blob: bb5637a319477dbcd7edf07a9cae762fff1a6dc3 [file] [log] [blame]
//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrFoldTables.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#define DEBUG_TYPE "x86-instr-info"
#define GET_INSTRINFO_CTOR_DTOR
#include "X86GenInstrInfo.inc"
static cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"),
cl::Hidden);
static cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
static cl::opt<bool>
ReMatPICStubLoad("remat-pic-stub-load",
cl::desc("Re-materialize load from stub in PIC mode"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned>
PartialRegUpdateClearance("partial-reg-update-clearance",
cl::desc("Clearance between two register writes "
"for inserting XOR to avoid partial "
"register update"),
cl::init(64), cl::Hidden);
static cl::opt<unsigned>
UndefRegClearance("undef-reg-clearance",
cl::desc("How many idle instructions we would like before "
"certain undef register reads"),
cl::init(128), cl::Hidden);
// Pin the vtable to this file.
void X86InstrInfo::anchor() {}
X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
: X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
: X86::ADJCALLSTACKDOWN32),
(STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
: X86::ADJCALLSTACKUP32),
X86::CATCHRET,
(STI.is64Bit() ? X86::RET64 : X86::RET32)),
Subtarget(STI), RI(STI.getTargetTriple()) {
}
bool
X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
Register &SrcReg, Register &DstReg,
unsigned &SubIdx) const {
switch (MI.getOpcode()) {
default: break;
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
if (!Subtarget.is64Bit())
// It's not always legal to reference the low 8-bit of the larger
// register in 32-bit mode.
return false;
LLVM_FALLTHROUGH;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
case X86::MOVSX64rr32: {
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
// Be conservative.
return false;
SrcReg = MI.getOperand(1).getReg();
DstReg = MI.getOperand(0).getReg();
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
SubIdx = X86::sub_8bit;
break;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
SubIdx = X86::sub_16bit;
break;
case X86::MOVSX64rr32:
SubIdx = X86::sub_32bit;
break;
}
return true;
}
}
return false;
}
bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
// By default, assume that the instruction is not data invariant.
return false;
// Some target-independent operations that trivially lower to data-invariant
// instructions.
case TargetOpcode::COPY:
case TargetOpcode::INSERT_SUBREG:
case TargetOpcode::SUBREG_TO_REG:
return true;
// On x86 it is believed that imul is constant time w.r.t. the loaded data.
// However, they set flags and are perhaps the most surprisingly constant
// time operations so we call them out here separately.
case X86::IMUL16rr:
case X86::IMUL16rri8:
case X86::IMUL16rri:
case X86::IMUL32rr:
case X86::IMUL32rri8:
case X86::IMUL32rri:
case X86::IMUL64rr:
case X86::IMUL64rri32:
case X86::IMUL64rri8:
// Bit scanning and counting instructions that are somewhat surprisingly
// constant time as they scan across bits and do other fairly complex
// operations like popcnt, but are believed to be constant time on x86.
// However, these set flags.
case X86::BSF16rr:
case X86::BSF32rr:
case X86::BSF64rr:
case X86::BSR16rr:
case X86::BSR32rr:
case X86::BSR64rr:
case X86::LZCNT16rr:
case X86::LZCNT32rr:
case X86::LZCNT64rr:
case X86::POPCNT16rr:
case X86::POPCNT32rr:
case X86::POPCNT64rr:
case X86::TZCNT16rr:
case X86::TZCNT32rr:
case X86::TZCNT64rr:
// Bit manipulation instructions are effectively combinations of basic
// arithmetic ops, and should still execute in constant time. These also
// set flags.
case X86::BLCFILL32rr:
case X86::BLCFILL64rr:
case X86::BLCI32rr:
case X86::BLCI64rr:
case X86::BLCIC32rr:
case X86::BLCIC64rr:
case X86::BLCMSK32rr:
case X86::BLCMSK64rr:
case X86::BLCS32rr:
case X86::BLCS64rr:
case X86::BLSFILL32rr:
case X86::BLSFILL64rr:
case X86::BLSI32rr:
case X86::BLSI64rr:
case X86::BLSIC32rr:
case X86::BLSIC64rr:
case X86::BLSMSK32rr:
case X86::BLSMSK64rr:
case X86::BLSR32rr:
case X86::BLSR64rr:
case X86::TZMSK32rr:
case X86::TZMSK64rr:
// Bit extracting and clearing instructions should execute in constant time,
// and set flags.
case X86::BEXTR32rr:
case X86::BEXTR64rr:
case X86::BEXTRI32ri:
case X86::BEXTRI64ri:
case X86::BZHI32rr:
case X86::BZHI64rr:
// Shift and rotate.
case X86::ROL8r1:
case X86::ROL16r1:
case X86::ROL32r1:
case X86::ROL64r1:
case X86::ROL8rCL:
case X86::ROL16rCL:
case X86::ROL32rCL:
case X86::ROL64rCL:
case X86::ROL8ri:
case X86::ROL16ri:
case X86::ROL32ri:
case X86::ROL64ri:
case X86::ROR8r1:
case X86::ROR16r1:
case X86::ROR32r1:
case X86::ROR64r1:
case X86::ROR8rCL:
case X86::ROR16rCL:
case X86::ROR32rCL:
case X86::ROR64rCL:
case X86::ROR8ri:
case X86::ROR16ri:
case X86::ROR32ri:
case X86::ROR64ri:
case X86::SAR8r1:
case X86::SAR16r1:
case X86::SAR32r1:
case X86::SAR64r1:
case X86::SAR8rCL:
case X86::SAR16rCL:
case X86::SAR32rCL:
case X86::SAR64rCL:
case X86::SAR8ri:
case X86::SAR16ri:
case X86::SAR32ri:
case X86::SAR64ri:
case X86::SHL8r1:
case X86::SHL16r1:
case X86::SHL32r1:
case X86::SHL64r1:
case X86::SHL8rCL:
case X86::SHL16rCL:
case X86::SHL32rCL:
case X86::SHL64rCL:
case X86::SHL8ri:
case X86::SHL16ri:
case X86::SHL32ri:
case X86::SHL64ri:
case X86::SHR8r1:
case X86::SHR16r1:
case X86::SHR32r1:
case X86::SHR64r1:
case X86::SHR8rCL:
case X86::SHR16rCL:
case X86::SHR32rCL:
case X86::SHR64rCL:
case X86::SHR8ri:
case X86::SHR16ri:
case X86::SHR32ri:
case X86::SHR64ri:
case X86::SHLD16rrCL:
case X86::SHLD32rrCL:
case X86::SHLD64rrCL:
case X86::SHLD16rri8:
case X86::SHLD32rri8:
case X86::SHLD64rri8:
case X86::SHRD16rrCL:
case X86::SHRD32rrCL:
case X86::SHRD64rrCL:
case X86::SHRD16rri8:
case X86::SHRD32rri8:
case X86::SHRD64rri8:
// Basic arithmetic is constant time on the input but does set flags.
case X86::ADC8rr:
case X86::ADC8ri:
case X86::ADC16rr:
case X86::ADC16ri:
case X86::ADC16ri8:
case X86::ADC32rr:
case X86::ADC32ri:
case X86::ADC32ri8:
case X86::ADC64rr:
case X86::ADC64ri8:
case X86::ADC64ri32:
case X86::ADD8rr:
case X86::ADD8ri:
case X86::ADD16rr:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD32rr:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD64rr:
case X86::ADD64ri8:
case X86::ADD64ri32:
case X86::AND8rr:
case X86::AND8ri:
case X86::AND16rr:
case X86::AND16ri:
case X86::AND16ri8:
case X86::AND32rr:
case X86::AND32ri:
case X86::AND32ri8:
case X86::AND64rr:
case X86::AND64ri8:
case X86::AND64ri32:
case X86::OR8rr:
case X86::OR8ri:
case X86::OR16rr:
case X86::OR16ri:
case X86::OR16ri8:
case X86::OR32rr:
case X86::OR32ri:
case X86::OR32ri8:
case X86::OR64rr:
case X86::OR64ri8:
case X86::OR64ri32:
case X86::SBB8rr:
case X86::SBB8ri:
case X86::SBB16rr:
case X86::SBB16ri:
case X86::SBB16ri8:
case X86::SBB32rr:
case X86::SBB32ri:
case X86::SBB32ri8:
case X86::SBB64rr:
case X86::SBB64ri8:
case X86::SBB64ri32:
case X86::SUB8rr:
case X86::SUB8ri:
case X86::SUB16rr:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB32rr:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB64rr:
case X86::SUB64ri8:
case X86::SUB64ri32:
case X86::XOR8rr:
case X86::XOR8ri:
case X86::XOR16rr:
case X86::XOR16ri:
case X86::XOR16ri8:
case X86::XOR32rr:
case X86::XOR32ri:
case X86::XOR32ri8:
case X86::XOR64rr:
case X86::XOR64ri8:
case X86::XOR64ri32:
// Arithmetic with just 32-bit and 64-bit variants and no immediates.
case X86::ADCX32rr:
case X86::ADCX64rr:
case X86::ADOX32rr:
case X86::ADOX64rr:
case X86::ANDN32rr:
case X86::ANDN64rr:
// Unary arithmetic operations.
case X86::DEC8r:
case X86::DEC16r:
case X86::DEC32r:
case X86::DEC64r:
case X86::INC8r:
case X86::INC16r:
case X86::INC32r:
case X86::INC64r:
case X86::NEG8r:
case X86::NEG16r:
case X86::NEG32r:
case X86::NEG64r:
// Unlike other arithmetic, NOT doesn't set EFLAGS.
case X86::NOT8r:
case X86::NOT16r:
case X86::NOT32r:
case X86::NOT64r:
// Various move instructions used to zero or sign extend things. Note that we
// intentionally don't support the _NOREX variants as we can't handle that
// register constraint anyways.
case X86::MOVSX16rr8:
case X86::MOVSX32rr8:
case X86::MOVSX32rr16:
case X86::MOVSX64rr8:
case X86::MOVSX64rr16:
case X86::MOVSX64rr32:
case X86::MOVZX16rr8:
case X86::MOVZX32rr8:
case X86::MOVZX32rr16:
case X86::MOVZX64rr8:
case X86::MOVZX64rr16:
case X86::MOV32rr:
// Arithmetic instructions that are both constant time and don't set flags.
case X86::RORX32ri:
case X86::RORX64ri:
case X86::SARX32rr:
case X86::SARX64rr:
case X86::SHLX32rr:
case X86::SHLX64rr:
case X86::SHRX32rr:
case X86::SHRX64rr:
// LEA doesn't actually access memory, and its arithmetic is constant time.
case X86::LEA16r:
case X86::LEA32r:
case X86::LEA64_32r:
case X86::LEA64r:
return true;
}
}
bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
// By default, assume that the load will immediately leak.
return false;
// On x86 it is believed that imul is constant time w.r.t. the loaded data.
// However, they set flags and are perhaps the most surprisingly constant
// time operations so we call them out here separately.
case X86::IMUL16rm:
case X86::IMUL16rmi8:
case X86::IMUL16rmi:
case X86::IMUL32rm:
case X86::IMUL32rmi8:
case X86::IMUL32rmi:
case X86::IMUL64rm:
case X86::IMUL64rmi32:
case X86::IMUL64rmi8:
// Bit scanning and counting instructions that are somewhat surprisingly
// constant time as they scan across bits and do other fairly complex
// operations like popcnt, but are believed to be constant time on x86.
// However, these set flags.
case X86::BSF16rm:
case X86::BSF32rm:
case X86::BSF64rm:
case X86::BSR16rm:
case X86::BSR32rm:
case X86::BSR64rm:
case X86::LZCNT16rm:
case X86::LZCNT32rm:
case X86::LZCNT64rm:
case X86::POPCNT16rm:
case X86::POPCNT32rm:
case X86::POPCNT64rm:
case X86::TZCNT16rm:
case X86::TZCNT32rm:
case X86::TZCNT64rm:
// Bit manipulation instructions are effectively combinations of basic
// arithmetic ops, and should still execute in constant time. These also
// set flags.
case X86::BLCFILL32rm:
case X86::BLCFILL64rm:
case X86::BLCI32rm:
case X86::BLCI64rm:
case X86::BLCIC32rm:
case X86::BLCIC64rm:
case X86::BLCMSK32rm:
case X86::BLCMSK64rm:
case X86::BLCS32rm:
case X86::BLCS64rm:
case X86::BLSFILL32rm:
case X86::BLSFILL64rm:
case X86::BLSI32rm:
case X86::BLSI64rm:
case X86::BLSIC32rm:
case X86::BLSIC64rm:
case X86::BLSMSK32rm:
case X86::BLSMSK64rm:
case X86::BLSR32rm:
case X86::BLSR64rm:
case X86::TZMSK32rm:
case X86::TZMSK64rm:
// Bit extracting and clearing instructions should execute in constant time,
// and set flags.
case X86::BEXTR32rm:
case X86::BEXTR64rm:
case X86::BEXTRI32mi:
case X86::BEXTRI64mi:
case X86::BZHI32rm:
case X86::BZHI64rm:
// Basic arithmetic is constant time on the input but does set flags.
case X86::ADC8rm:
case X86::ADC16rm:
case X86::ADC32rm:
case X86::ADC64rm:
case X86::ADCX32rm:
case X86::ADCX64rm:
case X86::ADD8rm:
case X86::ADD16rm:
case X86::ADD32rm:
case X86::ADD64rm:
case X86::ADOX32rm:
case X86::ADOX64rm:
case X86::AND8rm:
case X86::AND16rm:
case X86::AND32rm:
case X86::AND64rm:
case X86::ANDN32rm:
case X86::ANDN64rm:
case X86::OR8rm:
case X86::OR16rm:
case X86::OR32rm:
case X86::OR64rm:
case X86::SBB8rm:
case X86::SBB16rm:
case X86::SBB32rm:
case X86::SBB64rm:
case X86::SUB8rm:
case X86::SUB16rm:
case X86::SUB32rm:
case X86::SUB64rm:
case X86::XOR8rm:
case X86::XOR16rm:
case X86::XOR32rm:
case X86::XOR64rm:
// Integer multiply w/o affecting flags is still believed to be constant
// time on x86. Called out separately as this is among the most surprising
// instructions to exhibit that behavior.
case X86::MULX32rm:
case X86::MULX64rm:
// Arithmetic instructions that are both constant time and don't set flags.
case X86::RORX32mi:
case X86::RORX64mi:
case X86::SARX32rm:
case X86::SARX64rm:
case X86::SHLX32rm:
case X86::SHLX64rm:
case X86::SHRX32rm:
case X86::SHRX64rm:
// Conversions are believed to be constant time and don't set flags.
case X86::CVTTSD2SI64rm:
case X86::VCVTTSD2SI64rm:
case X86::VCVTTSD2SI64Zrm:
case X86::CVTTSD2SIrm:
case X86::VCVTTSD2SIrm:
case X86::VCVTTSD2SIZrm:
case X86::CVTTSS2SI64rm:
case X86::VCVTTSS2SI64rm:
case X86::VCVTTSS2SI64Zrm:
case X86::CVTTSS2SIrm:
case X86::VCVTTSS2SIrm:
case X86::VCVTTSS2SIZrm:
case X86::CVTSI2SDrm:
case X86::VCVTSI2SDrm:
case X86::VCVTSI2SDZrm:
case X86::CVTSI2SSrm:
case X86::VCVTSI2SSrm:
case X86::VCVTSI2SSZrm:
case X86::CVTSI642SDrm:
case X86::VCVTSI642SDrm:
case X86::VCVTSI642SDZrm:
case X86::CVTSI642SSrm:
case X86::VCVTSI642SSrm:
case X86::VCVTSI642SSZrm:
case X86::CVTSS2SDrm:
case X86::VCVTSS2SDrm:
case X86::VCVTSS2SDZrm:
case X86::CVTSD2SSrm:
case X86::VCVTSD2SSrm:
case X86::VCVTSD2SSZrm:
// AVX512 added unsigned integer conversions.
case X86::VCVTTSD2USI64Zrm:
case X86::VCVTTSD2USIZrm:
case X86::VCVTTSS2USI64Zrm:
case X86::VCVTTSS2USIZrm:
case X86::VCVTUSI2SDZrm:
case X86::VCVTUSI642SDZrm:
case X86::VCVTUSI2SSZrm:
case X86::VCVTUSI642SSZrm:
// Loads to register don't set flags.
case X86::MOV8rm:
case X86::MOV8rm_NOREX:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::MOVSX16rm8:
case X86::MOVSX32rm16:
case X86::MOVSX32rm8:
case X86::MOVSX32rm8_NOREX:
case X86::MOVSX64rm16:
case X86::MOVSX64rm32:
case X86::MOVSX64rm8:
case X86::MOVZX16rm8:
case X86::MOVZX32rm16:
case X86::MOVZX32rm8:
case X86::MOVZX32rm8_NOREX:
case X86::MOVZX64rm16:
case X86::MOVZX64rm8:
return true;
}
}
int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
const MachineFunction *MF = MI.getParent()->getParent();
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
if (isFrameInstr(MI)) {
int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
SPAdj -= getFrameAdjustment(MI);
if (!isFrameSetup(MI))
SPAdj = -SPAdj;
return SPAdj;
}
// To know whether a call adjusts the stack, we need information
// that is bound to the following ADJCALLSTACKUP pseudo.
// Look for the next ADJCALLSTACKUP that follows the call.
if (MI.isCall()) {
const MachineBasicBlock *MBB = MI.getParent();
auto I = ++MachineBasicBlock::const_iterator(MI);
for (auto E = MBB->end(); I != E; ++I) {
if (I->getOpcode() == getCallFrameDestroyOpcode() ||
I->isCall())
break;
}
// If we could not find a frame destroy opcode, then it has already
// been simplified, so we don't care.
if (I->getOpcode() != getCallFrameDestroyOpcode())
return 0;
return -(I->getOperand(1).getImm());
}
// Currently handle only PUSHes we can reasonably expect to see
// in call sequences
switch (MI.getOpcode()) {
default:
return 0;
case X86::PUSH32i8:
case X86::PUSH32r:
case X86::PUSH32rmm:
case X86::PUSH32rmr:
case X86::PUSHi32:
return 4;
case X86::PUSH64i8:
case X86::PUSH64r:
case X86::PUSH64rmm:
case X86::PUSH64rmr:
case X86::PUSH64i32:
return 8;
}
}
/// Return true and the FrameIndex if the specified
/// operand and follow operands form a reference to the stack frame.
bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
int &FrameIndex) const {
if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
MI.getOperand(Op + X86::AddrDisp).isImm() &&
MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
return true;
}
return false;
}
static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
switch (Opcode) {
default:
return false;
case X86::MOV8rm:
case X86::KMOVBkm:
MemBytes = 1;
return true;
case X86::MOV16rm:
case X86::KMOVWkm:
case X86::VMOVSHZrm:
case X86::VMOVSHZrm_alt:
MemBytes = 2;
return true;
case X86::MOV32rm:
case X86::MOVSSrm:
case X86::MOVSSrm_alt:
case X86::VMOVSSrm:
case X86::VMOVSSrm_alt:
case X86::VMOVSSZrm:
case X86::VMOVSSZrm_alt:
case X86::KMOVDkm:
MemBytes = 4;
return true;
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSDrm:
case X86::MOVSDrm_alt:
case X86::VMOVSDrm:
case X86::VMOVSDrm_alt:
case X86::VMOVSDZrm:
case X86::VMOVSDZrm_alt:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::KMOVQkm:
MemBytes = 8;
return true;
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSZ128rm:
case X86::VMOVUPSZ128rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVAPDZ128rm:
case X86::VMOVUPDZ128rm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQU64Z128rm:
MemBytes = 16;
return true;
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVUPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
case X86::VMOVAPSZ256rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVAPDZ256rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU16Z256rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQU64Z256rm:
MemBytes = 32;
return true;
case X86::VMOVAPSZrm:
case X86::VMOVUPSZrm:
case X86::VMOVAPDZrm:
case X86::VMOVUPDZrm:
case X86::VMOVDQU8Zrm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU64Zrm:
MemBytes = 64;
return true;
}
}
static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
switch (Opcode) {
default:
return false;
case X86::MOV8mr:
case X86::KMOVBmk:
MemBytes = 1;
return true;
case X86::MOV16mr:
case X86::KMOVWmk:
case X86::VMOVSHZmr:
MemBytes = 2;
return true;
case X86::MOV32mr:
case X86::MOVSSmr:
case X86::VMOVSSmr:
case X86::VMOVSSZmr:
case X86::KMOVDmk:
MemBytes = 4;
return true;
case X86::MOV64mr:
case X86::ST_FpP64m:
case X86::MOVSDmr:
case X86::VMOVSDmr:
case X86::VMOVSDZmr:
case X86::MMX_MOVD64mr:
case X86::MMX_MOVQ64mr:
case X86::MMX_MOVNTQmr:
case X86::KMOVQmk:
MemBytes = 8;
return true;
case X86::MOVAPSmr:
case X86::MOVUPSmr:
case X86::MOVAPDmr:
case X86::MOVUPDmr:
case X86::MOVDQAmr:
case X86::MOVDQUmr:
case X86::VMOVAPSmr:
case X86::VMOVUPSmr:
case X86::VMOVAPDmr:
case X86::VMOVUPDmr:
case X86::VMOVDQAmr:
case X86::VMOVDQUmr:
case X86::VMOVUPSZ128mr:
case X86::VMOVAPSZ128mr:
case X86::VMOVUPSZ128mr_NOVLX:
case X86::VMOVAPSZ128mr_NOVLX:
case X86::VMOVUPDZ128mr:
case X86::VMOVAPDZ128mr:
case X86::VMOVDQA32Z128mr:
case X86::VMOVDQU32Z128mr:
case X86::VMOVDQA64Z128mr:
case X86::VMOVDQU64Z128mr:
case X86::VMOVDQU8Z128mr:
case X86::VMOVDQU16Z128mr:
MemBytes = 16;
return true;
case X86::VMOVUPSYmr:
case X86::VMOVAPSYmr:
case X86::VMOVUPDYmr:
case X86::VMOVAPDYmr:
case X86::VMOVDQUYmr:
case X86::VMOVDQAYmr:
case X86::VMOVUPSZ256mr:
case X86::VMOVAPSZ256mr:
case X86::VMOVUPSZ256mr_NOVLX:
case X86::VMOVAPSZ256mr_NOVLX:
case X86::VMOVUPDZ256mr:
case X86::VMOVAPDZ256mr:
case X86::VMOVDQU8Z256mr:
case X86::VMOVDQU16Z256mr:
case X86::VMOVDQA32Z256mr:
case X86::VMOVDQU32Z256mr:
case X86::VMOVDQA64Z256mr:
case X86::VMOVDQU64Z256mr:
MemBytes = 32;
return true;
case X86::VMOVUPSZmr:
case X86::VMOVAPSZmr:
case X86::VMOVUPDZmr:
case X86::VMOVAPDZmr:
case X86::VMOVDQU8Zmr:
case X86::VMOVDQU16Zmr:
case X86::VMOVDQA32Zmr:
case X86::VMOVDQU32Zmr:
case X86::VMOVDQA64Zmr:
case X86::VMOVDQU64Zmr:
MemBytes = 64;
return true;
}
return false;
}
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Dummy;
return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
}
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex,
unsigned &MemBytes) const {
if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
return MI.getOperand(0).getReg();
return 0;
}
unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Dummy;
if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
unsigned Reg;
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
SmallVector<const MachineMemOperand *, 1> Accesses;
if (hasLoadFromStackSlot(MI, Accesses)) {
FrameIndex =
cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
->getFrameIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Dummy;
return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
}
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex,
unsigned &MemBytes) const {
if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
isFrameOperand(MI, 0, FrameIndex))
return MI.getOperand(X86::AddrNumOperands).getReg();
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Dummy;
if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
unsigned Reg;
if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
SmallVector<const MachineMemOperand *, 1> Accesses;
if (hasStoreToStackSlot(MI, Accesses)) {
FrameIndex =
cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
->getFrameIndex();
return MI.getOperand(X86::AddrNumOperands).getReg();
}
}
return 0;
}
/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
// Don't waste compile time scanning use-def chains of physregs.
