfterRAUW(subElements[access[depth]], |
| nestedAccesses, depth + 1); |
| replacements.emplace_back(access[depth], result); |
| |
| // Skip over all of the accesses that refer to the nested container. |
| i += nestedAccesses.size(); |
| } |
| |
| return container.replaceImmediateSubAttribute(replacements); |
| } |
| |
| /// Generates a new symbol reference attribute with a new leaf reference. |
| static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, |
| FlatSymbolRefAttr newLeafAttr) { |
| if (oldAttr.isa<FlatSymbolRefAttr>()) |
| return newLeafAttr; |
| auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); |
| nestedRefs.back() = newLeafAttr; |
| return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs); |
| } |
| |
| /// The implementation of SymbolTable::replaceAllSymbolUses below. |
| template <typename SymbolT, typename IRUnitT> |
| static LogicalResult |
| replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) { |
| // A collection of operations along with their new attribute dictionary. |
| std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts; |
| |
| // The current operation being processed. |
| Operation *curOp = nullptr; |
| |
| // The set of access chains into the attribute dictionary of the current |
| // operation, as well as the replacement attribute to use. |
| SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains; |
| |
| // Generate a new attribute dictionary for the current operation by replacing |
| // references to the old symbol. |
| auto generateNewAttrDict = [&] { |
| auto oldDict = curOp->getAttrDictionary(); |
| auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); |
| return newDict.cast<DictionaryAttr>(); |
| }; |
| |
| // Generate a new attribute to replace the given attribute. |
| FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol); |
| for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { |
| SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); |
| auto walkFn = [&](SymbolTable::SymbolUse symbolUse, |
| ArrayRef<int> accessChain) { |
| SymbolRefAttr useRef = symbolUse.getSymbolRef(); |
| if (!isReferencePrefixOf(scope.symbol, useRef)) |
| return WalkResult::advance(); |
| |
| // If we have a valid match, check to see if this is a proper |
| // subreference. If it is, then we will need to generate a different new |
| // attribute specifically for this use. |
| SymbolRefAttr replacementRef = newAttr; |
| if (useRef != scope.symbol) { |
| if (scope.symbol.isa<FlatSymbolRefAttr>()) { |
| replacementRef = |
| SymbolRefAttr::get(newSymbol, useRef.getNestedReferences()); |
| } else { |
| auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); |
| nestedRefs[scope.symbol.getNestedReferences().size() - 1] = |
| newLeafAttr; |
| replacementRef = |
| SymbolRefAttr::get(useRef.getRootReference(), nestedRefs); |
| } |
| } |
| |
| // If there was a previous operation, generate a new attribute dict |
| // for it. This means that we've finished processing the current |
| // operation, so generate a new dictionary for it. |
| if (curOp && symbolUse.getUser() != curOp) { |
| updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); |
| accessChains.clear(); |
| } |
| |
| // Record this access. |
| curOp = symbolUse.getUser(); |
| accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); |
| return WalkResult::advance(); |
| }; |
| if (!scope.walk(walkFn)) |
| return failure(); |
| |
| // Check to see if we have a dangling op that needs to be processed. |
| if (curOp) { |
| updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); |
| curOp = nullptr; |
| } |
| } |
| |
| // Update the attribute dictionaries as necessary. |
| for (auto &it : updatedAttrDicts) |
| it.first->setAttrs(it.second); |
| return success(); |
| } |
| |
| /// Attempt to replace all uses of the given symbol 'oldSymbol' with the |
| /// provided symbol 'newSymbol' that are nested within the given operation |
| /// 'from'. This does not traverse into any nested symbol tables. If there are |
| /// any unknown operations that may potentially be symbol tables, no uses are |
| /// replaced and failure is returned. |
| LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, |
| StringAttr newSymbol, |
| Operation *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, |
| StringAttr newSymbol, |
| Operation *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, |
| StringAttr newSymbol, |
| Region *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, |
| StringAttr newSymbol, |
| Region *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTableCollection |
| //===----------------------------------------------------------------------===// |
| |
| Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| StringAttr symbol) { |
| return getSymbolTable(symbolTableOp).lookup(symbol); |
| } |
| Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| SymbolRefAttr name) { |
| SmallVector<Operation *, 4> symbols; |
| if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) |
| return nullptr; |
| return symbols.back(); |
| } |
| /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by |
| /// a given SymbolRefAttr. Returns failure if any of the nested references could |
| /// not be resolved. |
| LogicalResult |
| SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| SymbolRefAttr name, |
| SmallVectorImpl<Operation *> &symbols) { |
| auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { |
| return lookupSymbolIn(symbolTableOp, symbol); |
| }; |
| return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); |
| } |
| |
| /// Returns the operation registered with the given symbol name within the |
| /// closest parent operation of, or including, 'from' with the |
| /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was |
| /// found. |
| Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, |
| StringAttr symbol) { |
| Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| Operation * |
| SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, |
| SymbolRefAttr symbol) { |
| Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| |
| /// Lookup, or create, a symbol table for an operation. |
| SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { |
| auto it = symbolTables.try_emplace(op, nullptr); |
| if (it.second) |
| it.first->second = std::make_unique<SymbolTable>(op); |
| return *it.first->second; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolUserMap |
| //===----------------------------------------------------------------------===// |
| |
| SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, |
| Operation *symbolTableOp) |
| : symbolTable(symbolTable) { |
| // Walk each of the symbol tables looking for discardable callgraph nodes. |
| SmallVector<Operation *> symbols; |
| auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { |
| for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { |
| auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); |
| assert(symbolUses && "expected uses to be valid"); |
| |
| for (const SymbolTable::SymbolUse &use : *symbolUses) { |
| symbols.clear(); |
| (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), |
| symbols); |
| for (Operation *symbolOp : symbols) |
| symbolToUsers[symbolOp].insert(use.getUser()); |
| } |
| } |
| }; |
| // We just set `allSymUsesVisible` to false here because it isn't necessary |
| // for building the user map. |
| SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, |
| walkFn); |
| } |
| |
| void SymbolUserMap::replaceAllUsesWith(Operation *symbol, |
| StringAttr newSymbolName) { |
| auto it = symbolToUsers.find(symbol); |
| if (it == symbolToUsers.end()) |
| return; |
| SetVector<Operation *> &users = it->second; |
| |
| // Replace the uses within the users of `symbol`. |
| for (Operation *user : users) |
| (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); |
| |
| // Move the current users of `symbol` to the new symbol if it is in the |
| // symbol table. |
| Operation *newSymbol = |
| symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); |
| if (newSymbol != symbol) { |
| // Transfer over the users to the new symbol. |
| auto newIt = symbolToUsers.find(newSymbol); |
| if (newIt == symbolToUsers.end()) |
| symbolToUsers.try_emplace(newSymbol, std::move(users)); |
| else |
| newIt->second.set_union(users); |
| symbolToUsers.erase(symbol); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visibility parsing implementation. |
| //===----------------------------------------------------------------------===// |
| |
| ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, |
| NamedAttrList &attrs) { |
| StringRef visibility; |
| if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) |
| return failure(); |
| |
| StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); |
| attrs.push_back(parser.getBuilder().getNamedAttr( |
| SymbolTable::getVisibilityAttrName(), visibilityAttr)); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Interfaces |
| //===----------------------------------------------------------------------===// |
| |
| /// Include the generated symbol interfaces. |
| #include "mlir/IR/SymbolInterfaces.cpp.inc" |