blob: ae6f3949c399884becb79ef6331389ac1812fe34 [file] [log] [blame]
//===- VectorTransferOpTransforms.cpp - transfer op transforms ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with optimizing transfer_read and
// transfer_write ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/Vector/VectorTransforms.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "vector-transfer-opt"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
/// Return the ancestor op in the region or nullptr if the region is not
/// an ancestor of the op.
static Operation *findAncestorOpInRegion(Region *region, Operation *op) {
for (; op != nullptr && op->getParentRegion() != region;
op = op->getParentOp())
;
return op;
}
namespace {
class TransferOptimization {
public:
TransferOptimization(FuncOp func) : dominators(func), postDominators(func) {}
void deadStoreOp(vector::TransferWriteOp);
void storeToLoadForwarding(vector::TransferReadOp);
void removeDeadOp() {
for (Operation *op : opToErase)
op->erase();
opToErase.clear();
}
private:
bool isReachable(Operation *start, Operation *dest);
DominanceInfo dominators;
PostDominanceInfo postDominators;
std::vector<Operation *> opToErase;
};
/// Return true if there is a path from start operation to dest operation,
/// otherwise return false. The operations have to be in the same region.
bool TransferOptimization::isReachable(Operation *start, Operation *dest) {
assert(start->getParentRegion() == dest->getParentRegion() &&
"This function only works for ops i the same region");
// Simple case where the start op dominate the destination.
if (dominators.dominates(start, dest))
return true;
Block *startBlock = start->getBlock();
Block *destBlock = dest->getBlock();
SmallVector<Block *, 32> worklist(startBlock->succ_begin(),
startBlock->succ_end());
SmallPtrSet<Block *, 32> visited;
while (!worklist.empty()) {
Block *bb = worklist.pop_back_val();
if (!visited.insert(bb).second)
continue;
if (dominators.dominates(bb, destBlock))
return true;
worklist.append(bb->succ_begin(), bb->succ_end());
}
return false;
}
/// For transfer_write to overwrite fully another transfer_write must:
/// 1. Access the same memref with the same indices and vector type.
/// 2. Post-dominate the other transfer_write operation.
/// If several candidates are available, one must be post-dominated by all the
/// others since they are all post-dominating the same transfer_write. We only
/// consider the transfer_write post-dominated by all the other candidates as
/// this will be the first transfer_write executed after the potentially dead
/// transfer_write.
/// If we found such an overwriting transfer_write we know that the original
/// transfer_write is dead if all reads that can be reached from the potentially
/// dead transfer_write are dominated by the overwriting transfer_write.
void TransferOptimization::deadStoreOp(vector::TransferWriteOp write) {
LLVM_DEBUG(DBGS() << "Candidate for dead store: " << *write.getOperation()
<< "\n");
llvm::SmallVector<Operation *, 8> reads;
Operation *firstOverwriteCandidate = nullptr;
for (auto *user : write.source().getUsers()) {
if (user == write.getOperation())
continue;
if (auto nextWrite = dyn_cast<vector::TransferWriteOp>(user)) {
// Check candidate that can override the store.
if (checkSameValueWAW(nextWrite, write) &&
postDominators.postDominates(nextWrite, write)) {
if (firstOverwriteCandidate == nullptr ||
postDominators.postDominates(firstOverwriteCandidate, nextWrite))
firstOverwriteCandidate = nextWrite;
else
assert(
postDominators.postDominates(nextWrite, firstOverwriteCandidate));
}
} else {
if (auto read = dyn_cast<vector::TransferReadOp>(user)) {
// Don't need to consider disjoint reads.
if (isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(read.getOperation())))
continue;
}
reads.push_back(user);
}
}
if (firstOverwriteCandidate == nullptr)
return;
Region *topRegion = firstOverwriteCandidate->getParentRegion();
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
assert(writeAncestor &&
"write op should be recursively part of the top region");
for (Operation *read : reads) {
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
// TODO: if the read and write have the same ancestor we could recurse in
// the region to know if the read is reachable with more precision.
if (readAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
continue;
if (!dominators.dominates(firstOverwriteCandidate, read)) {
LLVM_DEBUG(DBGS() << "Store may not be dead due to op: " << *read
<< "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Found dead store: " << *write.getOperation()
<< " overwritten by: " << *firstOverwriteCandidate << "\n");
opToErase.push_back(write.getOperation());
}
/// A transfer_write candidate to storeToLoad forwarding must:
/// 1. Access the same memref with the same indices and vector type as the
/// transfer_read.
/// 2. Dominate the transfer_read operation.
/// If several candidates are available, one must be dominated by all the others
/// since they are all dominating the same transfer_read. We only consider the
/// transfer_write dominated by all the other candidates as this will be the
/// last transfer_write executed before the transfer_read.
/// If we found such a candidate we can do the forwarding if all the other
/// potentially aliasing ops that may reach the transfer_read are post-dominated
/// by the transfer_write.
void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
if (read.hasOutOfBoundsDim())
return;
LLVM_DEBUG(DBGS() << "Candidate for Forwarding: " << *read.getOperation()
<< "\n");
SmallVector<Operation *, 8> blockingWrites;
vector::TransferWriteOp lastwrite = nullptr;
for (Operation *user : read.source().getUsers()) {
if (isa<vector::TransferReadOp>(user))
continue;
if (auto write = dyn_cast<vector::TransferWriteOp>(user)) {
// If there is a write, but we can prove that it is disjoint we can ignore
// the write.
if (isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(read.getOperation())))
continue;
if (dominators.dominates(write, read) && checkSameValueRAW(write, read)) {
if (lastwrite == nullptr || dominators.dominates(lastwrite, write))
lastwrite = write;
else
assert(dominators.dominates(write, lastwrite));
continue;
}
}
blockingWrites.push_back(user);
}
if (lastwrite == nullptr)
return;
Region *topRegion = lastwrite->getParentRegion();
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
assert(readAncestor &&
"read op should be recursively part of the top region");
for (Operation *write : blockingWrites) {
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
// TODO: if the store and read have the same ancestor we could recurse in
// the region to know if the read is reachable with more precision.
if (writeAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
continue;
if (!postDominators.postDominates(lastwrite, write)) {
LLVM_DEBUG(DBGS() << "Fail to do write to read forwarding due to op: "
<< *write << "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Forward value from " << *lastwrite.getOperation()
<< " to: " << *read.getOperation() << "\n");
read.replaceAllUsesWith(lastwrite.vector());
opToErase.push_back(read.getOperation());
}
} // namespace
void mlir::vector::transferOpflowOpt(FuncOp func) {
TransferOptimization opt(func);
// Run store to load forwarding first since it can expose more dead store
// opportunity.
func.walk([&](vector::TransferReadOp read) {
if (read.getShapedType().isa<MemRefType>())
opt.storeToLoadForwarding(read);
});
opt.removeDeadOp();
func.walk([&](vector::TransferWriteOp write) {
if (write.getShapedType().isa<MemRefType>())
opt.deadStoreOp(write);
});
opt.removeDeadOp();
}