if (!BaseReg.isVirtual())
return false;
bool isPICBase = false;
for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
E = MRI.def_instr_end(); I != E; ++I) {
MachineInstr *DefMI = &*I;
if (DefMI->getOpcode() != X86::MOVPC32r)
return false;
assert(!isPICBase && "More than one PIC base?");
isPICBase = true;
}
return isPICBase;
}
bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
AAResults *AA) const {
switch (MI.getOpcode()) {
default:
// This function should only be called for opcodes with the ReMaterializable
// flag set.
llvm_unreachable("Unknown rematerializable operation!");
break;
case X86::LOAD_STACK_GUARD:
case X86::AVX1_SETALLONES:
case X86::AVX2_SETALLONES:
case X86::AVX512_128_SET0:
case X86::AVX512_256_SET0:
case X86::AVX512_512_SET0:
case X86::AVX512_512_SETALLONES:
case X86::AVX512_FsFLD0SD:
case X86::AVX512_FsFLD0SH:
case X86::AVX512_FsFLD0SS:
case X86::AVX512_FsFLD0F128:
case X86::AVX_SET0:
case X86::FsFLD0SD:
case X86::FsFLD0SS:
case X86::FsFLD0F128:
case X86::KSET0D:
case X86::KSET0Q:
case X86::KSET0W:
case X86::KSET1D:
case X86::KSET1Q:
case X86::KSET1W:
case X86::MMX_SET0:
case X86::MOV32ImmSExti8:
case X86::MOV32r0:
case X86::MOV32r1:
case X86::MOV32r_1:
case X86::MOV32ri64:
case X86::MOV64ImmSExti8:
case X86::V_SET0:
case X86::V_SETALLONES:
case X86::MOV16ri:
case X86::MOV32ri:
case X86::MOV64ri:
case X86::MOV64ri32:
case X86::MOV8ri:
case X86::PTILEZEROV:
return true;
case X86::MOV8rm:
case X86::MOV8rm_NOREX:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::MOVSSrm:
case X86::MOVSSrm_alt:
case X86::MOVSDrm:
case X86::MOVSDrm_alt:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
case X86::VMOVSSrm:
case X86::VMOVSSrm_alt:
case X86::VMOVSDrm:
case X86::VMOVSDrm_alt:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVUPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
// AVX-512
case X86::VMOVSSZrm:
case X86::VMOVSSZrm_alt:
case X86::VMOVSDZrm:
case X86::VMOVSDZrm_alt:
case X86::VMOVSHZrm:
case X86::VMOVSHZrm_alt:
case X86::VMOVAPDZ128rm:
case X86::VMOVAPDZ256rm:
case X86::VMOVAPDZrm:
case X86::VMOVAPSZ128rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVAPSZrm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQU16Z256rm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQU64Z128rm:
case X86::VMOVDQU64Z256rm:
case X86::VMOVDQU64Zrm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU8Zrm:
case X86::VMOVUPDZ128rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVUPDZrm:
case X86::VMOVUPSZ128rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVUPSZrm: {
// Loads from constant pools are trivially rematerializable.
if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
MI.isDereferenceableInvariantLoad(AA)) {
Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
if (BaseReg == 0 || BaseReg == X86::RIP)
return true;
// Allow re-materialization of PIC load.
if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
return false;
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
case X86::LEA32r:
case X86::LEA64r: {
if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
!MI.getOperand(1 + X86::AddrDisp).isReg()) {
// lea fi#, lea GV, etc. are all rematerializable.
if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
return true;
Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
if (BaseReg == 0)
return true;
// Allow re-materialization of lea PICBase + x.
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
}
}
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register DestReg, unsigned SubIdx,
const MachineInstr &Orig,
const TargetRegisterInfo &TRI) const {
bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
MachineBasicBlock::LQR_Dead) {
// The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
// effects.
int Value;
switch (Orig.getOpcode()) {
case X86::MOV32r0: Value = 0; break;
case X86::MOV32r1: Value = 1; break;
case X86::MOV32r_1: Value = -1; break;
default:
llvm_unreachable("Unexpected instruction!");
}
const DebugLoc &DL = Orig.getDebugLoc();
BuildMI(MBB, I, DL, get(X86::MOV32ri))
.add(Orig.getOperand(0))
.addImm(Value);
} else {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
MBB.insert(I, MI);
}
MachineInstr &NewMI = *std::prev(I);
NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
}
/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.isDef() &&
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
return true;
}
}
return false;
}
/// Check whether the shift count for a machine operand is non-zero.
inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
unsigned ShiftAmtOperandIdx) {
// The shift count is six bits with the REX.W prefix and five bits without.
unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
return Imm & ShiftCountMask;
}
/// Check whether the given shift count is appropriate
/// can be represented by a LEA instruction.
inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
// Left shift instructions can be transformed into load-effective-address
// instructions if we can encode them appropriately.
// A LEA instruction utilizes a SIB byte to encode its scale factor.
// The SIB.scale field is two bits wide which means that we can encode any
// shift amount less than 4.
return ShAmt < 4 && ShAmt > 0;
}
bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
unsigned Opc, bool AllowSP, Register &NewSrc,
bool &isKill, MachineOperand &ImplicitOp,
LiveVariables *LV, LiveIntervals *LIS) const {
MachineFunction &MF = *MI.getParent()->getParent();
const TargetRegisterClass *RC;
if (AllowSP) {
RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
} else {
RC = Opc != X86::LEA32r ?
&X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
}
Register SrcReg = Src.getReg();
isKill = MI.killsRegister(SrcReg);
// For both LEA64 and LEA32 the register already has essentially the right
// type (32-bit or 64-bit) we may just need to forbid SP.
if (Opc != X86::LEA64_32r) {
NewSrc = SrcReg;
assert(!Src.isUndef() && "Undef op doesn't need optimization");
if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
return false;
return true;
}
// This is for an LEA64_32r and incoming registers are 32-bit. One way or
// another we need to add 64-bit registers to the final MI.
if (SrcReg.isPhysical()) {
ImplicitOp = Src;
ImplicitOp.setImplicit();
NewSrc = getX86SubSuperRegister(SrcReg, 64);
assert(!Src.isUndef() && "Undef op doesn't need optimization");
} else {
// Virtual register of the wrong class, we have to create a temporary 64-bit
// vreg to feed into the LEA.
NewSrc = MF.getRegInfo().createVirtualRegister(RC);
MachineInstr *Copy =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
.addReg(SrcReg, getKillRegState(isKill));
// Which is obviously going to be dead after we're done with it.
isKill = true;
if (LV)
LV->replaceKillInstruction(SrcReg, MI, *Copy);
if (LIS) {
SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
SlotIndex Idx = LIS->getInstructionIndex(MI);
LiveInterval &LI = LIS->getInterval(SrcReg);
LiveRange::Segment *S = LI.getSegmentContaining(Idx);
if (S->end.getBaseIndex() == Idx)
S->end = CopyIdx.getRegSlot();
}
}
// We've set all the parameters without issue.
return true;
}
MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
MachineInstr &MI,
LiveVariables *LV,
LiveIntervals *LIS,
bool Is8BitOp) const {
// We handle 8-bit adds and various 16-bit opcodes in the switch below.
MachineBasicBlock &MBB = *MI.getParent();
MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
*RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
"Unexpected type for LEA transform");
// TODO: For a 32-bit target, we need to adjust the LEA variables with
// something like this:
// Opcode = X86::LEA32r;
// InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
// OutRegLEA =
// Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
// : RegInfo.createVirtualRegister(&X86::GR32RegClass);
if (!Subtarget.is64Bit())
return nullptr;
unsigned Opcode = X86::LEA64_32r;
Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Register InRegLEA2;
// Build and insert into an implicit UNDEF value. This is OK because
// we will be shifting and then extracting the lower 8/16-bits.
// This has the potential to cause partial register stall. e.g.
// movw (%rbp,%rcx,2), %dx
// leal -65(%rdx), %esi
// But testing has shown this *does* help performance in 64-bit mode (at
// least on modern x86 machines).
MachineBasicBlock::iterator MBBI = MI.getIterator();
Register Dest = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register Src2;
bool IsDead = MI.getOperand(0).isDead();
bool IsKill = MI.getOperand(1).isKill();
unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
MachineInstr *ImpDef =
BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
MachineInstr *InsMI =
BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(InRegLEA, RegState::Define, SubReg)
.addReg(Src, getKillRegState(IsKill));
MachineInstr *ImpDef2 = nullptr;
MachineInstr *InsMI2 = nullptr;
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::SHL8ri:
case X86::SHL16ri: {
unsigned ShAmt = MI.getOperand(2).getImm();
MIB.addReg(0).addImm(1ULL << ShAmt)
.addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
break;
}
case X86::INC8r:
case X86::INC16r:
addRegOffset(MIB, InRegLEA, true, 1);
break;
case X86::DEC8r:
case X86::DEC16r:
addRegOffset(MIB, InRegLEA, true, -1);
break;
case X86::ADD8ri:
case X86::ADD8ri_DB:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
break;
case X86::ADD8rr:
case X86::ADD8rr_DB:
case X86::ADD16rr:
case X86::ADD16rr_DB: {
Src2 = MI.getOperand(2).getReg();
bool IsKill2 = MI.getOperand(2).isKill();
assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
if (Src == Src2) {
// ADD8rr/ADD16rr killed %reg1028, %reg1028
// just a single insert_subreg.
addRegReg(MIB, InRegLEA, true, InRegLEA, false);
} else {
if (Subtarget.is64Bit())
InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
else
InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
// Build and insert into an implicit UNDEF value. This is OK because
// we will be shifting and then extracting the lower 8/16-bits.
ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
InRegLEA2);
InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(InRegLEA2, RegState::Define, SubReg)
.addReg(Src2, getKillRegState(IsKill2));
addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
}
if (LV && IsKill2 && InsMI2)
LV->replaceKillInstruction(Src2, MI, *InsMI2);
break;
}
}
MachineInstr *NewMI = MIB;
MachineInstr *ExtMI =
BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(Dest, RegState::Define | getDeadRegState(IsDead))
.addReg(OutRegLEA, RegState::Kill, SubReg);
if (LV) {
// Update live variables.
LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
if (IsKill)
LV->replaceKillInstruction(Src, MI, *InsMI);
if (IsDead)
LV->replaceKillInstruction(Dest, MI, *ExtMI);
}
if (LIS) {
LIS->InsertMachineInstrInMaps(*ImpDef);
SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
if (ImpDef2)
LIS->InsertMachineInstrInMaps(*ImpDef2);
SlotIndex Ins2Idx;
if (InsMI2)
Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
LIS->getInterval(InRegLEA);
LIS->getInterval(OutRegLEA);
if (InRegLEA2)
LIS->getInterval(InRegLEA2);
// Move the use of Src up to InsMI.
LiveInterval &SrcLI = LIS->getInterval(Src);
LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
if (SrcSeg->end == NewIdx.getRegSlot())
SrcSeg->end = InsIdx.getRegSlot();
if (InsMI2) {
// Move the use of Src2 up to InsMI2.
LiveInterval &Src2LI = LIS->getInterval(Src2);
LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
if (Src2Seg->end == NewIdx.getRegSlot())
Src2Seg->end = Ins2Idx.getRegSlot();
}
// Move the definition of Dest down to ExtMI.
LiveInterval &DestLI = LIS->getInterval(Dest);
LiveRange::Segment *DestSeg =
DestLI.getSegmentContaining(NewIdx.getRegSlot());
assert(DestSeg->start == NewIdx.getRegSlot() &&
DestSeg->valno->def == NewIdx.getRegSlot());
DestSeg->start = ExtIdx.getRegSlot();
DestSeg->valno->def = ExtIdx.getRegSlot();
}
return ExtMI;
}
/// This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
LiveVariables *LV,
LiveIntervals *LIS) const {
// The following opcodes also sets the condition code register(s). Only
// convert them to equivalent lea if the condition code register def's
// are dead!
if (hasLiveCondCodeDef(MI))
return nullptr;
MachineFunction &MF = *MI.getParent()->getParent();
// All instructions input are two-addr instructions. Get the known operands.
const MachineOperand &Dest = MI.getOperand(0);
const MachineOperand &Src = MI.getOperand(1);
// Ideally, operations with undef should be folded before we get here, but we
// can't guarantee it. Bail out because optimizing undefs is a waste of time.
// Without this, we have to forward undef state to new register operands to
// avoid machine verifier errors.
if (Src.isUndef())
return nullptr;
if (MI.getNumOperands() > 2)
if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
return nullptr;
MachineInstr *NewMI = nullptr;
Register SrcReg, SrcReg2;
bool Is64Bit = Subtarget.is64Bit();
bool Is8BitOp = false;
unsigned MIOpc = MI.getOpcode();
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::SHL64ri: {
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
// LEA can't handle RSP.
if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
Src.getReg(), &X86::GR64_NOSPRegClass))
return nullptr;
NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
.add(Dest)
.addReg(0)
.addImm(1ULL << ShAmt)
.add(Src)
.addImm(0)
.addReg(0);
break;
}
case X86::SHL32ri: {
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
// LEA can't handle ESP.
bool isKill;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
ImplicitOp, LV, LIS))
return nullptr;
MachineInstrBuilder MIB =
BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(0)
.addImm(1ULL << ShAmt)
.addReg(SrcReg, getKillRegState(isKill))
.addImm(0)
.addReg(0);
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = MIB;
break;
}
case X86::SHL8ri:
Is8BitOp = true;
LLVM_FALLTHROUGH;
case X86::SHL16ri: {
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt))
return nullptr;
return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
}
case X86::INC64r:
case X86::INC32r: {
assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
(Is64Bit ? X86::LEA64_32r : X86::LEA32r);
bool isKill;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
ImplicitOp, LV, LIS))
return nullptr;
MachineInstrBuilder MIB =
BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(SrcReg, getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = addOffset(MIB, 1);
break;
}
case X86::DEC64r:
case X86::DEC32r: {
assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
: (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
bool isKill;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
ImplicitOp, LV, LIS))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(SrcReg, getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = addOffset(MIB, -1);
break;
}
case X86::DEC8r:
case X86::INC8r:
Is8BitOp = true;
LLVM_FALLTHROUGH;
case X86::DEC16r:
case X86::INC16r:
return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD32rr:
case X86::ADD32rr_DB: {
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc;
if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
Opc = X86::LEA64r;
else
Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
const MachineOperand &Src2 = MI.getOperand(2);
bool isKill2;
MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
ImplicitOp2, LV, LIS))
return nullptr;
bool isKill;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (Src.getReg() == Src2.getReg()) {
// Don't call classify LEAReg a second time on the same register, in case
// the first call inserted a COPY from Src2 and marked it as killed.
isKill = isKill2;
SrcReg = SrcReg2;
} else {
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
ImplicitOp, LV, LIS))
return nullptr;
}
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
if (ImplicitOp2.getReg() != 0)
MIB.add(ImplicitOp2);
NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
if (LV && Src2.isKill())
LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
break;
}
case X86::ADD8rr:
case X86::ADD8rr_DB:
Is8BitOp = true;
LLVM_FALLTHROUGH;
case X86::ADD16rr:
case X86::ADD16rr_DB:
return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addOffset(
BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
MI.getOperand(2));
break;
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB: {
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
bool isKill;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
ImplicitOp, LV, LIS))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(SrcReg, getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = addOffset(MIB, MI.getOperand(2));
break;
}
case X86::ADD8ri:
case X86::ADD8ri_DB:
Is8BitOp = true;
LLVM_FALLTHROUGH;
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
case X86::SUB8ri:
case X86::SUB16ri8:
case X86::SUB16ri:
/// FIXME: Support these similar to ADD8ri/ADD16ri*.
return nullptr;
case X86::SUB32ri8:
case X86::SUB32ri: {
if (!MI.getOperand(2).isImm())
return nullptr;
int64_t Imm = MI.getOperand(2).getImm();
if (!isInt<32>(-Imm))
return nullptr;
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
bool isKill;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
ImplicitOp, LV, LIS))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(SrcReg, getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = addOffset(MIB, -Imm);
break;
}
case X86::SUB64ri8:
case X86::SUB64ri32: {
if (!MI.getOperand(2).isImm())
return nullptr;
int64_t Imm = MI.getOperand(2).getImm();
if (!isInt<32>(-Imm))
return nullptr;
assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
get(X86::LEA64r)).add(Dest).add(Src);
NewMI = addOffset(MIB, -Imm);
break;
}
case X86::VMOVDQU8Z128rmk:
case X86::VMOVDQU8Z256rmk:
case X86::VMOVDQU8Zrmk:
case X86::VMOVDQU16Z128rmk:
case X86::VMOVDQU16Z256rmk:
case X86::VMOVDQU16Zrmk:
case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
case X86::VBROADCASTSDZ256rmk:
case X86::VBROADCASTSDZrmk:
case X86::VBROADCASTSSZ128rmk:
case X86::VBROADCASTSSZ256rmk:
case X86::VBROADCASTSSZrmk:
case X86::VPBROADCASTDZ128rmk:
case X86::VPBROADCASTDZ256rmk:
case X86::VPBROADCASTDZrmk:
case X86::VPBROADCASTQZ128rmk:
case X86::VPBROADCASTQZ256rmk:
case X86::VPBROADCASTQZrmk: {
unsigned Opc;
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
}
NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.add(MI.getOperand(2))
.add(Src)
.add(MI.getOperand(3))
.add(MI.getOperand(4))
.add(MI.getOperand(5))
.add(MI.getOperand(6))
.add(MI.getOperand(7));
break;
}
case X86::VMOVDQU8Z128rrk:
case X86::VMOVDQU8Z256rrk:
case X86::VMOVDQU8Zrrk:
case X86::VMOVDQU16Z128rrk:
case X86::VMOVDQU16Z256rrk:
case X86::VMOVDQU16Zrrk:
case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
unsigned Opc;
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
}
NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.add(MI.getOperand(2))
.add(Src)
.add(MI.getOperand(3));
break;
}
}
if (!NewMI) return nullptr;
if (LV) { // Update live variables
if (Src.isKill())
LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
if (Dest.isDead())
LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
}
MachineBasicBlock &MBB = *MI.getParent();
MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
if (LIS) {
LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
if (SrcReg)
LIS->getInterval(SrcReg);
if (SrcReg2)
LIS->getInterval(SrcReg2);
}
return NewMI;
}
/// This determines which of three possible cases of a three source commute
/// the source indexes correspond to taking into account any mask operands.
/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
/// possible.
/// Case 0 - Possible to commute the first and second operands.
/// Case 1 - Possible to commute the first and third operands.
/// Case 2 - Possible to commute the second and third operands.
static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
unsigned SrcOpIdx2) {
// Put the lowest index to SrcOpIdx1 to simplify the checks below.
if (SrcOpIdx1 > SrcOpIdx2)
std::swap(SrcOpIdx1, SrcOpIdx2);
unsigned Op1 = 1, Op2 = 2, Op3 = 3;
if (X86II::isKMasked(TSFlags)) {
Op2++;
Op3++;
}
if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
return 0;
if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
return 1;
if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
return 2;
llvm_unreachable("Unknown three src commute case.");
}
unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
const X86InstrFMA3Group &FMA3Group) const {
unsigned Opc = MI.getOpcode();
// TODO: Commuting the 1st operand of FMA*_Int requires some additional
// analysis. The commute optimization is legal only if all users of FMA*_Int
// use only the lowest element of the FMA*_Int instruction. Such analysis are
// not implemented yet. So, just return 0 in that case.
// When such analysis are available this place will be the right place for
// calling it.
assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
"Intrinsic instructions can't commute operand 1");
// Determine which case this commute is or if it can't be done.
unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
SrcOpIdx2);
assert(Case < 3 && "Unexpected case number!");
// Define the FMA forms mapping array that helps to map input FMA form
// to output FMA form to preserve the operation semantics after
// commuting the operands.
const unsigned Form132Index = 0;
const unsigned Form213Index = 1;
const unsigned Form231Index = 2;
static const unsigned FormMapping[][3] = {
// 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
// FMA132 A, C, b; ==> FMA231 C, A, b;
// FMA213 B, A, c; ==> FMA213 A, B, c;
// FMA231 C, A, b; ==> FMA132 A, C, b;
{ Form231Index, Form213Index, Form132Index },
// 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
// FMA132 A, c, B; ==> FMA132 B, c, A;
// FMA213 B, a, C; ==> FMA231 C, a, B;
// FMA231 C, a, B; ==> FMA213 B, a, C;
{ Form132Index, Form231Index, Form213Index },
// 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
// FMA132 a, C, B; ==> FMA213 a, B, C;
// FMA213 b, A, C; ==> FMA132 b, C, A;
// FMA231 c, A, B; ==> FMA231 c, B, A;
{ Form213Index, Form132Index, Form231Index }
};
unsigned FMAForms[3];
FMAForms[0] = FMA3Group.get132Opcode();
FMAForms[1] = FMA3Group.get213Opcode();
FMAForms[2] = FMA3Group.get231Opcode();
unsigned FormIndex;
for (FormIndex = 0; FormIndex < 3; FormIndex++)
if (Opc == FMAForms[FormIndex])
break;
// Everything is ready, just adjust the FMA opcode and return it.
FormIndex = FormMapping[Case][FormIndex];
return FMAForms[FormIndex];
}
static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
unsigned SrcOpIdx2) {
// Determine which case this commute is or if it can't be done.
unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
SrcOpIdx2);
assert(Case < 3 && "Unexpected case value!");
// For each case we need to swap two pairs of bits in the final immediate.
static const uint8_t SwapMasks[3][4] = {
{ 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
{ 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
{ 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
};
uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
// Clear out the bits we are swapping.
uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
SwapMasks[Case][2] | SwapMasks[Case][3]);
// If the immediate had a bit of the pair set, then set the opposite bit.
if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
}
// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
// commuted.
static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
#define VPERM_CASES(Suffix) \
case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
#define VPERM_CASES_BROADCAST(Suffix) \
VPERM_CASES(Suffix) \
case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
switch (Opcode) {
default: return false;
VPERM_CASES(B)
VPERM_CASES_BROADCAST(D)
VPERM_CASES_BROADCAST(PD)
VPERM_CASES_BROADCAST(PS)
VPERM_CASES_BROADCAST(Q)
VPERM_CASES(W)
return true;
}
#undef VPERM_CASES_BROADCAST
#undef VPERM_CASES
}
// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
// from the I opcode to the T opcode and vice versa.
static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
#define VPERM_CASES(Orig, New) \
case X86::Orig##128rr: return X86::New##128rr; \
case X86::Orig##128rrkz: return X86::New##128rrkz; \
case X86::Orig##128rm: return X86::New##128rm; \
case X86::Orig##128rmkz: return X86::New##128rmkz; \
case X86::Orig##256rr: return X86::New##256rr; \
case X86::Orig##256rrkz: return X86::New##256rrkz; \
case X86::Orig##256rm: return X86::New##256rm; \
case X86::Orig##256rmkz: return X86::New##256rmkz; \
case X86::Orig##rr: return X86::New##rr; \
case X86::Orig##rrkz: return X86::New##rrkz; \
case X86::Orig##rm: return X86::New##rm; \
case X86::Orig##rmkz: return X86::New##rmkz;
#define VPERM_CASES_BROADCAST(Orig, New) \
VPERM_CASES(Orig, New) \
case X86::Orig##128rmb: return X86::New##128rmb; \
case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
case X86::Orig##256rmb: return X86::New##256rmb; \
case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
case X86::Orig##rmb: return X86::New##rmb; \
case X86::Orig##rmbkz: return X86::New##rmbkz;
switch (Opcode) {
VPERM_CASES(VPERMI2B, VPERMT2B)
VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
VPERM_CASES(VPERMI2W, VPERMT2W)
VPERM_CASES(VPERMT2B, VPERMI2B)
VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
VPERM_CASES(VPERMT2W, VPERMI2W)
}
llvm_unreachable("Unreachable!");
#undef VPERM_CASES_BROADCAST
#undef VPERM_CASES
}
MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const {
auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
if (NewMI)
return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
return MI;
};
switch (MI.getOpcode()) {
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
unsigned Opc;
unsigned Size;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
}
unsigned Amt = MI.getOperand(3).getImm();
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
WorkingMI.getOperand(3).setImm(Size - Amt);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::PFSUBrr:
case X86::PFSUBRrr: {
// PFSUB x, y: x = x - y
// PFSUBR x, y: x = y - x
unsigned Opc =
(X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::BLENDPDrri:
case X86::BLENDPSrri:
case X86::VBLENDPDrri:
case X86::VBLENDPSrri:
// If we're optimizing for size, try to use MOVSD/MOVSS.
if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
unsigned Mask, Opc;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
}
if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
WorkingMI.RemoveOperand(3);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
/*NewMI=*/false,
OpIdx1, OpIdx2);
}
}
LLVM_FALLTHROUGH;
case X86::PBLENDWrri:
case X86::VBLENDPDYrri:
case X86::VBLENDPSYrri:
case X86::VPBLENDDrri:
case X86::VPBLENDWrri:
case X86::VPBLENDDYrri:
case X86::VPBLENDWYrri:{
int8_t Mask;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
}
// Only the least significant bits of Imm are used.
// Using int8_t to ensure it will be sign extended to the int64_t that
// setImm takes in order to match isel behavior.
int8_t Imm = MI.getOperand(3).getImm() & Mask;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm(Mask ^ Imm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::INSERTPSrr:
case X86::VINSERTPSrr:
case X86::VINSERTPSZrr: {
unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
unsigned ZMask = Imm & 15;
unsigned DstIdx = (Imm >> 4) & 3;
unsigned SrcIdx = (Imm >> 6) & 3;
// We can commute insertps if we zero 2 of the elements, the insertion is
// "inline" and we don't override the insertion with a zero.
if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
countPopulation(ZMask) == 2) {
unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
assert(AltIdx < 4 && "Illegal insertion index");
unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
return nullptr;
}
case X86::MOVSDrr:
case X86::MOVSSrr:
case X86::VMOVSDrr:
case X86::VMOVSSrr:{
// On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
if (Subtarget.hasSSE41()) {
unsigned Mask, Opc;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
// Convert to SHUFPD.
assert(MI.getOpcode() == X86::MOVSDrr &&
"Can only commute MOVSDrr without SSE4.1");
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(X86::SHUFPDrri));
WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::SHUFPDrri: {
// Commute to MOVSD.
assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(X86::MOVSDrr));
WorkingMI.RemoveOperand(3);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::PCLMULQDQrr:
case X86::VPCLMULQDQrr:
case X86::VPCLMULQDQYrr:
case X86::VPCLMULQDQZrr:
case X86::VPCLMULQDQZ128rr:
case X86::VPCLMULQDQZ256rr: {
// SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
// SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
unsigned Imm = MI.getOperand(3).getImm();
unsigned Src1Hi = Imm & 0x01;
unsigned Src2Hi = Imm & 0x10;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
// Flip comparison mode immediate (if necessary).
unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
Imm = X86::getSwappedVPCMPImm(Imm);
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VPCOMBri: case X86::VPCOMUBri:
case X86::VPCOMDri: case X86::VPCOMUDri:
case X86::VPCOMQri: case X86::VPCOMUQri:
case X86::VPCOMWri: case X86::VPCOMUWri: {
// Flip comparison mode immediate (if necessary).
unsigned Imm = MI.getOperand(3).getImm() & 0x7;
Imm = X86::getSwappedVPCOMImm(Imm);
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm(Imm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VCMPSDZrr:
case X86::VCMPSSZrr:
case X86::VCMPPDZrri:
case X86::VCMPPSZrri:
case X86::VCMPSHZrr:
case X86::VCMPPHZrri:
case X86::VCMPPHZ128rri:
case X86::VCMPPHZ256rri:
case X86::VCMPPDZ128rri:
case X86::VCMPPSZ128rri:
case X86::VCMPPDZ256rri:
case X86::VCMPPSZ256rri:
case X86::VCMPPDZrrik:
case X86::VCMPPSZrrik:
case X86::VCMPPDZ128rrik:
case X86::VCMPPSZ128rrik:
case X86::VCMPPDZ256rrik:
case X86::VCMPPSZ256rrik: {
unsigned Imm =
MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
Imm = X86::getSwappedVCMPImm(Imm);
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VPERM2F128rr:
case X86::VPERM2I128rr: {
// Flip permute source immediate.
// Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
// Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::MOVHLPSrr:
case X86::UNPCKHPDrr:
case X86::VMOVHLPSrr:
case X86::VUNPCKHPDrr:
case X86::VMOVHLPSZrr:
case X86::VUNPCKHPDZ128rr: {
assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
unsigned Opc = MI.getOpcode();
switch (Opc) {
default: llvm_unreachable("Unreachable!");
case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
auto &WorkingMI = cloneIfNew(MI);
unsigned OpNo = MI.getDesc().getNumOperands() - 1;
X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
case X86::VPTERNLOGDZrrik:
case X86::VPTERNLOGDZ128rrik:
case X86::VPTERNLOGDZ256rrik:
case X86::VPTERNLOGQZrrik:
case X86::VPTERNLOGQZ128rrik:
case X86::VPTERNLOGQZ256rrik:
case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
case X86::VPTERNLOGDZ128rmbi:
case X86::VPTERNLOGDZ256rmbi:
case X86::VPTERNLOGDZrmbi:
case X86::VPTERNLOGQZ128rmbi:
case X86::VPTERNLOGQZ256rmbi:
case X86::VPTERNLOGQZrmbi:
case X86::VPTERNLOGDZ128rmbikz:
case X86::VPTERNLOGDZ256rmbikz:
case X86::VPTERNLOGDZrmbikz:
case X86::VPTERNLOGQZ128rmbikz:
case X86::VPTERNLOGQZ256rmbikz:
case X86::VPTERNLOGQZrmbikz: {
auto &WorkingMI = cloneIfNew(MI);
commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
default: {
if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
MI.getDesc().TSFlags);
if (FMA3Group) {
unsigned Opc =
getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}
}
}
bool
X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2,
bool IsIntrinsic) const {
uint64_t TSFlags = MI.getDesc().TSFlags;
unsigned FirstCommutableVecOp = 1;
unsigned LastCommutableVecOp = 3;
unsigned KMaskOp = -1U;
if (X86II::isKMasked(TSFlags)) {
// For k-zero-masked operations it is Ok to commute the first vector
// operand. Unless this is an intrinsic instruction.
// For regular k-masked operations a conservative choice is done as the
// elements of the first vector operand, for which the corresponding bit
// in the k-mask operand is set to 0, are copied to the result of the
// instruction.
// TODO/FIXME: The commute still may be legal if it is known that the
// k-mask operand is set to either all ones or all zeroes.
// It is also Ok to commute the 1st operand if all users of MI use only
// the elements enabled by the k-mask operand. For example,
// v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
// : v1[i];
// VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
// // Ok, to commute v1 in FMADD213PSZrk.
// The k-mask operand has index = 2 for masked and zero-masked operations.
KMaskOp = 2;
// The operand with index = 1 is used as a source for those elements for
// which the corresponding bit in the k-mask is set to 0.
if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
FirstCommutableVecOp = 3;
LastCommutableVecOp++;
} else if (IsIntrinsic) {
// Commuting the first operand of an intrinsic instruction isn't possible
// unless we can prove that only the lowest element of the result is used.
FirstCommutableVecOp = 2;
}
if (isMem(MI, LastCommutableVecOp))
LastCommutableVecOp--;
// Only the first RegOpsNum operands are commutable.
// Also, the value 'CommuteAnyOperandIndex' is valid here as it means
// that the operand is not specified/fixed.
if (SrcOpIdx1 != CommuteAnyOperandIndex &&
(SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
SrcOpIdx1 == KMaskOp))
return false;
if (SrcOpIdx2 != CommuteAnyOperandIndex &&
(SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
SrcOpIdx2 == KMaskOp))
return false;
// Look for two different register operands assumed to be commutable
// regardless of the FMA opcode. The FMA opcode is adjusted later.
if (SrcOpIdx1 == CommuteAnyOperandIndex ||
SrcOpIdx2 == CommuteAnyOperandIndex) {
unsigned CommutableOpIdx2 = SrcOpIdx2;
// At least one of operands to be commuted is not specified and
// this method is free to choose appropriate commutable operands.
if (SrcOpIdx1 == SrcOpIdx2)
// Both of operands are not fixed. By default set one of commutable
// operands to the last register operand of the instruction.
CommutableOpIdx2 = LastCommutableVecOp;
else if (SrcOpIdx2 == CommuteAnyOperandIndex)
// Only one of operands is not fixed.
CommutableOpIdx2 = SrcOpIdx1;
// CommutableOpIdx2 is well defined now. Let's choose another commutable
// operand and assign its index to CommutableOpIdx1.
Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
unsigned CommutableOpIdx1;
for (CommutableOpIdx1 = LastCommutableVecOp;
CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
// Just ignore and skip the k-mask operand.
if (CommutableOpIdx1 == KMaskOp)
continue;
// The commuted operands must have different registers.
// Otherwise, the commute transformation does not change anything and
// is useless then.
if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
break;
}
// No appropriate commutable operands were found.
if (CommutableOpIdx1 < FirstCommutableVecOp)
return false;
// Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
// to return those values.
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
CommutableOpIdx1, CommutableOpIdx2))
return false;
}
return true;
}
bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
const MCInstrDesc &Desc = MI.getDesc();
if (!Desc.isCommutable())
return false;
switch (MI.getOpcode()) {
case X86::CMPSDrr:
case X86::CMPSSrr:
case X86::CMPPDrri:
case X86::CMPPSrri:
case X86::VCMPSDrr:
case X86::VCMPSSrr:
case X86::VCMPPDrri:
case X86::VCMPPSrri:
case X86::VCMPPDYrri:
case X86::VCMPPSYrri:
case X86::VCMPSDZrr:
case X86::VCMPSSZrr:
case X86::VCMPPDZrri:
case X86::VCMPPSZrri:
case X86::VCMPSHZrr:
case X86::VCMPPHZrri:
case X86::VCMPPHZ128rri:
case X86::VCMPPHZ256rri:
case X86::VCMPPDZ128rri:
case X86::VCMPPSZ128rri:
case X86::VCMPPDZ256rri:
case X86::VCMPPSZ256rri:
case X86::VCMPPDZrrik:
case X86::VCMPPSZrrik:
case X86::VCMPPDZ128rrik:
case X86::VCMPPSZ128rrik:
case X86::VCMPPDZ256rrik:
case X86::VCMPPSZ256rrik: {
unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
// Float comparison can be safely commuted for
// Ordered/Unordered/Equal/NotEqual tests
unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
switch (Imm) {
default:
// EVEX versions can be commuted.
if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
break;
return false;
case 0x00: // EQUAL
case 0x03: // UNORDERED
case 0x04: // NOT EQUAL
case 0x07: // ORDERED
break;
}
// The indices of the commutable operands are 1 and 2 (or 2 and 3
// when masked).
// Assign them to the returned operand indices here.
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2 + OpOffset);
}
case X86::MOVSSrr:
// X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
// form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
// AVX implies sse4.1.
if (Subtarget.hasSSE41())
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
return false;
case X86::SHUFPDrri:
// We can commute this to MOVSD.
if (MI.getOperand(3).getImm() == 0x02)
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
return false;
case X86::MOVHLPSrr:
case X86::UNPCKHPDrr:
case X86::VMOVHLPSrr:
case X86::VUNPCKHPDrr:
case X86::VMOVHLPSZrr:
case X86::VUNPCKHPDZ128rr:
if (Subtarget.hasSSE2())
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
return false;
case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
case X86::VPTERNLOGDZrrik:
case X86::VPTERNLOGDZ128rrik:
case X86::VPTERNLOGDZ256rrik:
case X86::VPTERNLOGQZrrik:
case X86::VPTERNLOGQZ128rrik:
case X86::VPTERNLOGQZ256rrik:
case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
case X86::VPTERNLOGDZ128rmbi:
case X86::VPTERNLOGDZ256rmbi:
case X86::VPTERNLOGDZrmbi:
case X86::VPTERNLOGQZ128rmbi:
case X86::VPTERNLOGQZ256rmbi:
case X86::VPTERNLOGQZrmbi:
case X86::VPTERNLOGDZ128rmbikz:
case X86::VPTERNLOGDZ256rmbikz:
case X86::VPTERNLOGDZrmbikz:
case X86::VPTERNLOGQZ128rmbikz:
case X86::VPTERNLOGQZ256rmbikz:
case X86::VPTERNLOGQZrmbikz:
return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
case X86::VPDPWSSDYrr:
case X86::VPDPWSSDrr:
case X86::VPDPWSSDSYrr:
case X86::VPDPWSSDSrr:
case X86::VPDPWSSDZ128r:
case X86::VPDPWSSDZ128rk:
case X86::VPDPWSSDZ128rkz:
case X86::VPDPWSSDZ256r:
case X86::VPDPWSSDZ256rk:
case X86::VPDPWSSDZ256rkz:
case X86::VPDPWSSDZr:
case X86::VPDPWSSDZrk:
case X86::VPDPWSSDZrkz:
case X86::VPDPWSSDSZ128r:
case X86::VPDPWSSDSZ128rk:
case X86::VPDPWSSDSZ128rkz:
case X86::VPDPWSSDSZ256r:
case X86::VPDPWSSDSZ256rk:
case X86::VPDPWSSDSZ256rkz:
case X86::VPDPWSSDSZr:
case X86::VPDPWSSDSZrk:
case X86::VPDPWSSDSZrkz:
case X86::VPMADD52HUQZ128r:
case X86::VPMADD52HUQZ128rk:
case X86::VPMADD52HUQZ128rkz:
case X86::VPMADD52HUQZ256r:
case X86::VPMADD52HUQZ256rk:
case X86::VPMADD52HUQZ256rkz:
case X86::VPMADD52HUQZr:
case X86::VPMADD52HUQZrk:
case X86::VPMADD52HUQZrkz:
case X86::VPMADD52LUQZ128r:
case X86::VPMADD52LUQZ128rk:
case X86::VPMADD52LUQZ128rkz:
case X86::VPMADD52LUQZ256r:
case X86::VPMADD52LUQZ256rk:
case X86::VPMADD52LUQZ256rkz:
case X86::VPMADD52LUQZr:
case X86::VPMADD52LUQZrk:
case X86::VPMADD52LUQZrkz:
case X86::VFMADDCPHZr:
case X86::VFMADDCPHZrk:
case X86::VFMADDCPHZrkz:
case X86::VFMADDCPHZ128r:
case X86::VFMADDCPHZ128rk:
case X86::VFMADDCPHZ128rkz:
case X86::VFMADDCPHZ256r:
case X86::VFMADDCPHZ256rk:
case X86::VFMADDCPHZ256rkz:
case X86::VFMADDCSHZr:
case X86::VFMADDCSHZrk:
case X86::VFMADDCSHZrkz: {
unsigned CommutableOpIdx1 = 2;
unsigned CommutableOpIdx2 = 3;
if (X86II::isKMasked(Desc.TSFlags)) {
// Skip the mask register.
++CommutableOpIdx1;
++CommutableOpIdx2;
}
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
CommutableOpIdx1, CommutableOpIdx2))
return false;
if (!MI.getOperand(SrcOpIdx1).isReg() ||
!MI.getOperand(SrcOpIdx2).isReg())
// No idea.
return false;
return true;
}
default:
const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
MI.getDesc().TSFlags);
if (FMA3Group)
return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
FMA3Group->isIntrinsic());
// Handled masked instructions since we need to skip over the mask input
// and the preserved input.
if (X86II::isKMasked(Desc.TSFlags)) {
// First assume that the first input is the mask operand and skip past it.
unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
// Check if the first input is tied. If there isn't one then we only
// need to skip the mask operand which we did above.
if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
MCOI::TIED_TO) != -1)) {
// If this is zero masking instruction with a tied operand, we need to
// move the first index back to the first input since this must
// be a 3 input instruction and we want the first two non-mask inputs.
// Otherwise this is a 2 input instruction with a preserved input and
// mask, so we need to move the indices to skip one more input.
if (X86II::isKMergeMasked(Desc.TSFlags)) {
++CommutableOpIdx1;
++CommutableOpIdx2;
} else {
--CommutableOpIdx1;
}
}
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
CommutableOpIdx1, CommutableOpIdx2))
return false;
if (!MI.getOperand(SrcOpIdx1).isReg() ||
!MI.getOperand(SrcOpIdx2).isReg())
// No idea.
return false;
return true;
}
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
}
return false;
}
static bool isConvertibleLEA(MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
Opcode != X86::LEA64_32r)
return false;
const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
Scale.getImm() > 1)
return false;
return true;
}
bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
// Currently we're interested in following sequence only.
// r3 = lea r1, r2
// r5 = add r3, r4
// Both r3 and r4 are killed in add, we hope the add instruction has the
// operand order
// r5 = add r4, r3
// So later in X86FixupLEAs the lea instruction can be rewritten as add.
unsigned Opcode = MI.getOpcode();
if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
return false;
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
Register Reg1 = MI.getOperand(1).getReg();
Register Reg2 = MI.getOperand(2).getReg();
// Check if Reg1 comes from LEA in the same MBB.
if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
Commute = true;
return true;
}
}
// Check if Reg2 comes from LEA in the same MBB.
if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
Commute = false;
return true;
}
}
return false;
}
X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return X86::COND_INVALID;
case X86::JCC_1:
return static_cast<X86::CondCode>(
MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
}
}
/// Return condition code of a SETCC opcode.
X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return X86::COND_INVALID;
case X86::SETCCr: case X86::SETCCm:
return static_cast<X86::CondCode>(
MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
}
}
/// Return condition code of a CMov opcode.
X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return X86::COND_INVALID;
case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
return static_cast<X86::CondCode>(
MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
}
}
/// Return the inverse of the specified condition,
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::COND_NE;
case X86::COND_NE: return X86::COND_E;
case X86::COND_L: return X86::COND_GE;
case X86::COND_LE: return X86::COND_G;
case X86::COND_G: return X86::COND_LE;
case X86::COND_GE: return X86::COND_L;
case X86::COND_B: return X86::COND_AE;
case X86::COND_BE: return X86::COND_A;
case X86::COND_A: return X86::COND_BE;
case X86::COND_AE: return X86::COND_B;
case X86::COND_S: return X86::COND_NS;
case X86::COND_NS: return X86::COND_S;
case X86::COND_P: return X86::COND_NP;
case X86::COND_NP: return X86::COND_P;
case X86::COND_O: return X86::COND_NO;
case X86::COND_NO: return X86::COND_O;
case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
}
}
/// Assuming the flags are set by MI(a,b), return the condition code if we
/// modify the instructions such that flags are set by MI(b,a).
static X86::CondCode getSwappedCondition(X86::CondCode CC) {
switch (CC) {
default: return X86::COND_INVALID;
case X86::COND_E: return X86::COND_E;
case X86::COND_NE: return X86::COND_NE;
case X86::COND_L: return X86::COND_G;
case X86::COND_LE: return X86::COND_GE;
case X86::COND_G: return X86::COND_L;
case X86::COND_GE: return X86::COND_LE;
case X86::COND_B: return X86::COND_A;
case X86::COND_BE: return X86::COND_AE;
case X86::COND_A: return X86::COND_B;
case X86::COND_AE: return X86::COND_BE;
}
}
std::pair<X86::CondCode, bool>
X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
X86::CondCode CC = X86::COND_INVALID;
bool NeedSwap = false;
switch (Predicate) {
default: break;
// Floating-point Predicates
case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH;
case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH;
case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH;
case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH;
case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH;
case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
// Integer Predicates
case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
}
return std::make_pair(CC, NeedSwap);
}
/// Return a cmov opcode for the given register size in bytes, and operand type.
unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
switch(RegBytes) {
default: llvm_unreachable("Illegal register size!");
case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
}
}
/// Get the VPCMP immediate for the given condition.
unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETNE: return 4;
case ISD::SETEQ: return 0;
case ISD::SETULT:
case ISD::SETLT: return 1;
case ISD::SETUGT:
case ISD::SETGT: return 6;
case ISD::SETUGE:
case ISD::SETGE: return 5;
case ISD::SETULE:
case ISD::SETLE: return 2;
}
}
/// Get the VPCMP immediate if the operands are swapped.
unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
switch (Imm) {
default: llvm_unreachable("Unreachable!");
case 0x01: Imm = 0x06; break; // LT -> NLE
case 0x02: Imm = 0x05; break; // LE -> NLT
case 0x05: Imm = 0x02; break; // NLT -> LE
case 0x06: Imm = 0x01; break; // NLE -> LT
case 0x00: // EQ
case 0x03: // FALSE
case 0x04: // NE
case 0x07: // TRUE
break;
}
return Imm;
}
/// Get the VPCOM immediate if the operands are swapped.
unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
switch (Imm) {
default: llvm_unreachable("Unreachable!");
case 0x00: Imm = 0x02; break; // LT -> GT
case 0x01: Imm = 0x03; break; // LE -> GE
case 0x02: Imm = 0x00; break; // GT -> LT
case 0x03: Imm = 0x01; break; // GE -> LE
case 0x04: // EQ
case 0x05: // NE
case 0x06: // FALSE
case 0x07: // TRUE
break;
}
return Imm;
}
/// Get the VCMP immediate if the operands are swapped.
unsigned X86::getSwappedVCMPImm(unsigned Imm) {
// Only need the lower 2 bits to distinquish.
switch (Imm & 0x3) {
default: llvm_unreachable("Unreachable!");
case 0x00: case 0x03:
// EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
break;
case 0x01: case 0x02:
// Need to toggle bits 3:0. Bit 4 stays the same.
Imm ^= 0xf;
break;
}
return Imm;
}
/// Return true if the Reg is X87 register.
static bool isX87Reg(unsigned Reg) {
return (Reg == X86::FPCW || Reg == X86::FPSW ||
(Reg >= X86::ST0 && Reg <= X86::ST7));
}
/// check if the instruction is X87 instruction
bool X86::isX87Instruction(MachineInstr &MI) {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
if (isX87Reg(MO.getReg()))
return true;
}
return false;
}
bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case X86::TCRETURNdi:
case X86::TCRETURNri:
case X86::TCRETURNmi:
case X86::TCRETURNdi64:
case X86::TCRETURNri64:
case X86::TCRETURNmi64:
return true;
default:
return false;
}
}
bool X86InstrInfo::canMakeTailCallConditional(
SmallVectorImpl<MachineOperand> &BranchCond,
const MachineInstr &TailCall) const {
if (TailCall.getOpcode() != X86::TCRETURNdi &&
TailCall.getOpcode() != X86::TCRETURNdi64) {
// Only direct calls can be done with a conditional branch.
return false;
}
const MachineFunction *MF = TailCall.getParent()->getParent();
if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
// Conditional tail calls confuse the Win64 unwinder.
return false;
}
assert(BranchCond.size() == 1);
if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
// Can't make a conditional tail call with this condition.
return false;
}
const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
if (X86FI->getTCReturnAddrDelta() != 0 ||
TailCall.getOperand(1).getImm() != 0) {
// A conditional tail call cannot do any stack adjustment.
return false;
}
return true;
}
void X86InstrInfo::replaceBranchWithTailCall(
MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
const MachineInstr &TailCall) const {
assert(canMakeTailCallConditional(BranchCond, TailCall));
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugInstr())
continue;
if (!I->isBranch())
assert(0 && "Can't find the branch to replace!");
X86::CondCode CC = X86::getCondFromBranch(*I);
assert(BranchCond.size() == 1);
if (CC != BranchCond[0].getImm())
continue;
break;
}
unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
: X86::TCRETURNdi64cc;
auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
MIB->addOperand(TailCall.getOperand(0)); // Destination.
MIB.addImm(0); // Stack offset (not used).
MIB->addOperand(BranchCond[0]); // Condition.
MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
// Add implicit uses and defs of all live regs potentially clobbered by the
// call. This way they still appear live across the call.
LivePhysRegs LiveRegs(getRegisterInfo());
LiveRegs.addLiveOuts(MBB);
SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
LiveRegs.stepForward(*MIB, Clobbers);
for (const auto &C : Clobbers) {
MIB.addReg(C.first, RegState::Implicit);
MIB.addReg(C.first, RegState::Implicit | RegState::Define);
}
I->eraseFromParent();
}
// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
// not be a fallthrough MBB now due to layout changes). Return nullptr if the
// fallthrough MBB cannot be identified.
static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
MachineBasicBlock *TBB) {
// Look for non-EHPad successors other than TBB. If we find exactly one, it
// is the fallthrough MBB. If we find zero, then TBB is both the target MBB
// and fallthrough MBB. If we find more than one, we cannot identify the
// fallthrough MBB and should return nullptr.
MachineBasicBlock *FallthroughBB = nullptr;
for (MachineBasicBlock *Succ : MBB->successors()) {
if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
continue;
// Return a nullptr if we found more than one fallthrough successor.
if (FallthroughBB && FallthroughBB != TBB)
return nullptr;
FallthroughBB = Succ;
}
return FallthroughBB;
}
bool X86InstrInfo::AnalyzeBranchImpl(
MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
MachineBasicBlock::iterator UnCondBrIter = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugInstr())
continue;
// Working from the bottom, when we see a non-terminator instruction, we're
// done.
if (!isUnpredicatedTerminator(*I))
break;
// A terminator that isn't a branch can't easily be handled by this
// analysis.
if (!I->isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == X86::JMP_1) {
UnCondBrIter = I;
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (std::next(I) != MBB.end())
std::next(I)->eraseFromParent();
Cond.clear();
FBB = nullptr;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = nullptr;
I->eraseFromParent();
I = MBB.end();
UnCondBrIter = MBB.end();
continue;
}
// TBB is used to indicate the unconditional destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
X86::CondCode BranchCode = X86::getCondFromBranch(*I);
if (BranchCode == X86::COND_INVALID)
return true; // Can't handle indirect branch.
// In practice we should never have an undef eflags operand, if we do
// abort here as we are not prepared to preserve the flag.
if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
return true;
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
if (AllowModify && UnCondBrIter != MBB.end() &&
MBB.isLayoutSuccessor(TargetBB)) {
// If we can modify the code and it ends in something like:
//
// jCC L1
// jmp L2
// L1:
// ...
// L2:
//
// Then we can change this to:
//
// jnCC L2
// L1:
// ...
// L2:
//
// Which is a bit more efficient.
// We conditionally jump to the fall-through block.
BranchCode = GetOppositeBranchCondition(BranchCode);
MachineBasicBlock::iterator OldInst = I;
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
.addMBB(UnCondBrIter->getOperand(0).getMBB())
.addImm(BranchCode);
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
.addMBB(TargetBB);
OldInst->eraseFromParent();
UnCondBrIter->eraseFromParent();
// Restart the analysis.
UnCondBrIter = MBB.end();
I = MBB.end();
continue;
}
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
CondBranches.push_back(&*I);
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination and their condition
// opcodes fit one of the special multi-branch idioms.
assert(Cond.size() == 1);
assert(TBB);
// If the conditions are the same, we can leave them alone.
X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
auto NewTBB = I->getOperand(0).getMBB();
if (OldBranchCode == BranchCode && TBB == NewTBB)
continue;
// If they differ, see if they fit one of the known patterns. Theoretically,
// we could handle more patterns here, but we shouldn't expect to see them
// if instruction selection has done a reasonable job.
if (TBB == NewTBB &&
((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
(OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
BranchCode = X86::COND_NE_OR_P;
} else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
(OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
return true;
// X86::COND_E_AND_NP usually has two different branch destinations.
//
// JP B1
// JE B2
// JMP B1
// B1:
// B2:
//
// Here this condition branches to B2 only if NP && E. It has another
// equivalent form:
//
// JNE B1
// JNP B2
// JMP B1
// B1:
// B2:
//
// Similarly it branches to B2 only if E && NP. That is why this condition
// is named with COND_E_AND_NP.
BranchCode = X86::COND_E_AND_NP;
} else
return true;
// Update the MachineOperand.
Cond[0].setImm(BranchCode);
CondBranches.push_back(&*I);
}
return false;
}
bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
SmallVector<MachineInstr *, 4> CondBranches;
return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
}
bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
MachineBranchPredicate &MBP,
bool AllowModify) const {
using namespace std::placeholders;
SmallVector<MachineOperand, 4> Cond;
SmallVector<MachineInstr *, 4> CondBranches;
if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
AllowModify))
return true;
if (Cond.size() != 1)
return true;
assert(MBP.TrueDest && "expected!");
if (!MBP.FalseDest)
MBP.FalseDest = MBB.getNextNode();
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineInstr *ConditionDef = nullptr;
bool SingleUseCondition = true;
for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
ConditionDef = &MI;
break;
}
if (MI.readsRegister(X86::EFLAGS, TRI))
SingleUseCondition = false;
}
if (!ConditionDef)
return true;
if (SingleUseCondition) {
for (auto *Succ : MBB.successors())
if (Succ->isLiveIn(X86::EFLAGS))
SingleUseCondition = false;
}
MBP.ConditionDef = ConditionDef;
MBP.SingleUseCondition = SingleUseCondition;
// Currently we only recognize the simple pattern:
//
// test %reg, %reg
// je %label
//
const unsigned TestOpcode =
Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
if (ConditionDef->getOpcode() == TestOpcode &&
ConditionDef->getNumOperands() == 3 &&
ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
(Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
MBP.LHS = ConditionDef->getOperand(0);
MBP.RHS = MachineOperand::CreateImm(0);
MBP.Predicate = Cond[0].getImm() == X86::COND_NE
? MachineBranchPredicate::PRED_NE
: MachineBranchPredicate::PRED_EQ;
return false;
}
return true;
}
unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugInstr())
continue;
if (I->getOpcode() != X86::JMP_1 &&
X86::getCondFromBranch(*I) == X86::COND_INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded) const {
// Shouldn't be a fall through.
assert(TBB && "insertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"X86 branch conditions have one component!");
assert(!BytesAdded && "code size not handled");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
return 1;
}
// If FBB is null, it is implied to be a fall-through block.
bool FallThru = FBB == nullptr;
// Conditional branch.
unsigned Count = 0;
X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
switch (CC) {
case X86::COND_NE_OR_P:
// Synthesize NE_OR_P with two branches.
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
++Count;
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
++Count;
break;
case X86::COND_E_AND_NP:
// Use the next block of MBB as FBB if it is null.
if (FBB == nullptr) {
FBB = getFallThroughMBB(&MBB, TBB);
assert(FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.");
}
// Synthesize COND_E_AND_NP with two branches.
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
++Count;
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
++Count;
break;
default: {
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
++Count;
}
}
if (!FallThru) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
++Count;
}
return Count;
}
bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond,
Register DstReg, Register TrueReg,
Register FalseReg, int &CondCycles,
int &TrueCycles, int &FalseCycles) const {
// Not all subtargets have cmov instructions.
if (!Subtarget.hasCMov())
return false;
if (Cond.size() != 1)
return false;
// We cannot do the composite conditions, at least not in SSA form.
if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
return false;
// Check register classes.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC =
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
if (!RC)
return false;
// We have cmov instructions for 16, 32, and 64 bit general purpose registers.
if (X86::GR16RegClass.hasSubClassEq(RC) ||
X86::GR32RegClass.hasSubClassEq(RC) ||
X86::GR64RegClass.hasSubClassEq(RC)) {
// This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
// Bridge. Probably Ivy Bridge as well.
CondCycles = 2;
TrueCycles = 2;
FalseCycles = 2;
return true;
}
// Can't do vectors.
return false;
}
void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, Register DstReg,
ArrayRef<MachineOperand> Cond, Register TrueReg,
Register FalseReg) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
assert(Cond.size() == 1 && "Invalid Cond array");
unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
false /*HasMemoryOperand*/);
BuildMI(MBB, I, DL, get(Opc), DstReg)
.addReg(FalseReg)
.addReg(TrueReg)
.addImm(Cond[0].getImm());
}
/// Test if the given register is a physical h register.
static bool isHReg(unsigned Reg) {
return X86::GR8_ABCD_HRegClass.contains(Reg);
}
// Try and copy between VR128/VR64 and GR64 registers.
static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
const X86Subtarget &Subtarget) {
bool HasAVX = Subtarget.hasAVX();
bool HasAVX512 = Subtarget.hasAVX512();
// SrcReg(MaskReg) -> DestReg(GR64)
// SrcReg(MaskReg) -> DestReg(GR32)
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
if (X86::VK16RegClass.contains(SrcReg)) {
if (X86::GR64RegClass.contains(DestReg)) {
assert(Subtarget.hasBWI());
return X86::KMOVQrk;
}
if (X86::GR32RegClass.contains(DestReg))
return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
}
// SrcReg(GR64) -> DestReg(MaskReg)
// SrcReg(GR32) -> DestReg(MaskReg)
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
if (X86::VK16RegClass.contains(DestReg)) {
if (X86::GR64RegClass.contains(SrcReg)) {
assert(Subtarget.hasBWI());
return X86::KMOVQkr;
}
if (X86::GR32RegClass.contains(SrcReg))
return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
}
// SrcReg(VR128) -> DestReg(GR64)
// SrcReg(VR64) -> DestReg(GR64)
// SrcReg(GR64) -> DestReg(VR128)
// SrcReg(GR64) -> DestReg(VR64)
if (X86::GR64RegClass.contains(DestReg)) {
if (X86::VR128XRegClass.contains(SrcReg))
// Copy from a VR128 register to a GR64 register.
return HasAVX512 ? X86::VMOVPQIto64Zrr :
HasAVX ? X86::VMOVPQIto64rr :
X86::MOVPQIto64rr;
if (X86::VR64RegClass.contains(SrcReg))
// Copy from a VR64 register to a GR64 register.
return X86::MMX_MOVD64from64rr;
} else if (X86::GR64RegClass.contains(SrcReg)) {
// Copy from a GR64 register to a VR128 register.
if (X86::VR128XRegClass.contains(DestReg))
return HasAVX512 ? X86::VMOV64toPQIZrr :
HasAVX ? X86::VMOV64toPQIrr :
X86::MOV64toPQIrr;
// Copy from a GR64 register to a VR64 register.
if (X86::VR64RegClass.contains(DestReg))
return X86::MMX_MOVD64to64rr;
}
// SrcReg(VR128) -> DestReg(GR32)
// SrcReg(GR32) -> DestReg(VR128)
if (X86::GR32RegClass.contains(DestReg) &&
X86::VR128XRegClass.contains(SrcReg))
// Copy from a VR128 register to a GR32 register.
return HasAVX512 ? X86::VMOVPDI2DIZrr :
HasAVX ? X86::VMOVPDI2DIrr :
X86::MOVPDI2DIrr;
if (X86::VR128XRegClass.contains(DestReg) &&
X86::GR32RegClass.contains(SrcReg))
// Copy from a VR128 register to a VR128 register.
return HasAVX512 ? X86::VMOVDI2PDIZrr :
HasAVX ? X86::VMOVDI2PDIrr :
X86::MOVDI2PDIrr;
return 0;
}
void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL, MCRegister DestReg,
MCRegister SrcReg, bool KillSrc) const {
// First deal with the normal symmetric copies.
bool HasAVX = Subtarget.hasAVX();
bool HasVLX = Subtarget.hasVLX();
unsigned Opc = 0;
if (X86::GR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV64rr;
else if (X86::GR32RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV32rr;
else if (X86::GR16RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV16rr;
else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Subtarget.is64Bit()) {
Opc = X86::MOV8rr_NOREX;
// Both operands must be encodable without an REX prefix.
assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
"8-bit H register can not be copied outside GR8_NOREX");
} else
Opc = X86::MOV8rr;
}
else if (X86::VR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MMX_MOVQ64rr;
else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
if (HasVLX)
Opc = X86::VMOVAPSZ128rr;
else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
else {
// If this an extended register and we don't have VLX we need to use a
// 512-bit move.
Opc = X86::VMOVAPSZrr;
const TargetRegisterInfo *TRI = &getRegisterInfo();
DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
&X86::VR512RegClass);
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
&X86::VR512RegClass);
}
} else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
if (HasVLX)
Opc = X86::VMOVAPSZ256rr;
else if (X86::VR256RegClass.contains(DestReg, SrcReg))
Opc = X86::VMOVAPSYrr;
else {
// If this an extended register and we don't have VLX we need to use a
// 512-bit move.
Opc = X86::VMOVAPSZrr;
const TargetRegisterInfo *TRI = &getRegisterInfo();
DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
&X86::VR512RegClass);
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
&X86::VR512RegClass);
}
} else if (X86::VR512RegClass.contains(DestReg, SrcReg))
Opc = X86::VMOVAPSZrr;
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
else if (X86::VK16RegClass.contains(DestReg, SrcReg))
Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
if (!Opc)
Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
if (Opc) {
BuildMI(MBB, MI, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
// FIXME: We use a fatal error here because historically LLVM has tried
// lower some of these physreg copies and we want to ensure we get
// reasonable bug reports if someone encounters a case no other testing
// found. This path should be removed after the LLVM 7 release.
report_fatal_error("Unable to copy EFLAGS physical register!");
}
LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
<< RI.getName(DestReg) << '\n');
report_fatal_error("Cannot emit physreg copy instruction");
}
Optional<DestSourcePair>
X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
if (MI.isMoveReg())
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
return None;
}
static unsigned getLoadStoreRegOpcode(Register Reg,
const TargetRegisterClass *RC,
bool IsStackAligned,
const X86Subtarget &STI, bool load) {
bool HasAVX = STI.hasAVX();
bool HasAVX512 = STI.hasAVX512();
bool HasVLX = STI.hasVLX();
switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
default:
llvm_unreachable("Unknown spill size");
case 1:
assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
if (STI.is64Bit())
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
return load ? X86::MOV8rm : X86::MOV8mr;
case 2:
if (X86::VK16RegClass.hasSubClassEq(RC))
return load ? X86::KMOVWkm : X86::KMOVWmk;
if (X86::FR16XRegClass.hasSubClassEq(RC)) {
assert(STI.hasFP16());
return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
}
assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
return load ? X86::MOV16rm : X86::MOV16mr;
case 4:
if (X86::GR32RegClass.hasSubClassEq(RC))
return load ? X86::MOV32rm : X86::MOV32mr;
if (X86::FR32XRegClass.hasSubClassEq(RC))
return load ?
(HasAVX512 ? X86::VMOVSSZrm_alt :
HasAVX ? X86::VMOVSSrm_alt :
X86::MOVSSrm_alt) :
(HasAVX512 ? X86::VMOVSSZmr :
HasAVX ? X86::VMOVSSmr :
X86::MOVSSmr);
if (X86::RFP32RegClass.hasSubClassEq(RC))
return load ? X86::LD_Fp32m : X86::ST_Fp32m;
if (X86::VK32RegClass.hasSubClassEq(RC)) {
assert(STI.hasBWI() && "KMOVD requires BWI");
return load ? X86::KMOVDkm : X86::KMOVDmk;
}
// All of these mask pair classes have the same spill size, the same kind
// of kmov instructions can be used with all of them.
if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
X86::VK16PAIRRegClass.hasSubClassEq(RC))
return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
llvm_unreachable("Unknown 4-byte regclass");
case 8:
if (X86::GR64RegClass.hasSubClassEq(RC))
return load ? X86::MOV64rm : X86::MOV64mr;
if (X86::FR64XRegClass.hasSubClassEq(RC))
return load ?
(HasAVX512 ? X86::VMOVSDZrm_alt :
HasAVX ? X86::VMOVSDrm_alt :
X86::MOVSDrm_alt) :
(HasAVX512 ? X86::VMOVSDZmr :
HasAVX ? X86::VMOVSDmr :
X86::MOVSDmr);
if (X86::VR64RegClass.hasSubClassEq(RC))
return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
if (X86::RFP64RegClass.hasSubClassEq(RC))
return load ? X86::LD_Fp64m : X86::ST_Fp64m;
if (X86::VK64RegClass.hasSubClassEq(RC)) {
assert(STI.hasBWI() && "KMOVQ requires BWI");
return load ? X86::KMOVQkm : X86::KMOVQmk;
}
llvm_unreachable("Unknown 8-byte regclass");
case 10:
assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
return load ? X86::LD_Fp80m : X86::ST_FpP80m;
case 16: {
if (X86::VR128XRegClass.hasSubClassEq(RC)) {
// If stack is realigned we can use aligned stores.
if (IsStackAligned)
return load ?
(HasVLX ? X86::VMOVAPSZ128rm :
HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
HasAVX ? X86::VMOVAPSrm :
X86::MOVAPSrm):
(HasVLX ? X86::VMOVAPSZ128mr :
HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
HasAVX ? X86::VMOVAPSmr :
X86::MOVAPSmr);
else
return load ?
(HasVLX ? X86::VMOVUPSZ128rm :
HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
HasAVX ? X86::VMOVUPSrm :
X86::MOVUPSrm):
(HasVLX ? X86::VMOVUPSZ128mr :
HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
HasAVX ? X86::VMOVUPSmr :
X86::MOVUPSmr);
}
llvm_unreachable("Unknown 16-byte regclass");
}
case 32:
assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
// If stack is realigned we can use aligned stores.
if (IsStackAligned)
return load ?
(HasVLX ? X86::VMOVAPSZ256rm :
HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
X86::VMOVAPSYrm) :
(HasVLX ? X86::VMOVAPSZ256mr :
HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
X86::VMOVAPSYmr);
else
return load ?
(HasVLX ? X86::VMOVUPSZ256rm :
HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
X86::VMOVUPSYrm) :
(HasVLX ? X86::VMOVUPSZ256mr :
HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
X86::VMOVUPSYmr);
case 64:
assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
if (IsStackAligned)
return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
else
return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
}
}
Optional<ExtAddrMode>
X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
const TargetRegisterInfo *TRI) const {
const MCInstrDesc &Desc = MemI.getDesc();
int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
if (MemRefBegin < 0)
return None;
MemRefBegin += X86II::getOperandBias(Desc);
auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
if (!BaseOp.isReg()) // Can be an MO_FrameIndex
return None;
const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
// Displacement can be symbolic
if (!DispMO.isImm())
return None;
ExtAddrMode AM;
AM.BaseReg = BaseOp.getReg();
AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
AM.Displacement = DispMO.getImm();
return AM;
}
bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
const Register Reg,
int64_t &ImmVal) const {
if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
return false;
// Mov Src can be a global address.
if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
return false;
ImmVal = MI.getOperand(1).getImm();
return true;
}
bool X86InstrInfo::preservesZeroValueInReg(
const MachineInstr *MI, const Register NullValueReg,
const TargetRegisterInfo *TRI) const {
if (!MI->modifiesRegister(NullValueReg, TRI))
return true;
switch (MI->getOpcode()) {
// Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
// X.
case X86::SHR64ri:
case X86::SHR32ri:
case X86::SHL64ri:
case X86::SHL32ri:
assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
"expected for shift opcode!");
return MI->getOperand(0).getReg() == NullValueReg &&
MI->getOperand(1).getReg() == NullValueReg;
// Zero extend of a sub-reg of NullValueReg into itself does not change the
// null value.
case X86::MOV32rr:
return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
});
default:
return false;
}
llvm_unreachable("Should be handled above!");
}
bool X86InstrInfo::getMemOperandsWithOffsetWidth(
const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
const TargetRegisterInfo *TRI) const {
const MCInstrDesc &Desc = MemOp.getDesc();
int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
if (MemRefBegin < 0)
return false;
MemRefBegin += X86II::getOperandBias(Desc);
const MachineOperand *BaseOp =
&MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
if (!BaseOp->isReg()) // Can be an MO_FrameIndex
return false;
if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
return false;
if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
X86::NoRegister)
return false;
const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
// Displacement can be symbolic
if (!DispMO.isImm())
return false;
Offset = DispMO.getImm();
if (!BaseOp->isReg())
return false;
OffsetIsScalable = false;
// FIXME: Relying on memoperands() may not be right thing to do here. Check
// with X86 maintainers, and fix it accordingly. For now, it is ok, since
// there is no use of `Width` for X86 back-end at the moment.
Width =
!MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
BaseOps.push_back(BaseOp);
return true;
}
static unsigned getStoreRegOpcode(Register SrcReg,
const TargetRegisterClass *RC,
bool IsStackAligned,
const X86Subtarget &STI) {
return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
}
static unsigned getLoadRegOpcode(Register DestReg,
const TargetRegisterClass *RC,
bool IsStackAligned, const X86Subtarget &STI) {
return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
}
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
const MachineFrameInfo &MFI = MF.getFrameInfo();
assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
"Stack slot too small for store");
if (RC->getID() == X86::TILERegClassID) {
unsigned Opc = X86::TILESTORED;
// tilestored %tmm, (%sp, %idx)
MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
MachineInstr *NewMI =
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
.addReg(SrcReg, getKillRegState(isKill));
MachineOperand &MO = NewMI->getOperand(2);
MO.setReg(VirtReg);
MO.setIsKill(true);
} else {
unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
bool isAligned =
(Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
(RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
.addReg(SrcReg, getKillRegState(isKill));
}
}
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
if (RC->getID() == X86::TILERegClassID) {
unsigned Opc = X86::TILELOADD;
// tileloadd (%sp, %idx), %tmm
MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
MachineInstr *NewMI =
BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
FrameIdx);
MachineOperand &MO = NewMI->getOperand(3);
MO.setReg(VirtReg);
MO.setIsKill(true);
} else {
const MachineFunction &MF = *MBB.getParent();
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
bool isAligned =
(Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
(RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
FrameIdx);
}
}
bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
Register &SrcReg2, int64_t &CmpMask,
int64_t &CmpValue) const {
switch (MI.getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri:
SrcReg = MI.getOperand(0).getReg();
SrcReg2 = 0;
if (MI.getOperand(1).isImm()) {
CmpMask = ~0;
CmpValue = MI.getOperand(1).getImm();
} else {
CmpMask = CmpValue = 0;
}
return true;
// A SUB can be used to perform comparison.
case X86::SUB64rm:
case X86::SUB32rm:
case X86::SUB16rm:
case X86::SUB8rm:
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = 0;
CmpValue = 0;
return true;
case X86::SUB64rr:
case X86::SUB32rr:
case X86::SUB16rr:
case X86::SUB8rr:
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = MI.getOperand(2).getReg();
CmpMask = 0;
CmpValue = 0;
return true;
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB8ri:
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = 0;
if (MI.getOperand(2).isImm()) {
CmpMask = ~0;
CmpValue = MI.getOperand(2).getImm();
} else {
CmpMask = CmpValue = 0;
}
return true;
case X86::CMP64rr:
case X86::CMP32rr:
case X86::CMP16rr:
case X86::CMP8rr:
SrcReg = MI.getOperand(0).getReg();
SrcReg2 = MI.getOperand(1).getReg();
CmpMask = 0;
CmpValue = 0;
return true;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
SrcReg = MI.getOperand(0).getReg();
if (MI.getOperand(1).getReg() != SrcReg)
return false;
// Compare against zero.
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = 0;
return true;
}
return false;
}
bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
Register SrcReg, Register SrcReg2,
int64_t ImmMask, int64_t ImmValue,
const MachineInstr &OI, bool *IsSwapped,
int64_t *ImmDelta) const {
switch (OI.getOpcode()) {
case X86::CMP64rr:
case X86::CMP32rr:
case X86::CMP16rr:
case X86::CMP8rr:
case X86::SUB64rr:
case X86::SUB32rr:
case X86::SUB16rr:
case X86::SUB8rr: {
Register OISrcReg;
Register OISrcReg2;
int64_t OIMask;
int64_t OIValue;
if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
OIMask != ImmMask || OIValue != ImmValue)
return false;
if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
*IsSwapped = false;
return true;
}
if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
*IsSwapped = true;
return true;
}
return false;
}
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri:
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB8ri:
case X86::TEST64rr:
case X86::TEST32rr:
case X86::TEST16rr:
case X86::TEST8rr: {
if (ImmMask != 0) {
Register OISrcReg;
Register OISrcReg2;
int64_t OIMask;
int64_t OIValue;
if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
SrcReg == OISrcReg && ImmMask == OIMask) {
if (OIValue == ImmValue) {
*ImmDelta = 0;
return true;
} else if (static_cast<uint64_t>(ImmValue) ==
static_cast<uint64_t>(OIValue) - 1) {
*ImmDelta = -1;
return true;
} else if (static_cast<uint64_t>(ImmValue) ==
static_cast<uint64_t>(OIValue) + 1) {
*ImmDelta = 1;
return true;
} else {
return false;
}
}
}
return FlagI.isIdenticalTo(OI);
}
default:
return false;
}
}
/// Check whether the definition can be converted
/// to remove a comparison against zero.
inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
bool &ClearsOverflowFlag) {
NoSignFlag = false;
ClearsOverflowFlag = false;
switch (MI.getOpcode()) {
default: return false;
// The shift instructions only modify ZF if their shift count is non-zero.
// N.B.: The processor truncates the shift count depending on the encoding.
case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
return getTruncatedShiftCount(MI, 2) != 0;
// Some left shift instructions can be turned into LEA instructions but only
// if their flags aren't used. Avoid transforming such instructions.
case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (isTruncatedShiftCountForLEA(ShAmt)) return false;
return ShAmt != 0;
}
case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
return getTruncatedShiftCount(MI, 3) != 0;
case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
case X86::LZCNT16rr: case X86::LZCNT16rm:
case X86::LZCNT32rr: case X86::LZCNT32rm:
case X86::LZCNT64rr: case X86::LZCNT64rm:
case X86::POPCNT16rr:case X86::POPCNT16rm:
case X86::POPCNT32rr:case X86::POPCNT32rm:
case X86::POPCNT64rr:case X86::POPCNT64rm:
case X86::TZCNT16rr: case X86::TZCNT16rm:
case X86::TZCNT32rr: case X86::TZCNT32rm:
case X86::TZCNT64rr: case X86::TZCNT64rm:
return true;
case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
case X86::ANDN32rr: case X86::ANDN32rm:
case X86::ANDN64rr: case X86::ANDN64rm:
case X86::BLSI32rr: case X86::BLSI32rm:
case X86::BLSI64rr: case X86::BLSI64rm:
case X86::BLSMSK32rr: case X86::BLSMSK32rm:
case X86::BLSMSK64rr: case X86::BLSMSK64rm:
case X86::BLSR32rr: case X86::BLSR32rm:
case X86::BLSR64rr: case X86::BLSR64rm:
case X86::BLCFILL32rr: case X86::BLCFILL32rm:
case X86::BLCFILL64rr: case X86::BLCFILL64rm:
case X86::BLCI32rr: case X86::BLCI32rm:
case X86::BLCI64rr: case X86::BLCI64rm:
case X86::BLCIC32rr: case X86::BLCIC32rm:
case X86::BLCIC64rr: case X86::BLCIC64rm:
case X86::BLCMSK32rr: case X86::BLCMSK32rm:
case X86::BLCMSK64rr: case X86::BLCMSK64rm:
case X86::BLCS32rr: case X86::BLCS32rm:
case X86::BLCS64rr: case X86::BLCS64rm:
case X86::BLSFILL32rr: case X86::BLSFILL32rm:
case X86::BLSFILL64rr: case X86::BLSFILL64rm:
case X86::BLSIC32rr: case X86::BLSIC32rm:
case X86::BLSIC64rr: case X86::BLSIC64rm:
case X86::BZHI32rr: case X86::BZHI32rm:
case X86::BZHI64rr: case X86::BZHI64rm:
case X86::T1MSKC32rr: case X86::T1MSKC32rm:
case X86::T1MSKC64rr: case X86::T1MSKC64rm:
case X86::TZMSK32rr: case X86::TZMSK32rm:
case X86::TZMSK64rr: case X86::TZMSK64rm:
// These instructions clear the overflow flag just like TEST.
// FIXME: These are not the only instructions in this switch that clear the
// overflow flag.
ClearsOverflowFlag = true;
return true;
case X86::BEXTR32rr: case X86::BEXTR64rr:
case X86::BEXTR32rm: case X86::BEXTR64rm:
case X86::BEXTRI32ri: case X86::BEXTRI32mi:
case X86::BEXTRI64ri: case X86::BEXTRI64mi:
// BEXTR doesn't update the sign flag so we can't use it. It does clear
// the overflow flag, but that's not useful without the sign flag.
NoSignFlag = true;
return true;
}
}
/// Check whether the use can be converted to remove a comparison against zero.
static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return X86::COND_INVALID;
case X86::NEG8r:
case X86::NEG16r:
case X86::NEG32r:
case X86::NEG64r:
return X86::COND_AE;
case X86::LZCNT16rr:
case X86::LZCNT32rr:
case X86::LZCNT64rr:
return X86::COND_B;
case X86::POPCNT16rr:
case X86::POPCNT32rr:
case X86::POPCNT64rr:
return X86::COND_E;
case X86::TZCNT16rr:
case X86::TZCNT32rr:
case X86::TZCNT64rr:
return X86::COND_B;
case X86::BSF16rr:
case X86::BSF32rr:
case X86::BSF64rr:
case X86::BSR16rr:
case X86::BSR32rr:
case X86::BSR64rr:
return X86::COND_E;
case X86::BLSI32rr:
case X86::BLSI64rr:
return X86::COND_AE;
case X86::BLSR32rr:
case X86::BLSR64rr:
case X86::BLSMSK32rr:
case X86::BLSMSK64rr:
return X86::COND_B;
// TODO: TBM instructions.
}
}
/// Check if there exists an earlier instruction that
/// operates on the same source operands and sets flags in the same way as
/// Compare; remove Compare if possible.
bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
Register SrcReg2, int64_t CmpMask,
int64_t CmpValue,
const MachineRegisterInfo *MRI) const {
// Check whether we can replace SUB with CMP.
switch (CmpInstr.getOpcode()) {
default: break;
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB8ri:
case X86::SUB64rm:
case X86::SUB32rm:
case X86::SUB16rm:
case X86::SUB8rm:
case X86::SUB64rr:
case X86::SUB32rr:
case X86::SUB16rr:
case X86::SUB8rr: {
if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
return false;
// There is no use of the destination register, we can replace SUB with CMP.
unsigned NewOpcode = 0;
switch (CmpInstr.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
}
CmpInstr.setDesc(get(NewOpcode));
CmpInstr.RemoveOperand(0);
// Mutating this instruction invalidates any debug data associated with it.
CmpInstr.dropDebugNumber();
// Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
return false;
}
}
// The following code tries to remove the comparison by re-using EFLAGS
// from earlier instructions.
bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
// Transformation currently requires SSA values.
if (SrcReg2.isPhysical())
return false;
MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
assert(SrcRegDef && "Must have a definition (SSA)");
MachineInstr *MI = nullptr;
MachineInstr *Sub = nullptr;
MachineInstr *Movr0Inst = nullptr;
bool NoSignFlag = false;
bool ClearsOverflowFlag = false;
bool ShouldUpdateCC = false;
bool IsSwapped = false;
X86::CondCode NewCC = X86::COND_INVALID;
int64_t ImmDelta = 0;
// Search backward from CmpInstr for the next instruction defining EFLAGS.
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
MachineBasicBlock::reverse_iterator From =
std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
for (MachineBasicBlock *MBB = &CmpMBB;;) {
for (MachineInstr &Inst : make_range(From, MBB->rend())) {
// Try to use EFLAGS from the instruction defining %SrcReg. Example:
// %eax = addl ...
// ... // EFLAGS not changed
// testl %eax, %eax // <-- can be removed
if (&Inst == SrcRegDef) {
if (IsCmpZero &&
isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
MI = &Inst;
break;
}
// Cannot find other candidates before definition of SrcReg.
return false;
}
if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
// Try to use EFLAGS produced by an instruction reading %SrcReg.
// Example:
// %eax = ...
// ...
// popcntl %eax
// ... // EFLAGS not changed
// testl %eax, %eax // <-- can be removed
if (IsCmpZero) {
NewCC = isUseDefConvertible(Inst);
if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
Inst.getOperand(1).getReg() == SrcReg) {
ShouldUpdateCC = true;
MI = &Inst;
break;
}
}
// Try to use EFLAGS from an instruction with similar flag results.
// Example:
// sub x, y or cmp x, y
// ... // EFLAGS not changed
// cmp x, y // <-- can be removed
if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
Inst, &IsSwapped, &ImmDelta)) {
Sub = &Inst;
break;
}
// MOV32r0 is implemented with xor which clobbers condition code. It is
// safe to move up, if the definition to EFLAGS is dead and earlier
// instructions do not read or write EFLAGS.
if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
Movr0Inst = &Inst;
continue;
}
// Cannot do anything for any other EFLAG changes.
return false;
}
}
if (MI || Sub)
break;
// Reached begin of basic block. Continue in predecessor if there is
// exactly one.
if (MBB->pred_size() != 1)
return false;
MBB = *MBB->pred_begin();
From = MBB->rbegin();
}
// Scan forward from the instruction after CmpInstr for uses of EFLAGS.
// It is safe to remove CmpInstr if EFLAGS is redefined or killed.
// If we are done with the basic block, we need to check whether EFLAGS is
// live-out.
bool FlagsMayLiveOut = true;
SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
MachineBasicBlock::iterator AfterCmpInstr =
std::next(MachineBasicBlock::iterator(CmpInstr));
for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
// We should check the usage if this instruction uses and updates EFLAGS.
if (!UseEFLAGS && ModifyEFLAGS) {
// It is safe to remove CmpInstr if EFLAGS is updated again.
FlagsMayLiveOut = false;
break;
}
if (!UseEFLAGS && !ModifyEFLAGS)
continue;
// EFLAGS is used by this instruction.
X86::CondCode OldCC = X86::COND_INVALID;
if (MI || IsSwapped || ImmDelta != 0) {
// We decode the condition code from opcode.
if (Instr.isBranch())
OldCC = X86::getCondFromBranch(Instr);
else {
OldCC = X86::getCondFromSETCC(Instr);
if (OldCC == X86::COND_INVALID)
OldCC = X86::getCondFromCMov(Instr);
}
if (OldCC == X86::COND_INVALID) return false;
}
X86::CondCode ReplacementCC = X86::COND_INVALID;
if (MI) {
switch (OldCC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
// CF is used, we can't perform this optimization.
return false;
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
case X86::COND_O: case X86::COND_NO:
// If OF is used, the instruction needs to clear it like CmpZero does.
if (!ClearsOverflowFlag)
return false;
break;
case X86::COND_S: case X86::COND_NS:
// If SF is used, but the instruction doesn't update the SF, then we
// can't do the optimization.
if (NoSignFlag)
return false;
break;
}
// If we're updating the condition code check if we have to reverse the
// condition.
if (ShouldUpdateCC)
switch (OldCC) {
default:
return false;
case X86::COND_E:
ReplacementCC = NewCC;
break;
case X86::COND_NE:
ReplacementCC = GetOppositeBranchCondition(NewCC);
break;
}
} else if (IsSwapped) {
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
// to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
// We swap the condition code and synthesize the new opcode.
ReplacementCC = getSwappedCondition(OldCC);
if (ReplacementCC == X86::COND_INVALID) return false;
ShouldUpdateCC = true;
} else if (ImmDelta != 0) {
unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
// Shift amount for min/max constants to adjust for 8/16/32 instruction
// sizes.
switch (OldCC) {
case X86::COND_L: // x <s (C + 1) --> x <=s C
if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
return false;
ReplacementCC = X86::COND_LE;
break;
case X86::COND_B: // x <u (C + 1) --> x <=u C
if (ImmDelta != 1 || CmpValue == 0)
return false;
ReplacementCC = X86::COND_BE;
break;
case X86::COND_GE: // x >=s (C + 1) --> x >s C
if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
return false;
ReplacementCC = X86::COND_G;
break;
case X86::COND_AE: // x >=u (C + 1) --> x >u C
if (ImmDelta != 1 || CmpValue == 0)
return false;
ReplacementCC = X86::COND_A;
break;
case X86::COND_G: // x >s (C - 1) --> x >=s C
if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
return false;
ReplacementCC = X86::COND_GE;
break;
case X86::COND_A: // x >u (C - 1) --> x >=u C
if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
return false;
ReplacementCC = X86::COND_AE;
break;
case X86::COND_LE: // x <=s (C - 1) --> x <s C
if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
return false;
ReplacementCC = X86::COND_L;
break;
case X86::COND_BE: // x <=u (C - 1) --> x <u C
if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
return false;
ReplacementCC = X86::COND_B;
break;
default:
return false;
}
ShouldUpdateCC = true;
}
if (ShouldUpdateCC && ReplacementCC != OldCC) {
// Push the MachineInstr to OpsToUpdate.
// If it is safe to remove CmpInstr, the condition code of these
// instructions will be modified.
OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
}
if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
// It is safe to remove CmpInstr if EFLAGS is updated again or killed.
FlagsMayLiveOut = false;
break;
}
}
// If we have to update users but EFLAGS is live-out abort, since we cannot
// easily find all of the users.
if (ShouldUpdateCC && FlagsMayLiveOut) {
for (MachineBasicBlock *Successor : CmpMBB.successors())
if (Successor->isLiveIn(X86::EFLAGS))
return false;
}
// The instruction to be updated is either Sub or MI.
assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
Sub = MI != nullptr ? MI : Sub;
MachineBasicBlock *SubBB = Sub->getParent();
// Move Movr0Inst to the appropriate place before Sub.
if (Movr0Inst) {
// Only move within the same block so we don't accidentally move to a
// block with higher execution frequency.
if (&CmpMBB != SubBB)
return false;
// Look backwards until we find a def that doesn't use the current EFLAGS.
MachineBasicBlock::reverse_iterator InsertI = Sub,
InsertE = Sub->getParent()->rend();
for (; InsertI != InsertE; ++InsertI) {
MachineInstr *Instr = &*InsertI;
if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
Instr->modifiesRegister(X86::EFLAGS, TRI)) {
Movr0Inst->getParent()->remove(Movr0Inst);
Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
Movr0Inst);
break;
}
}
if (InsertI == InsertE)
return false;
}
// Make sure Sub instruction defines EFLAGS and mark the def live.
MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
assert(FlagDef && "Unable to locate a def EFLAGS operand");
FlagDef->setIsDead(false);
CmpInstr.eraseFromParent();
// Modify the condition code of instructions in OpsToUpdate.
for (auto &Op : OpsToUpdate) {
Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
.setImm(Op.second);
}
// Add EFLAGS to block live-ins between CmpBB and block of flags producer.
for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
MBB = *MBB->pred_begin()) {
assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
if (!MBB->isLiveIn(X86::EFLAGS))
MBB->addLiveIn(X86::EFLAGS);
}
return true;
}
/// Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if load defines a virtual
/// register, the virtual register is used once in the same BB, and the
/// instructions in-between do not load or store, and have no side effects.
MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
const MachineRegisterInfo *MRI,
Register &FoldAsLoadDefReg,
MachineInstr *&DefMI) const {
// Check whether we can move DefMI here.
DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
assert(DefMI);
bool SawStore = false;
if (!DefMI->isSafeToMove(nullptr, SawStore))
return nullptr;
// Collect information about virtual register operands of MI.
SmallVector<unsigned, 1> SrcOperandIds;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg != FoldAsLoadDefReg)
continue;
// Do not fold if we have a subreg use or a def.
if (MO.getSubReg() || MO.isDef())
return nullptr;
SrcOperandIds.push_back(i);
}
if (SrcOperandIds.empty())
return nullptr;
// Check whether we can fold the def into SrcOperandId.
if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
FoldAsLoadDefReg = 0;
return FoldMI;
}
return nullptr;
}
/// Expand a single-def pseudo instruction to a two-addr
/// instruction with two undef reads of the register being defined.
/// This is used for mapping:
/// %xmm4 = V_SET0
/// to:
/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
///
static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
const MCInstrDesc &Desc) {
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
Register Reg = MIB.getReg(0);
MIB->setDesc(Desc);
// MachineInstr::addOperand() will insert explicit operands before any
// implicit operands.
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
// But we don't trust that.
assert(MIB.getReg(1) == Reg &&
MIB.getReg(2) == Reg && "Misplaced operand");
return true;
}
/// Expand a single-def pseudo instruction to a two-addr
/// instruction with two %k0 reads.
/// This is used for mapping:
/// %k4 = K_SET1
/// to:
/// %k4 = KXNORrr %k0, %k0
static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
Register Reg) {
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
MIB->setDesc(Desc);
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
return true;
}
static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
bool MinusOne) {
MachineBasicBlock &MBB = *MIB->getParent();
const DebugLoc &DL = MIB->getDebugLoc();
Register Reg = MIB.getReg(0);
// Insert the XOR.
BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
// Turn the pseudo into an INC or DEC.
MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
MIB.addReg(Reg);
return true;
}
static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
const TargetInstrInfo &TII,
const X86Subtarget &Subtarget) {
MachineBasicBlock &MBB = *MIB->getParent();
const DebugLoc &DL = MIB->getDebugLoc();
int64_t Imm = MIB->getOperand(1).getImm();
assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
MachineBasicBlock::iterator I = MIB.getInstr();
int StackAdjustment;
if (Subtarget.is64Bit()) {
assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
MIB->getOpcode() == X86::MOV32ImmSExti8);
// Can't use push/pop lowering if the function might write to the red zone.
X86MachineFunctionInfo *X86FI =
MBB.getParent()->getInfo<X86MachineFunctionInfo>();
if (X86FI->getUsesRedZone()) {
MIB->setDesc(TII.get(MIB->getOpcode() ==
X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
return true;
}
// 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
// widen the register if necessary.
StackAdjustment = 8;
BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
MIB->setDesc(TII.get(X86::POP64r));
MIB->getOperand(0)
.setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
} else {
assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
StackAdjustment = 4;
BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
MIB->setDesc(TII.get(X86::POP32r));
}
MIB->RemoveOperand(1);
MIB->addImplicitDefUseOperands(*MBB.getParent());
// Build CFI if necessary.
MachineFunction &MF = *MBB.getParent();
const X86FrameLowering *TFL = Subtarget.getFrameLowering();
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
if (EmitCFI) {
TFL->BuildCFI(MBB, I, DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
TFL->BuildCFI(MBB, std::next(I), DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
}
return true;
}
// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
// code sequence is needed for other targets.
static void expandLoadStackGuard(MachineInstrBuilder &MIB,
const TargetInstrInfo &TII) {
MachineBasicBlock &MBB = *MIB->getParent();
const DebugLoc &DL = MIB->getDebugLoc();
Register Reg = MIB.getReg(0);
const GlobalValue *GV =
cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
auto Flags = MachineMemOperand::MOLoad |
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant;
MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
MachineBasicBlock::iterator I = MIB.getInstr();
BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
.addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
.addMemOperand(MMO);
MIB->setDebugLoc(DL);
MIB->setDesc(TII.get(X86::MOV64rm));
MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
}
static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
MachineBasicBlock &MBB = *MIB->getParent();
MachineFunction &MF = *MBB.getParent();
const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
unsigned XorOp =
MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
MIB->setDesc(TII.get(XorOp));
MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
return true;
}
// This is used to handle spills for 128/256-bit registers when we have AVX512,
// but not VLX. If it uses an extended register we need to use an instruction
// that loads the lower 128/256-bit, but is available with only AVX512F.
static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
const TargetRegisterInfo *TRI,
const MCInstrDesc &LoadDesc,
const MCInstrDesc &BroadcastDesc,
unsigned SubIdx) {
Register DestReg = MIB.getReg(0);
// Check if DestReg is XMM16-31 or YMM16-31.
if (TRI->getEncodingValue(DestReg) < 16) {
// We can use a normal VEX encoded load.
MIB->setDesc(LoadDesc);
} else {
// Use a 128/256-bit VBROADCAST instruction.
MIB->setDesc(BroadcastDesc);
// Change the destination to a 512-bit register.
DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
MIB->getOperand(0).setReg(DestReg);
}
return true;
}
// This is used to handle spills for 128/256-bit registers when we have AVX512,
// but not VLX. If it uses an extended register we need to use an instruction
// that stores the lower 128/256-bit, but is available with only AVX512F.
static bool expandNOVLXStore(MachineInstrBuilder &MIB,
const TargetRegisterInfo *TRI,
const MCInstrDesc &StoreDesc,
const MCInstrDesc &ExtractDesc,
unsigned SubIdx) {
Register SrcReg = MIB.getReg(X86::AddrNumOperands);
// Check if DestReg is XMM16-31 or YMM16-31.
if (TRI->getEncodingValue(SrcReg) < 16) {
// We can use a normal VEX encoded store.
MIB->setDesc(StoreDesc);
} else {
// Use a VEXTRACTF instruction.
MIB->setDesc(ExtractDesc);
// Change the destination to a 512-bit register.
SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
MIB.addImm(0x0); // Append immediate to extract from the lower bits.
}
return true;
}
static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
MIB->setDesc(Desc);
int64_t ShiftAmt = MIB->getOperand(2).getImm();
// Temporarily remove the immediate so we can add another source register.
MIB->RemoveOperand(2);
// Add the register. Don't copy the kill flag if there is one.
MIB.addReg(MIB.getReg(1),
getUndefRegState(MIB->getOperand(1).isUndef()));
// Add back the immediate.
MIB.addImm(ShiftAmt);
return true;
}
bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
bool HasAVX = Subtarget.hasAVX();
MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
switch (MI.getOpcode()) {
case X86::MOV32r0:
return Expand2AddrUndef(MIB, get(X86::XOR32rr));
case X86::MOV32r1:
return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
case X86::MOV32r_1:
return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
case X86::MOV32ImmSExti8:
case X86::MOV64ImmSExti8:
return ExpandMOVImmSExti8(MIB, *this, Subtarget);
case X86::SETB_C32r:
return Expand2AddrUndef(MIB, get(X86::SBB32rr));
case X86::SETB_C64r:
return Expand2AddrUndef(MIB, get(X86::SBB64rr));
case X86::MMX_SET0:
return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
case X86::V_SET0:
case X86::FsFLD0SS:
case X86::FsFLD0SD:
case X86::FsFLD0F128:
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
case X86::AVX_SET0: {
assert(HasAVX && "AVX not supported");
const TargetRegisterInfo *TRI = &getRegisterInfo();
Register SrcReg = MIB.getReg(0);
Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
MIB->getOperand(0).setReg(XReg);
Expand2AddrUndef(MIB, get(X86::VXORPSrr));
MIB.addReg(SrcReg, RegState::ImplicitDefine);
return true;
}
case X86::AVX512_128_SET0:
case X86::AVX512_FsFLD0SH:
case X86::AVX512_FsFLD0SS:
case X86::AVX512_FsFLD0SD:
case X86::AVX512_FsFLD0F128: {
bool HasVLX = Subtarget.hasVLX();
Register SrcReg = MIB.getReg(0);
const TargetRegisterInfo *TRI = &getRegisterInfo();
if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
return Expand2AddrUndef(MIB,
get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
// Extended register without VLX. Use a larger XOR.
SrcReg =
TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
MIB->getOperand(0).setReg(SrcReg);
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
}
case X86::AVX512_256_SET0:
case X86::AVX512_512_SET0: {
bool HasVLX = Subtarget.hasVLX();
Register SrcReg = MIB.getReg(0);
const TargetRegisterInfo *TRI = &getRegisterInfo();
if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
MIB->getOperand(0).setReg(XReg);
Expand2AddrUndef(MIB,
get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
MIB.addReg(SrcReg, RegState::ImplicitDefine);
return true;
}
if (MI.getOpcode() == X86::AVX512_256_SET0) {
// No VLX so we must reference a zmm.
unsigned ZReg =
TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
MIB->getOperand(0).setReg(ZReg);
}
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
}
case X86::V_SETALLONES:
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
case X86::AVX2_SETALLONES:
return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
case X86::AVX1_SETALLONES: {
Register Reg = MIB.getReg(0);
// VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
MIB->setDesc(get(X86::VCMPPSYrri));
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
return true;
}
case X86::AVX512_512_SETALLONES: {
Register Reg = MIB.getReg(0);
MIB->setDesc(get(X86::VPTERNLOGDZrri));
// VPTERNLOGD needs 3 register inputs and an immediate.
// 0xff will return 1s for any input.
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef).addImm(0xff);
return true;
}
case X86::AVX512_512_SEXT_MASK_32:
case X86::AVX512_512_SEXT_MASK_64: {
Register Reg = MIB.getReg(0);
Register MaskReg = MIB.getReg(1);
unsigned MaskState = getRegState(MIB->getOperand(1));
unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
MI.RemoveOperand(1);
MIB->setDesc(get(Opc));
// VPTERNLOG needs 3 register inputs and an immediate.
// 0xff will return 1s for any input.
MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
return true;
}
case X86::VMOVAPSZ128rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
case X86::VMOVUPSZ128rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
case X86::VMOVAPSZ256rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
case X86::VMOVUPSZ256rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
case X86::VMOVAPSZ128mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
case X86::VMOVUPSZ128mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
case X86::VMOVAPSZ256mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
case X86::VMOVUPSZ256mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
case X86::MOV32ri64: {
Register Reg = MIB.getReg(0);
Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
MI.setDesc(get(X86::MOV32ri));
MIB->getOperand(0).setReg(Reg32);
MIB.addReg(Reg, RegState::ImplicitDefine);
return true;
}
// KNL does not recognize dependency-breaking idioms for mask registers,
// so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
// Using %k0 as the undef input register is a performance heuristic based
// on the assumption that %k0 is used less frequently than the other mask
// registers, since it is not usable as a write mask.
// FIXME: A more advanced approach would be to choose the best input mask
// register based on context.
case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
case TargetOpcode::LOAD_STACK_GUARD:
expandLoadStackGuard(MIB, *this);
return true;
case X86::XOR64_FP:
case X86::XOR32_FP:
return expandXorFP(MIB, *this);
case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
}
return false;
}
/// Return true for all instructions that only update
/// the first 32 or 64-bits of the destination register and leave the rest
/// unmodified. This can be used to avoid folding loads if the instructions
/// only update part of the destination register, and the non-updated part is
/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
/// instructions breaks the partial register dependency and it can improve
/// performance. e.g.:
///
/// movss (%rdi), %xmm0
/// cvtss2sd %xmm0, %xmm0
///
/// Instead of
/// cvtss2sd (%rdi), %xmm0
///
/// FIXME: This should be turned into a TSFlags.
///
static bool hasPartialRegUpdate(unsigned Opcode,
const X86Subtarget &Subtarget,
bool ForLoadFold = false) {
switch (Opcode) {
case X86::CVTSI2SSrr:
case X86::CVTSI2SSrm:
case X86::CVTSI642SSrr:
case X86::CVTSI642SSrm:
case X86::CVTSI2SDrr:
case X86::CVTSI2SDrm:
case X86::CVTSI642SDrr:
case X86::CVTSI642SDrm:
// Load folding won't effect the undef register update since the input is
// a GPR.
return !ForLoadFold;
case X86::CVTSD2SSrr:
case X86::CVTSD2SSrm:
case X86::CVTSS2SDrr:
case X86::CVTSS2SDrm:
case X86::MOVHPDrm:
case X86::MOVHPSrm:
case X86::MOVLPDrm:
case X86::MOVLPSrm:
case X86::RCPSSr:
case X86::RCPSSm:
case X86::RCPSSr_Int:
case X86::RCPSSm_Int:
case X86::ROUNDSDr:
case X86::ROUNDSDm:
case X86::ROUNDSSr:
case X86::ROUNDSSm:
case X86::RSQRTSSr:
case X86::RSQRTSSm:
case X86::RSQRTSSr_Int:
case X86::RSQRTSSm_Int:
case X86::SQRTSSr:
case X86::SQRTSSm:
case X86::SQRTSSr_Int:
case X86::SQRTSSm_Int:
case X86::SQRTSDr:
case X86::SQRTSDm:
case X86::SQRTSDr_Int:
case X86::SQRTSDm_Int:
return true;
// GPR
case X86::POPCNT32rm:
case X86::POPCNT32rr:
case X86::POPCNT64rm:
case X86::POPCNT64rr:
return Subtarget.hasPOPCNTFalseDeps();
case X86::LZCNT32rm:
case X86::LZCNT32rr:
case X86::LZCNT64rm:
case X86::LZCNT64rr:
case X86::TZCNT32rm:
case X86::TZCNT32rr:
case X86::TZCNT64rm:
case X86::TZCNT64rr:
return Subtarget.hasLZCNTFalseDeps();
}
return false;
}
/// Inform the BreakFalseDeps pass how many idle
/// instructions we would like before a partial register update.
unsigned X86InstrInfo::getPartialRegUpdateClearance(
const MachineInstr &MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
return 0;
// If MI is marked as reading Reg, the partial register update is wanted.
const MachineOperand &MO = MI.getOperand(0);
Register Reg = MO.getReg();
if (Reg.isVirtual()) {
if (MO.readsReg() || MI.readsVirtualRegister(Reg))
return 0;
} else {
if (MI.readsRegister(Reg, TRI))
return 0;
}
// If any instructions in the clearance range are reading Reg, insert a
// dependency breaking instruction, which is inexpensive and is likely to
// be hidden in other instruction's cycles.
return PartialRegUpdateClearance;
}
// Return true for any instruction the copies the high bits of the first source
// operand into the unused high bits of the destination operand.
// Also returns true for instructions that have two inputs where one may
// be undef and we want it to use the same register as the other input.
static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
bool ForLoadFold = false) {
// Set the OpNum parameter to the first source operand.
switch (Opcode) {
case X86::MMX_PUNPCKHBWirr:
case X86::MMX_PUNPCKHWDirr:
case X86::MMX_PUNPCKHDQirr:
case X86::MMX_PUNPCKLBWirr:
case X86::MMX_PUNPCKLWDirr:
case X86::MMX_PUNPCKLDQirr:
case X86::MOVHLPSrr:
case X86::PACKSSWBrr:
case X86::PACKUSWBrr:
case X86::PACKSSDWrr:
case X86::PACKUSDWrr:
case X86::PUNPCKHBWrr:
case X86::PUNPCKLBWrr:
case X86::PUNPCKHWDrr:
case X86::PUNPCKLWDrr:
case X86::PUNPCKHDQrr:
case X86::PUNPCKLDQrr:
case X86::PUNPCKHQDQrr:
case X86::PUNPCKLQDQrr:
case X86::SHUFPDrri:
case X86::SHUFPSrri:
// These instructions are sometimes used with an undef first or second
// source. Return true here so BreakFalseDeps will assign this source to the
// same register as the first source to avoid a false dependency.
// Operand 1 of these instructions is tied so they're separate from their
// VEX counterparts.
return OpNum == 2 && !ForLoadFold;
case X86::VMOVLHPSrr:
case X86::VMOVLHPSZrr:
case X86::VPACKSSWBrr:
case X86::VPACKUSWBrr:
case X86::VPACKSSDWrr:
case X86::VPACKUSDWrr:
case X86::VPACKSSWBZ128rr:
case X86::VPACKUSWBZ128rr:
case X86::VPACKSSDWZ128rr:
case X86::VPACKUSDWZ128rr:
case X86::VPERM2F128rr:
case X86::VPERM2I128rr:
case X86::VSHUFF32X4Z256rri:
case X86::VSHUFF32X4Zrri:
case X86::VSHUFF64X2Z256rri:
case X86::VSHUFF64X2Zrri:
case X86::VSHUFI32X4Z256rri:
case X86::VSHUFI32X4Zrri:
case X86::VSHUFI64X2Z256rri:
case X86::VSHUFI64X2Zrri:
case X86::VPUNPCKHBWrr:
case X86::VPUNPCKLBWrr:
case X86::VPUNPCKHBWYrr:
case X86::VPUNPCKLBWYrr:
case X86::VPUNPCKHBWZ128rr:
case X86::VPUNPCKLBWZ128rr:
case X86::VPUNPCKHBWZ256rr:
case X86::VPUNPCKLBWZ256rr:
case X86::VPUNPCKHBWZrr:
case X86::VPUNPCKLBWZrr:
case X86::VPUNPCKHWDrr:
case X86::VPUNPCKLWDrr:
case X86::VPUNPCKHWDYrr:
case X86::VPUNPCKLWDYrr:
case X86::VPUNPCKHWDZ128rr:
case X86::VPUNPCKLWDZ128rr:
case X86::VPUNPCKHWDZ256rr:
case X86::VPUNPCKLWDZ256rr:
case X86::VPUNPCKHWDZrr:
case X86::VPUNPCKLWDZrr:
case X86::VPUNPCKHDQrr:
case X86::VPUNPCKLDQrr:
case X86::VPUNPCKHDQYrr:
case X86::VPUNPCKLDQYrr:
case X86::VPUNPCKHDQZ128rr:
case X86::VPUNPCKLDQZ128rr:
case X86::VPUNPCKHDQZ256rr:
case X86::VPUNPCKLDQZ256rr:
case X86::VPUNPCKHDQZrr:
case X86::VPUNPCKLDQZrr:
case X86::VPUNPCKHQDQrr:
case X86::VPUNPCKLQDQrr:
case X86::VPUNPCKHQDQYrr:
case X86::VPUNPCKLQDQYrr:
case X86::VPUNPCKHQDQZ128rr:
case X86::VPUNPCKLQDQZ128rr:
case X86::VPUNPCKHQDQZ256rr:
case X86::VPUNPCKLQDQZ256rr:
case X86::VPUNPCKHQDQZrr:
case X86::VPUNPCKLQDQZrr:
// These instructions are sometimes used with an undef first or second
// source. Return true here so BreakFalseDeps will assign this source to the
// same register as the first source to avoid a false dependency.
return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
case X86::VCVTSI2SSrr:
case X86::VCVTSI2SSrm:
case X86::VCVTSI2SSrr_Int:
case X86::VCVTSI2SSrm_Int:
case X86::VCVTSI642SSrr:
case X86::VCVTSI642SSrm:
case X86::VCVTSI642SSrr_Int:
case X86::VCVTSI642SSrm_Int:
case X86::VCVTSI2SDrr:
case X86::VCVTSI2SDrm:
case X86::VCVTSI2SDrr_Int:
case X86::VCVTSI2SDrm_Int:
case X86::VCVTSI642SDrr:
case X86::VCVTSI642SDrm:
case X86::VCVTSI642SDrr_Int:
case X86::VCVTSI642SDrm_Int:
// AVX-512
case X86::VCVTSI2SSZrr:
case X86::VCVTSI2SSZrm:
case X86::VCVTSI2SSZrr_Int:
case X86::VCVTSI2SSZrrb_Int:
case X86::VCVTSI2SSZrm_Int:
case X86::VCVTSI642SSZrr:
case X86::VCVTSI642SSZrm:
case X86::VCVTSI642SSZrr_Int:
case X86::VCVTSI642SSZrrb_Int:
case X86::VCVTSI642SSZrm_Int:
case X86::VCVTSI2SDZrr:
case X86::VCVTSI2SDZrm:
case X86::VCVTSI2SDZrr_Int:
case X86::VCVTSI2SDZrm_Int:
case X86::VCVTSI642SDZrr:
case X86::VCVTSI642SDZrm:
case X86::VCVTSI642SDZrr_Int:
case X86::VCVTSI642SDZrrb_Int:
case X86::VCVTSI642SDZrm_Int:
case X86::VCVTUSI2SSZrr:
case X86::VCVTUSI2SSZrm:
case X86::VCVTUSI2SSZrr_Int:
case X86::VCVTUSI2SSZrrb_Int:
case X86::VCVTUSI2SSZrm_Int:
case X86::VCVTUSI642SSZrr:
case X86::VCVTUSI642SSZrm:
case X86::VCVTUSI642SSZrr_Int:
case X86::VCVTUSI642SSZrrb_Int:
case X86::VCVTUSI642SSZrm_Int:
case X86::VCVTUSI2SDZrr:
case X86::VCVTUSI2SDZrm:
case X86::VCVTUSI2SDZrr_Int:
case X86::VCVTUSI2SDZrm_Int:
case X86::VCVTUSI642SDZrr:
case X86::VCVTUSI642SDZrm:
case X86::VCVTUSI642SDZrr_Int:
case X86::VCVTUSI642SDZrrb_Int:
case X86::VCVTUSI642SDZrm_Int:
case X86::VCVTSI2SHZrr:
case X86::VCVTSI2SHZrm:
case X86::VCVTSI2SHZrr_Int:
case X86::VCVTSI2SHZrrb_Int:
case X86::VCVTSI2SHZrm_Int:
case X86::VCVTSI642SHZrr:
case X86::VCVTSI642SHZrm:
case X86::VCVTSI642SHZrr_Int:
case X86::VCVTSI642SHZrrb_Int:
case X86::VCVTSI642SHZrm_Int:
case X86::VCVTUSI2SHZrr:
case X86::VCVTUSI2SHZrm:
case X86::VCVTUSI2SHZrr_Int:
case X86::VCVTUSI2SHZrrb_Int:
case X86::VCVTUSI2SHZrm_Int:
case X86::VCVTUSI642SHZrr:
case X86::VCVTUSI642SHZrm:
case X86::VCVTUSI642SHZrr_Int:
case X86::VCVTUSI642SHZrrb_Int:
case X86::VCVTUSI642SHZrm_Int:
// Load folding won't effect the undef register update since the input is
// a GPR.
return OpNum == 1 && !ForLoadFold;
case X86::VCVTSD2SSrr:
case X86::VCVTSD2SSrm:
case X86::VCVTSD2SSrr_Int:
case X86::VCVTSD2SSrm_Int:
case X86::VCVTSS2SDrr:
case X86::VCVTSS2SDrm:
case X86::VCVTSS2SDrr_Int:
case X86::VCVTSS2SDrm_Int:
case X86::VRCPSSr:
case X86::VRCPSSr_Int:
case X86::VRCPSSm:
case X86::VRCPSSm_Int:
case X86::VROUNDSDr:
case X86::VROUNDSDm:
case X86::VROUNDSDr_Int:
case X86::VROUNDSDm_Int:
case X86::VROUNDSSr:
case X86::VROUNDSSm:
case X86::VROUNDSSr_Int:
case X86::VROUNDSSm_Int:
case X86::VRSQRTSSr:
case X86::VRSQRTSSr_Int:
case X86::VRSQRTSSm:
case X86::VRSQRTSSm_Int:
case X86::VSQRTSSr:
case X86::VSQRTSSr_Int:
case X86::VSQRTSSm:
case X86::VSQRTSSm_Int:
case X86::VSQRTSDr:
case X86::VSQRTSDr_Int:
case X86::VSQRTSDm:
case X86::VSQRTSDm_Int:
// AVX-512
case X86::VCVTSD2SSZrr:
case X86::VCVTSD2SSZrr_Int:
case X86::VCVTSD2SSZrrb_Int:
case X86::VCVTSD2SSZrm:
case X86::VCVTSD2SSZrm_Int:
case X86::VCVTSS2SDZrr:
case X86::VCVTSS2SDZrr_Int:
case X86::VCVTSS2SDZrrb_Int:
case X86::VCVTSS2SDZrm:
case X86::VCVTSS2SDZrm_Int:
case X86::VGETEXPSDZr:
case X86::VGETEXPSDZrb:
case X86::VGETEXPSDZm:
case X86::VGETEXPSSZr:
case X86::VGETEXPSSZrb:
case X86::VGETEXPSSZm:
case X86::VGETMANTSDZrri:
case X86::VGETMANTSDZrrib:
case X86::VGETMANTSDZrmi:
case X86::VGETMANTSSZrri:
case X86::VGETMANTSSZrrib:
case X86::VGETMANTSSZrmi:
case X86::VRNDSCALESDZr:
case X86::VRNDSCALESDZr_Int:
case X86::VRNDSCALESDZrb_Int:
case X86::VRNDSCALESDZm:
case X86::VRNDSCALESDZm_Int:
case X86::VRNDSCALESSZr:
case X86::VRNDSCALESSZr_Int:
case X86::VRNDSCALESSZrb_Int:
case X86::VRNDSCALESSZm:
case X86::VRNDSCALESSZm_Int:
case X86::VRCP14SDZrr:
case X86::VRCP14SDZrm:
case X86::VRCP14SSZrr:
case X86::VRCP14SSZrm:
case X86::VRCPSHZrr:
case X86::VRCPSHZrm:
case X86::VRSQRTSHZrr:
case X86::VRSQRTSHZrm:
case X86::VREDUCESHZrmi:
case X86::VREDUCESHZrri:
case X86::VREDUCESHZrrib:
case X86::VGETEXPSHZr:
case X86::VGETEXPSHZrb:
case X86::VGETEXPSHZm:
case X86::VGETMANTSHZrri:
case X86::VGETMANTSHZrrib:
case X86::VGETMANTSHZrmi:
case X86::VRNDSCALESHZr:
case X86::VRNDSCALESHZr_Int:
case X86::VRNDSCALESHZrb_Int:
case X86::VRNDSCALESHZm:
case X86::VRNDSCALESHZm_Int:
case X86::VSQRTSHZr:
case X86::VSQRTSHZr_Int:
case X86::VSQRTSHZrb_Int:
case X86::VSQRTSHZm:
case X86::VSQRTSHZm_Int:
case X86::VRCP28SDZr:
case X86::VRCP28SDZrb:
case X86::VRCP28SDZm:
case X86::VRCP28SSZr:
case X86::VRCP28SSZrb:
case X86::VRCP28SSZm:
case X86::VREDUCESSZrmi:
case X86::VREDUCESSZrri:
case X86::VREDUCESSZrrib:
case X86::VRSQRT14SDZrr:
case X86::VRSQRT14SDZrm:
case X86::VRSQRT14SSZrr:
case X86::VRSQRT14SSZrm:
case X86::VRSQRT28SDZr:
case X86::VRSQRT28SDZrb:
case X86::VRSQRT28SDZm:
case X86::VRSQRT28SSZr:
case X86::VRSQRT28SSZrb:
case X86::VRSQRT28SSZm:
case X86::VSQRTSSZr:
case X86::VSQRTSSZr_Int:
case X86::VSQRTSSZrb_Int:
case X86::VSQRTSSZm:
case X86::VSQRTSSZm_Int:
case X86::VSQRTSDZr:
case X86::VSQRTSDZr_Int:
case X86::VSQRTSDZrb_Int:
case X86::VSQRTSDZm:
case X86::VSQRTSDZm_Int:
case X86::VCVTSD2SHZrr:
case X86::VCVTSD2SHZrr_Int:
case X86::VCVTSD2SHZrrb_Int:
case X86::VCVTSD2SHZrm:
case X86::VCVTSD2SHZrm_Int:
case X86::VCVTSS2SHZrr:
case X86::VCVTSS2SHZrr_Int:
case X86::VCVTSS2SHZrrb_Int:
case X86::VCVTSS2SHZrm:
case X86::VCVTSS2SHZrm_Int:
case X86::VCVTSH2SDZrr:
case X86::VCVTSH2SDZrr_Int:
case X86::VCVTSH2SDZrrb_Int:
case X86::VCVTSH2SDZrm:
case X86::VCVTSH2SDZrm_Int:
case X86::VCVTSH2SSZrr:
case X86::VCVTSH2SSZrr_Int:
case X86::VCVTSH2SSZrrb_Int:
case X86::VCVTSH2SSZrm:
case X86::VCVTSH2SSZrm_Int:
return OpNum == 1;
case X86::VMOVSSZrrk:
case X86::VMOVSDZrrk:
return OpNum == 3 && !ForLoadFold;
case X86::VMOVSSZrrkz:
case X86::VMOVSDZrrkz:
return OpNum == 2 && !ForLoadFold;
}
return false;
}
/// Inform the BreakFalseDeps pass how many idle instructions we would like
/// before certain undef register reads.
///
/// This catches the VCVTSI2SD family of instructions:
///
/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
///
/// We should to be careful *not* to catch VXOR idioms which are presumably
/// handled specially in the pipeline:
///
/// vxorps undef %xmm1, undef %xmm1, %xmm1
///
/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
/// high bits that are passed-through are not live.
unsigned
X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
const MachineOperand &MO = MI.getOperand(OpNum);
if (Register::isPhysicalRegister(MO.getReg()) &&
hasUndefRegUpdate(MI.getOpcode(), OpNum))
return UndefRegClearance;
return 0;
}
void X86InstrInfo::breakPartialRegDependency(
MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
Register Reg = MI.getOperand(OpNum).getReg();
// If MI kills this register, the false dependence is already broken.
if (MI.killsRegister(Reg, TRI))
return;
if (X86::VR128RegClass.contains(Reg)) {
// These instructions are all floating point domain, so xorps is the best
// choice.
unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
MI.addRegisterKilled(Reg, TRI, true);
} else if (X86::VR256RegClass.contains(Reg)) {
// Use vxorps to clear the full ymm register.
// It wants to read and write the xmm sub-register.
Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
.addReg(XReg, RegState::Undef)
.addReg(XReg, RegState::Undef)
.addReg(Reg, RegState::ImplicitDefine);
MI.addRegisterKilled(Reg, TRI, true);
} else if (X86::GR64RegClass.contains(Reg)) {
// Using XOR32rr because it has shorter encoding and zeros up the upper bits
// as well.
Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
.addReg(XReg, RegState::Undef)
.addReg(XReg, RegState::Undef)
.addReg(Reg, RegState::ImplicitDefine);
MI.addRegisterKilled(Reg, TRI, true);
} else if (X86::GR32RegClass.contains(Reg)) {
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
MI.addRegisterKilled(Reg, TRI, true);
}
}
static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
int PtrOffset = 0) {
unsigned NumAddrOps = MOs.size();
if (NumAddrOps < 4) {
// FrameIndex only - add an immediate offset (whether its zero or not).
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.add(MOs[i]);
addOffset(MIB, PtrOffset);
} else {
// General Memory Addressing - we need to add any offset to an existing
// offset.
assert(MOs.size() == 5 && "Unexpected memory operand list length");
for (unsigned i = 0; i != NumAddrOps; ++i) {
const MachineOperand &MO = MOs[i];
if (i == 3 && PtrOffset != 0) {
MIB.addDisp(MO, PtrOffset);
} else {
MIB.add(MO);
}
}
}
}
static void updateOperandRegConstraints(MachineFunction &MF,
MachineInstr &NewMI,
const TargetInstrInfo &TII) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
MachineOperand &MO = NewMI.getOperand(Idx);
// We only need to update constraints on virtual register operands.
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual())
continue;
auto *NewRC = MRI.constrainRegClass(
Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
if (!NewRC) {
LLVM_DEBUG(
dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n";
NewMI.dump(); dbgs() << "\n");
}
}
}
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
ArrayRef<MachineOperand> MOs,
MachineBasicBlock::iterator InsertPt,
MachineInstr &MI,
const TargetInstrInfo &TII) {
// Create the base instruction with the memory operand as the first part.
// Omit the implicit operands, something BuildMI can't do.
MachineInstr *NewMI =
MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
addOperands(MIB, MOs);
// Loop over the rest of the ri operands, converting them over.
unsigned NumOps = MI.getDesc().getNumOperands() - 2;
for (unsigned i = 0; i != NumOps; ++i) {
MachineOperand &MO = MI.getOperand(i + 2);
MIB.add(MO);
}
for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
MIB.add(MO);
updateOperandRegConstraints(MF, *NewMI, TII);
MachineBasicBlock *MBB = InsertPt->getParent();
MBB->insert(InsertPt, NewMI);
return MIB;
}
static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
unsigned OpNo, ArrayRef<MachineOperand> MOs,
MachineBasicBlock::iterator InsertPt,
MachineInstr &MI, const TargetInstrInfo &TII,
int PtrOffset = 0) {
// Omit the implicit operands, something BuildMI can't do.
MachineInstr *NewMI =
MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (i == OpNo) {
assert(MO.isReg() && "Expected to fold into reg operand!");
addOperands(MIB, MOs, PtrOffset);
} else {
MIB.add(MO);
}
}
updateOperandRegConstraints(MF, *NewMI, TII);
// Copy the NoFPExcept flag from the instruction we're fusing.
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
MachineBasicBlock *MBB = InsertPt->getParent();
MBB->insert(InsertPt, NewMI);
return MIB;
}
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
ArrayRef<MachineOperand> MOs,
MachineBasicBlock::iterator InsertPt,
MachineInstr &MI) {
MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
MI.getDebugLoc(), TII.get(Opcode));
addOperands(MIB, MOs);
return MIB.addImm(0);
}
MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
unsigned Size, Align Alignment) const {
switch (MI.getOpcode()) {
case X86::INSERTPSrr:
case X86::VINSERTPSrr:
case X86::VINSERTPSZrr:
// Attempt to convert the load of inserted vector into a fold load
// of a single float.
if (OpNum == 2) {
unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
unsigned ZMask = Imm & 15;
unsigned DstIdx = (Imm >> 4) & 3;
unsigned SrcIdx = (Imm >> 6) & 3;
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
int PtrOffset = SrcIdx * 4;
unsigned NewImm = (DstIdx << 4) | ZMask;
unsigned NewOpCode =
(MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
(MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
X86::INSERTPSrm;
MachineInstr *NewMI =
FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
return NewMI;
}
}
break;
case X86::MOVHLPSrr:
case X86::VMOVHLPSrr:
case X86::VMOVHLPSZrr:
// Move the upper 64-bits of the second operand to the lower 64-bits.
// To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
// TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
if (OpNum == 2) {
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
unsigned NewOpCode =
(MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
(MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
X86::MOVLPSrm;
MachineInstr *NewMI =
FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
return NewMI;
}
}
break;
case X86::UNPCKLPDrr:
// If we won't be able to fold this to the memory form of UNPCKL, use
// MOVHPD instead. Done as custom because we can't have this in the load
// table twice.
if (OpNum == 2) {
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
MachineInstr *NewMI =
FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
return NewMI;
}
}
break;
}
return nullptr;
}
static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
MachineInstr &MI) {
if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
!MI.getOperand(1).isReg())
return false;
// The are two cases we need to handle depending on where in the pipeline
// the folding attempt is being made.
// -Register has the undef flag set.
// -Register is produced by the IMPLICIT_DEF instruction.
if (MI.getOperand(1).isUndef())
return true;
MachineRegisterInfo &RegInfo = MF.getRegInfo();
MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
return VRegDef && VRegDef->isImplicitDef();
}
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
unsigned Size, Align Alignment, bool AllowCommute) const {
bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
bool isTwoAddrFold = false;
// For CPUs that favor the register form of a call or push,
// do not fold loads into calls or pushes, unless optimizing for size
// aggressively.
if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
(MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
MI.getOpcode() == X86::PUSH64r))
return nullptr;
// Avoid partial and undef register update stalls unless optimizing for size.
if (!MF.getFunction().hasOptSize() &&
(hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
shouldPreventUndefRegUpdateMemFold(MF, MI)))
return nullptr;
unsigned NumOps = MI.getDesc().getNumOperands();
bool isTwoAddr =
NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
// FIXME: AsmPrinter doesn't know how to handle
// X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
if (MI.getOpcode() == X86::ADD32ri &&
MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
return nullptr;
// GOTTPOFF relocation loads can only be folded into add instructions.
// FIXME: Need to exclude other relocations that only support specific
// instructions.
if (MOs.size() == X86::AddrNumOperands &&
MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
MI.getOpcode() != X86::ADD64rr)
return nullptr;
MachineInstr *NewMI = nullptr;
// Attempt to fold any custom cases we have.
if (MachineInstr *CustomMI = foldMemoryOperandCustom(
MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
return CustomMI;
const X86MemoryFoldTableEntry *I = nullptr;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
MI.getOperand(1).isReg() &&
MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
I = lookupTwoAddrFoldTable(MI.getOpcode());
isTwoAddrFold = true;
} else {
if (OpNum == 0) {
if (MI.getOpcode() == X86::MOV32r0) {
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
if (NewMI)
return NewMI;
}
}
I = lookupFoldTable(MI.getOpcode(), OpNum);
}
if (I != nullptr) {
unsigned Opcode = I->DstOp;
bool FoldedLoad =
isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
bool FoldedStore =
isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
MaybeAlign MinAlign =
decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
if (MinAlign && Alignment < *MinAlign)
return nullptr;
bool NarrowToMOV32rm = false;
if (Size) {
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
&RI, MF);
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
// FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
if (FoldedLoad && Size < RCSize) {
// If this is a 64-bit load, but the spill slot is 32, then we can do
// a 32-bit load which is implicitly zero-extended. This likely is
// due to live interval analysis remat'ing a load from stack slot.
if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
return nullptr;
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
return nullptr;
Opcode = X86::MOV32rm;
NarrowToMOV32rm = true;
}
// For stores, make sure the size of the object is equal to the size of
// the store. If the object is larger, the extra bits would be garbage. If
// the object is smaller we might overwrite another object or fault.
if (FoldedStore && Size != RCSize)
return nullptr;
}
if (isTwoAddrFold)
NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
else
NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
if (NarrowToMOV32rm) {
// If this is the special case where we use a MOV32rm to load a 32-bit
// value and zero-extend the top bits. Change the destination register
// to a 32-bit one.
Register DstReg = NewMI->getOperand(0).getReg();
if (DstReg.isPhysical())
NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
else
NewMI->getOperand(0).setSubReg(X86::sub_32bit);
}
return NewMI;
}
// If the instruction and target operand are commutable, commute the
// instruction and try again.
if (AllowCommute) {
unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
bool HasDef = MI.getDesc().getNumDefs();
Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
bool Tied1 =
0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
bool Tied2 =
0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
// If either of the commutable operands are tied to the destination
// then we can not commute + fold.
if ((HasDef && Reg0 == Reg1 && Tied1) ||
(HasDef && Reg0 == Reg2 && Tied2))
return nullptr;
MachineInstr *CommutedMI =
commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
if (!CommutedMI) {
// Unable to commute.
return nullptr;
}
if (CommutedMI != &MI) {
// New instruction. We can't fold from this.
CommutedMI->eraseFromParent();
return nullptr;
}
// Attempt to fold with the commuted version of the instruction.
NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
Alignment, /*AllowCommute=*/false);
if (NewMI)
return NewMI;
// Folding failed again - undo the commute before returning.
MachineInstr *UncommutedMI =
commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
if (!UncommutedMI) {
// Unable to commute.
return nullptr;
}
if (UncommutedMI != &MI) {
// New instruction. It doesn't need to be kept.
UncommutedMI->eraseFromParent();
return nullptr;
}
// Return here to prevent duplicate fuse failure report.
return nullptr;
}
}
// No fusion
if (PrintFailedFusing && !MI.isCopy())
dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
return nullptr;
}
MachineInstr *
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt,
int FrameIndex, LiveIntervals *LIS,
VirtRegMap *VRM) const {
// Check switch flag
if (NoFusing)
return nullptr;
// Avoid partial and undef register update stalls unless optimizing for size.
if (!MF.getFunction().hasOptSize() &&
(hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
shouldPreventUndefRegUpdateMemFold(MF, MI)))
return nullptr;
// Don't fold subreg spills, or reloads that use a high subreg.
for (auto Op : Ops) {
MachineOperand &MO = MI.getOperand(Op);
auto SubReg = MO.getSubReg();
if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
return nullptr;
}
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned Size = MFI.getObjectSize(FrameIndex);
Align Alignment = MFI.getObjectAlign(FrameIndex);
// If the function stack isn't realigned we don't want to fold instructions
// that need increased alignment.
if (!RI.hasStackRealignment(MF))
Alignment =
std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
unsigned RCSize = 0;
switch (MI.getOpcode()) {
default: return nullptr;
case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
}
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
if (Size < RCSize)
return nullptr;
// Change to CMPXXri r, 0 first.
MI.setDesc(get(NewOpc));
MI.getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return nullptr;
return foldMemoryOperandImpl(MF, MI, Ops[0],
MachineOperand::CreateFI(FrameIndex), InsertPt,
Size, Alignment, /*AllowCommute=*/true);
}
/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
/// because the latter uses contents that wouldn't be defined in the folded
/// version. For instance, this transformation isn't legal:
/// movss (%rdi), %xmm0
/// addps %xmm0, %xmm0
/// ->
/// addps (%rdi), %xmm0
///
/// But this one is:
/// movss (%rdi), %xmm0
/// addss %xmm0, %xmm0
/// ->
/// addss (%rdi), %xmm0
///
static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
const MachineInstr &UserMI,
const MachineFunction &MF) {
unsigned Opc = LoadMI.getOpcode();
unsigned UserOpc = UserMI.getOpcode();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC =
MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
unsigned RegSize = TRI.getRegSizeInBits(*RC);
if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
Opc == X86::VMOVSSZrm_alt) &&
RegSize > 32) {
// These instructions only load 32 bits, we can't fold them if the
// destination register is wider than 32 bits (4 bytes), and its user
// instruction isn't scalar (SS).
switch (UserOpc) {
case X86::CVTSS2SDrr_Int:
case X86::VCVTSS2SDrr_Int:
case X86::VCVTSS2SDZrr_Int:
case X86::VCVTSS2SDZrr_Intk:
case X86::VCVTSS2SDZrr_Intkz:
case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
case X86::VCMPSSZrr_Intk:
case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
case X86::VFIXUPIMMSSZrri:
case X86::VFIXUPIMMSSZrrik:
case X86::VFIXUPIMMSSZrrikz:
case X86::VFPCLASSSSZrr:
case X86::VFPCLASSSSZrrk:
case X86::VGETEXPSSZr:
case X86::VGETEXPSSZrk:
case X86::VGETEXPSSZrkz:
case X86::VGETMANTSSZrri:
case X86::VGETMANTSSZrrik:
case X86::VGETMANTSSZrrikz:
case X86::VRANGESSZrri:
case X86::VRANGESSZrrik:
case X86::VRANGESSZrrikz:
case X86::VRCP14SSZrr:
case X86::VRCP14SSZrrk:
case X86::VRCP14SSZrrkz:
case X86::VRCP28SSZr:
case X86::VRCP28SSZrk:
case X86::VRCP28SSZrkz:
case X86::VREDUCESSZrri:
case X86::VREDUCESSZrrik:
case X86::VREDUCESSZrrikz:
case X86::VRNDSCALESSZr_Int:
case X86::VRNDSCALESSZr_Intk:
case X86::VRNDSCALESSZr_Intkz:
case X86::VRSQRT14SSZrr:
case X86::VRSQRT14SSZrrk:
case X86::VRSQRT14SSZrrkz:
case X86::VRSQRT28SSZr:
case X86::VRSQRT28SSZrk:
case X86::VRSQRT28SSZrkz:
case X86::VSCALEFSSZrr:
case X86::VSCALEFSSZrrk:
case X86::VSCALEFSSZrrkz:
return false;
default:
return true;
}
}
if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
Opc == X86::VMOVSDZrm_alt) &&
RegSize > 64) {
// These instructions only load 64 bits, we can't fold them if the
// destination register is wider than 64 bits (8 bytes), and its user
// instruction isn't scalar (SD).
switch (UserOpc) {
case X86::CVTSD2SSrr_Int:
case X86::VCVTSD2SSrr_Int:
case X86::VCVTSD2SSZrr_Int:
case X86::VCVTSD2SSZrr_Intk:
case X86::VCVTSD2SSZrr_Intkz:
case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
case X86::VCMPSDZrr_Intk:
case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
case X86::VFIXUPIMMSDZrri:
case X86::VFIXUPIMMSDZrrik:
case X86::VFIXUPIMMSDZrrikz:
case X86::VFPCLASSSDZrr:
case X86::VFPCLASSSDZrrk:
case X86::VGETEXPSDZr:
case X86::VGETEXPSDZrk:
case X86::VGETEXPSDZrkz:
case X86::VGETMANTSDZrri:
case X86::VGETMANTSDZrrik:
case X86::VGETMANTSDZrrikz:
case X86::VRANGESDZrri:
case X86::VRANGESDZrrik:
case X86::VRANGESDZrrikz:
case X86::VRCP14SDZrr:
case X86::VRCP14SDZrrk:
case X86::VRCP14SDZrrkz:
case X86::VRCP28SDZr:
case X86::VRCP28SDZrk:
case X86::VRCP28SDZrkz:
case X86::VREDUCESDZrri:
case X86::VREDUCESDZrrik:
case X86::VREDUCESDZrrikz:
case X86::VRNDSCALESDZr_Int:
case X86::VRNDSCALESDZr_Intk:
case X86::VRNDSCALESDZr_Intkz:
case X86::VRSQRT14SDZrr:
case X86::VRSQRT14SDZrrk:
case X86::VRSQRT14SDZrrkz:
case X86::VRSQRT28SDZr:
case X86::VRSQRT28SDZrk:
case X86::VRSQRT28SDZrkz:
case X86::VSCALEFSDZrr:
case X86::VSCALEFSDZrrk:
case X86::VSCALEFSDZrrkz:
return false;
default:
return true;
}
}
if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
// These instructions only load 16 bits, we can't fold them if the
// destination register is wider than 16 bits (2 bytes), and its user
// instruction isn't scalar (SH).
switch (UserOpc) {
case X86::VADDSHZrr_Int:
case X86::VCMPSHZrr_Int:
case X86::VDIVSHZrr_Int:
case X86::VMAXSHZrr_Int:
case X86::VMINSHZrr_Int:
case X86::VMULSHZrr_Int:
case X86::VSUBSHZrr_Int:
case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
case X86::VCMPSHZrr_Intk:
case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
return false;
default:
return true;
}
}
return false;
}
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
LiveIntervals *LIS) const {
// TODO: Support the case where LoadMI loads a wide register, but MI
// only uses a subreg.
for (auto Op : Ops) {
if (MI.getOperand(Op).getSubReg())
return nullptr;
}
// If loading from a FrameIndex, fold directly from the FrameIndex.
unsigned NumOps = LoadMI.getDesc().getNumOperands();
int FrameIndex;
if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
return nullptr;
return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
}
// Check switch flag
if (NoFusing) return nullptr;
// Avoid partial and undef register update stalls unless optimizing for size.
if (!MF.getFunction().hasOptSize() &&
(hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
shouldPreventUndefRegUpdateMemFold(MF, MI)))
return nullptr;
// Determine the alignment of the load.
Align Alignment;
if (LoadMI.hasOneMemOperand())
Alignment = (*LoadMI.memoperands_begin())->getAlign();
else
switch (LoadMI.getOpcode()) {
case X86::AVX512_512_SET0:
case X86::AVX512_512_SETALLONES:
Alignment = Align(64);
break;
case X86::AVX2_SETALLONES:
case X86::AVX1_SETALLONES:
case X86::AVX_SET0:
case X86::AVX512_256_SET0:
Alignment = Align(32);
break;
case X86::V_SET0:
case X86::V_SETALLONES:
case X86::AVX512_128_SET0:
case X86::FsFLD0F128:
case X86::AVX512_FsFLD0F128:
Alignment = Align(16);
break;
case X86::MMX_SET0:
case X86::FsFLD0SD:
case X86::AVX512_FsFLD0SD:
Alignment = Align(8);
break;
case X86::FsFLD0SS:
case X86::AVX512_FsFLD0SS:
Alignment = Align(4);
break;
case X86::AVX512_FsFLD0SH:
Alignment = Align(2);
break;
default:
return nullptr;
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI.getOpcode()) {
default: return nullptr;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
}
// Change to CMPXXri r, 0 first.
MI.setDesc(get(NewOpc));
MI.getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return nullptr;
// Make sure the subregisters match.
// Otherwise we risk changing the size of the load.
if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
return nullptr;
SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
switch (LoadMI.getOpcode()) {
case X86::MMX_SET0:
case X86::V_SET0:
case X86::V_SETALLONES:
case X86::AVX2_SETALLONES:
case X86::AVX1_SETALLONES:
case X86::AVX_SET0:
case X86::AVX512_128_SET0:
case X86::AVX512_256_SET0:
case X86::AVX512_512_SET0:
case X86::AVX512_512_SETALLONES:
case X86::AVX512_FsFLD0SH:
case X86::FsFLD0SD:
case X86::AVX512_FsFLD0SD:
case X86::FsFLD0SS:
case X86::AVX512_FsFLD0SS:
case X86::FsFLD0F128:
case X86::AVX512_FsFLD0F128: {
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
// Create a constant-pool entry and operands to load from it.
// Medium and large mode can't fold loads this way.
if (MF.getTarget().getCodeModel() != CodeModel::Small &&
MF.getTarget().getCodeModel() != CodeModel::Kernel)
return nullptr;
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
// Since we're using Small or Kernel code model, we can always use
// RIP-relative addressing for a smaller encoding.
if (Subtarget.is64Bit()) {
PICBase = X86::RIP;
} else if (MF.getTarget().isPositionIndependent()) {
// FIXME: PICBase = getGlobalBaseReg(&MF);
// This doesn't work for several reasons.
// 1. GlobalBaseReg may have been spilled.
// 2. It may not be live at MI.
return nullptr;
}
// Create a constant-pool entry.
MachineConstantPool &MCP = *MF.getConstantPool();
Type *Ty;
unsigned Opc = LoadMI.getOpcode();
if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
Ty = Type::getFloatTy(MF.getFunction().getContext());
else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
Ty = Type::getDoubleTy(MF.getFunction().getContext());
else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
Ty = Type::getFP128Ty(MF.getFunction().getContext());
else if (Opc == X86::AVX512_FsFLD0SH)
Ty = Type::getHalfTy(MF.getFunction().getContext());
else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
16);
else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8);
else if (Opc == X86::MMX_SET0)
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
2);
else
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
4);
bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
Opc == X86::AVX512_512_SETALLONES ||
Opc == X86::AVX1_SETALLONES);
const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
Constant::getNullValue(Ty);
unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
// Create operands to load from the constant pool entry.
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
MOs.push_back(MachineOperand::CreateImm(1));
MOs.push_back(MachineOperand::CreateReg(0, false));
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
MOs.push_back(MachineOperand::CreateReg(0, false));
break;
}
default: {
if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
return nullptr;
// Folding a normal load. Just copy the load's address operands.
MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
LoadMI.operands_begin() + NumOps);
break;
}
}
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
/*Size=*/0, Alignment, /*AllowCommute=*/true);
}
static SmallVector<MachineMemOperand *, 2>
extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
SmallVector<MachineMemOperand *, 2> LoadMMOs;
for (MachineMemOperand *MMO : MMOs) {
if (!MMO->isLoad())
continue;
if (!MMO->isStore()) {
// Reuse the MMO.
LoadMMOs.push_back(MMO);
} else {
// Clone the MMO and unset the store flag.
LoadMMOs.push_back(MF.getMachineMemOperand(
MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
}
}
return LoadMMOs;
}
static SmallVector<MachineMemOperand *, 2>
extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
SmallVector<MachineMemOperand *, 2> StoreMMOs;
for (MachineMemOperand *MMO : MMOs) {
if (!MMO->isStore())
continue;
if (!MMO->isLoad()) {
// Reuse the MMO.
StoreMMOs.push_back(MMO);
} else {
// Clone the MMO and unset the load flag.
StoreMMOs.push_back(MF.getMachineMemOperand(
MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
}
}
return StoreMMOs;
}
static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
const TargetRegisterClass *RC,
const X86Subtarget &STI) {
assert(STI.hasAVX512() && "Expected at least AVX512!");
unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
assert((SpillSize == 64 || STI.hasVLX()) &&
"Can't broadcast less than 64 bytes without AVX512VL!");
switch (I->Flags & TB_BCAST_MASK) {
default: llvm_unreachable("Unexpected broadcast type!");
case TB_BCAST_D:
switch (SpillSize) {
default: llvm_unreachable("Unknown spill size");
case 16: return X86::VPBROADCASTDZ128rm;
case 32: return X86::VPBROADCASTDZ256rm;
case 64: return X86::VPBROADCASTDZrm;
}
break;
case TB_BCAST_Q:
switch (SpillSize) {
default: llvm_unreachable("Unknown spill size");
case 16: return X86::VPBROADCASTQZ128rm;
case 32: return X86::VPBROADCASTQZ256rm;
case 64: return X86::VPBROADCASTQZrm;
}
break;
case TB_BCAST_SS:
switch (SpillSize) {
default: llvm_unreachable("Unknown spill size");
case 16: return X86::VBROADCASTSSZ128rm;
case 32: return X86::VBROADCASTSSZ256rm;
case 64: return X86::VBROADCASTSSZrm;
}
break;
case TB_BCAST_SD:
switch (SpillSize) {
default: llvm_unreachable("Unknown spill size");
case 16: return X86::VMOVDDUPZ128rm;
case 32: return X86::VBROADCASTSDZ256rm;
case 64: return X86::VBROADCASTSDZrm;
}
break;
}
}
bool X86InstrInfo::unfoldMemoryOperand(
MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
if (I == nullptr)
return false;
unsigned Opc = I->DstOp;
unsigned Index = I->Flags & TB_INDEX_MASK;
bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
bool FoldedStore = I->Flags & TB_FOLDED_STORE;
bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
if (UnfoldLoad && !FoldedLoad)
return false;
UnfoldLoad &= FoldedLoad;
if (UnfoldStore && !FoldedStore)
return false;
UnfoldStore &= FoldedStore;
const MCInstrDesc &MCID = get(Opc);
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
// TODO: Check if 32-byte or greater accesses are slow too?
if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
Subtarget.isUnalignedMem16Slow())
// Without memoperands, loadRegFromAddr and storeRegToStackSlot will
// conservatively assume the address is unaligned. That's bad for
// performance.
return false;
SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
SmallVector<MachineOperand,4> ImpOps;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI.getOperand(i);
if (i >= Index && i < Index + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (Op.isReg() && Op.isImplicit())
ImpOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
// Emit the load or broadcast instruction.
if (UnfoldLoad) {
auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
unsigned Opc;
if (FoldedBCast) {
Opc = getBroadcastOpcode(I, RC, Subtarget);
} else {
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
}
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
MIB.add(AddrOps[i]);
MIB.setMemRefs(MMOs);
NewMIs.push_back(MIB);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
MachineOperand &MO = NewMIs[0]->getOperand(i);
if (MO.isReg())
MO.setIsKill(false);
}
}
}
// Emit the data processing instruction.
MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, DataMI);
if (FoldedStore)
MIB.addReg(Reg, RegState::Define);
for (MachineOperand &BeforeOp : BeforeOps)
MIB.add(BeforeOp);
if (FoldedLoad)
MIB.addReg(Reg);
for (MachineOperand &AfterOp : AfterOps)
MIB.add(AfterOp);
for (MachineOperand &ImpOp : ImpOps) {
MIB.addReg(ImpOp.getReg(),
getDefRegState(ImpOp.isDef()) |
RegState::Implicit |
getKillRegState(ImpOp.isKill()) |
getDeadRegState(ImpOp.isDead()) |
getUndefRegState(ImpOp.isUndef()));
}
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri: {
MachineOperand &MO0 = DataMI->getOperand(0);
MachineOperand &MO1 = DataMI->getOperand(1);
if (MO1.isImm() && MO1.getImm() == 0) {
unsigned NewOpc;
switch (DataMI->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::CMP64ri8:
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
case X86::CMP32ri8:
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
case X86::CMP16ri8:
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
}
DataMI->setDesc(get(NewOpc));
MO1.ChangeToRegister(MO0.getReg(), false);
}
}
}
NewMIs.push_back(DataMI);
// Emit the store instruction.
if (UnfoldStore) {
const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
MIB.add(AddrOps[i]);
MIB.addReg(Reg, RegState::Kill);
MIB.setMemRefs(MMOs);
NewMIs.push_back(MIB);
}
return true;
}
bool
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
if (!N->isMachineOpcode())
return false;
const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
if (I == nullptr)
return false;
unsigned Opc = I->DstOp;
unsigned Index = I->Flags & TB_INDEX_MASK;
bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
bool FoldedStore = I->Flags & TB_FOLDED_STORE;
bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
const MCInstrDesc &MCID = get(Opc);
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
unsigned NumDefs = MCID.NumDefs;
std::vector<SDValue> AddrOps;
std::vector<SDValue> BeforeOps;
std::vector<SDValue> AfterOps;
SDLoc dl(N);
unsigned NumOps = N->getNumOperands();
for (unsigned i = 0; i != NumOps-1; ++i) {
SDValue Op = N->getOperand(i);
if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (i < Index-NumDefs)
BeforeOps.push_back(Op);
else if (i > Index-NumDefs)
AfterOps.push_back(Op);
}
SDValue Chain = N->getOperand(NumOps-1);
AddrOps.push_back(Chain);
// Emit the load instruction.
SDNode *Load = nullptr;
if (FoldedLoad) {
EVT VT = *TRI.legalclasstypes_begin(*RC);
auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
if (MMOs.empty() && RC == &X86::VR128RegClass &&
Subtarget.isUnalignedMem16Slow())
// Do not introduce a slow unaligned load.
return false;
// FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
// memory access is slow above.
unsigned Opc;
if (FoldedBCast) {
Opc = getBroadcastOpcode(I, RC, Subtarget);
} else {
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
}
Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
NewNodes.push_back(Load);
// Preserve memory reference information.
DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
}
// Emit the data processing instruction.
std::vector<EVT> VTs;
const TargetRegisterClass *DstRC = nullptr;
if (MCID.getNumDefs() > 0) {
DstRC = getRegClass(MCID, 0, &RI, MF);
VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDValue(Load, 0));
llvm::append_range(BeforeOps, AfterOps);
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
switch (Opc) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri:
if (isNullConstant(BeforeOps[1])) {
switch (Opc) {
default: llvm_unreachable("Unreachable!");
case X86::CMP64ri8:
case X86::CMP64ri32: Opc = X86::TEST64rr; break;
case X86::CMP32ri8:
case X86::CMP32ri: Opc = X86::TEST32rr; break;
case X86::CMP16ri8:
case X86::CMP16ri: Opc = X86::TEST16rr; break;
case X86::CMP8ri: Opc = X86::TEST8rr; break;
}
BeforeOps[1] = BeforeOps[0];
}
}
SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
NewNodes.push_back(NewNode);
// Emit the store instruction.
if (FoldedStore) {
AddrOps.pop_back();
AddrOps.push_back(SDValue(NewNode, 0));
AddrOps.push_back(Chain);
auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
if (MMOs.empty() && RC == &X86::VR128RegClass &&
Subtarget.isUnalignedMem16Slow())
// Do not introduce a slow unaligned store.
return false;
// FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
// memory access is slow above.
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
SDNode *Store =
DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
dl, MVT::Other, AddrOps);
NewNodes.push_back(Store);
// Preserve memory reference information.
DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
}
return true;
}
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex) const {
const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
if (I == nullptr)
return 0;
bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
bool FoldedStore = I->Flags & TB_FOLDED_STORE;
if (UnfoldLoad && !FoldedLoad)
return 0;
if (UnfoldStore && !FoldedStore)
return 0;
if (LoadRegIndex)
*LoadRegIndex = I->Flags & TB_INDEX_MASK;
return I->DstOp;
}
bool
X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const {
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
switch (Opc1) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSSrm_alt:
case X86::MOVSDrm:
case X86::MOVSDrm_alt:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
// AVX load instructions
case X86::VMOVSSrm:
case X86::VMOVSSrm_alt:
case X86::VMOVSDrm:
case X86::VMOVSDrm_alt:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVUPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
// AVX512 load instructions
case X86::VMOVSSZrm:
case X86::VMOVSSZrm_alt:
case X86::VMOVSDZrm:
case X86::VMOVSDZrm_alt:
case X86::VMOVAPSZ128rm:
case X86::VMOVUPSZ128rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVAPDZ128rm:
case X86::VMOVUPDZ128rm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQU64Z128rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVAPDZ256rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU16Z256rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQU64Z256rm:
case X86::VMOVAPSZrm:
case X86::VMOVUPSZrm:
case X86::VMOVAPDZrm:
case X86::VMOVUPDZrm:
case X86::VMOVDQU8Zrm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU64Zrm:
case X86::KMOVBkm:
case X86::KMOVWkm:
case X86::KMOVDkm:
case X86::KMOVQkm:
break;
}
switch (Opc2) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSSrm_alt:
case X86::MOVSDrm:
case X86::MOVSDrm_alt:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
// AVX load instructions
case X86::VMOVSSrm:
case X86::VMOVSSrm_alt:
case X86::VMOVSDrm:
case X86::VMOVSDrm_alt:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVUPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
// AVX512 load instructions
case X86::VMOVSSZrm:
case X86::VMOVSSZrm_alt:
case X86::VMOVSDZrm:
case X86::VMOVSDZrm_alt:
case X86::VMOVAPSZ128rm:
case X86::VMOVUPSZ128rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVAPDZ128rm:
case X86::VMOVUPDZ128rm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQU64Z128rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVAPDZ256rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU16Z256rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQU64Z256rm:
case X86::VMOVAPSZrm:
case X86::VMOVUPSZrm:
case X86::VMOVAPDZrm:
case X86::VMOVUPDZrm:
case X86::VMOVDQU8Zrm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU64Zrm:
case X86::KMOVBkm:
case X86::KMOVWkm:
case X86::KMOVDkm:
case X86::KMOVQkm:
break;
}
// Lambda to check if both the loads have the same value for an operand index.
auto HasSameOp = [&](int I) {
return Load1->getOperand(I) == Load2->getOperand(I);
};
// All operands except the displacement should match.
if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
!HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
return false;
// Chain Operand must be the same.
if (!HasSameOp(5))
return false;
// Now let's examine if the displacements are constants.
auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
if (!Disp1 || !Disp2)
return false;
Offset1 = Disp1->getSExtValue();
Offset2 = Disp2->getSExtValue();
return true;
}
bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
assert(Offset2 > Offset1);
if ((Offset2 - Offset1) / 8 > 64)
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
if (Opc1 != Opc2)
return false; // FIXME: overly conservative?
switch (Opc1) {
default: break;
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
return false;
}
EVT VT = Load1->getValueType(0);
switch (VT.getSimpleVT().SimpleTy) {
default:
// XMM registers. In 64-bit mode we can be a bit more aggressive since we
// have 16 of them to play with.
if (Subtarget.is64Bit()) {
if (NumLoads >= 3)
return false;
} else if (NumLoads) {
return false;
}
break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
if (NumLoads)
return false;
break;
}
return true;
}
bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// ENDBR instructions should not be scheduled around.
unsigned Opcode = MI.getOpcode();
if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
Opcode == X86::LDTILECFG)
return true;
return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
}
bool X86InstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Cond[0].setImm(GetOppositeBranchCondition(CC));
return false;
}
bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
// FIXME: Return false for x87 stack register classes for now. We can't
// allow any loads of these registers before FpGet_ST0_80.
return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
RC == &X86::RFP80RegClass);
}
/// Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
///
/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
///
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
assert((!Subtarget.is64Bit() ||
MF->getTarget().getCodeModel() == CodeModel::Medium ||
MF->getTarget().getCodeModel() == CodeModel::Large) &&
"X86-64 PIC uses RIP relative addressing");
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
Register GlobalBaseReg = X86FI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Create the register. The code to initialize it is inserted
// later, by the CGBR pass (below).
MachineRegisterInfo &RegInfo = MF->getRegInfo();
GlobalBaseReg = RegInfo.createVirtualRegister(
Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
X86FI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}
// These are the replaceable SSE instructions. Some of these have Int variants
// that we don't include here. We don't want to replace instructions selected
// by intrinsics.
static const uint16_t ReplaceableInstrs[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
{ X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
{ X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
{ X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
{ X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
{ X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
{ X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
{ X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
{ X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
{ X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
{ X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
{ X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
{ X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
{ X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
{ X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
{ X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
{ X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
{ X86::ORPSrm, X86::ORPDrm, X86::PORrm },
{ X86::ORPSrr, X86::ORPDrr, X86::PORrr },
{ X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
{ X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
{ X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
{ X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
{ X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
{ X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
{ X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
{ X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
{ X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
{ X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
{ X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
{ X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
// AVX 128-bit support
{ X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
{ X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
{ X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
{ X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
{ X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
{ X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
{ X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
{ X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
{ X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
{ X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
{ X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
{ X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
{ X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
{ X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
{ X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
{ X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
{ X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
{ X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
{ X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
{ X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
{ X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
{ X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
{ X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
{ X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
{ X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
// AVX 256-bit support
{ X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
{ X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
{ X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
{ X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
{ X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
{ X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
{ X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
{ X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
{ X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
{ X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
// AVX512 support
{ X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
{ X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
{ X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
{ X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
{ X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
{ X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
{ X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
{ X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
{ X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
{ X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
{ X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
{ X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
{ X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
{ X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
{ X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
{ X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
{ X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
{ X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
{ X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
{ X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
{ X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
{ X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
{ X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
{ X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
{ X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
{ X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
{ X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
{ X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
{ X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
{ X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
{ X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
{ X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
{ X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
{ X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
{ X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
{ X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
{ X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
{ X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
{ X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
{ X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
{ X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
{ X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
{ X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
{ X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
{ X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
{ X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
{ X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
{ X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
{ X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
{ X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
{ X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
{ X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
{ X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
{ X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
{ X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
{ X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
{ X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
{ X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
{ X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
{ X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
{ X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
{ X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
{ X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
{ X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
{ X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
{ X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
{ X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
{ X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
{ X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
{ X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
{ X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
{ X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
{ X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
{ X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
{ X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
{ X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
{ X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
{ X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
{ X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
{ X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
{ X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
{ X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
{ X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
{ X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
{ X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
{ X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
{ X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
{ X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
{ X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
{ X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
{ X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
{ X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
};
static const uint16_t ReplaceableInstrsAVX2[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
{ X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
{ X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
{ X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
{ X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
{ X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
{ X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
{ X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
{ X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
{ X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
{ X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
{ X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
{ X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
{ X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
{ X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
{ X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
{ X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
{ X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
{ X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
{ X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
{ X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
{ X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
{ X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
{ X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
{ X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
{ X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
{ X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
{ X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
};
static const uint16_t ReplaceableInstrsFP[][3] = {
//PackedSingle PackedDouble
{ X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
{ X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
{ X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
{ X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
{ X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
{ X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
{ X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
{ X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
{ X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
};
static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
{ X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
{ X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
{ X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
};
static const uint16_t ReplaceableInstrsAVX512[][4] = {
// Two integer columns for 64-bit and 32-bit elements.
//PackedSingle PackedDouble PackedInt PackedInt
{ X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
{ X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
{ X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
{ X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
{ X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
{ X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
{ X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
{ X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
{ X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
{ X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
{ X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
{ X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
{ X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
{ X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
{ X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
};
static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
// Two integer columns for 64-bit and 32-bit elements.
//PackedSingle PackedDouble PackedInt PackedInt
{ X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
{ X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
{ X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
{ X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
{ X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
{ X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
{ X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
{ X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
{ X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
{ X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
{ X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
{ X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
{ X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
{ X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
{ X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
{ X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
{ X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
{ X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
{ X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
{ X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
{ X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
{ X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
{ X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
{ X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
};
static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
// Two integer columns for 64-bit and 32-bit elements.
//PackedSingle PackedDouble
//PackedInt PackedInt
{ X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
{ X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
{ X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
{ X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
{ X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
{ X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
{ X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
{ X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
{ X86::VORPSZ128rmk, X86::VORPDZ128rmk,
X86::VPORQZ128rmk, X86::VPORDZ128rmk },
{ X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
{ X86::VORPSZ128rrk, X86::VORPDZ128rrk,
X86::VPORQZ128rrk, X86::VPORDZ128rrk },
{ X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
{ X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
{ X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
{ X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
{ X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
{ X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
{ X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
{ X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
{ X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
{ X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
{ X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
{ X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
{ X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
{ X86::VORPSZ256rmk, X86::VORPDZ256rmk,
X86::VPORQZ256rmk, X86::VPORDZ256rmk },
{ X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
{ X86::VORPSZ256rrk, X86::VORPDZ256rrk,
X86::VPORQZ256rrk, X86::VPORDZ256rrk },
{ X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
{ X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
{ X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
{ X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
{ X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
{ X86::VANDNPSZrmk, X86::VANDNPDZrmk,
X86::VPANDNQZrmk, X86::VPANDNDZrmk },
{ X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
{ X86::VANDNPSZrrk, X86::VANDNPDZrrk,
X86::VPANDNQZrrk, X86::VPANDNDZrrk },
{ X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
{ X86::VANDPSZrmk, X86::VANDPDZrmk,
X86::VPANDQZrmk, X86::VPANDDZrmk },
{ X86::VANDPSZrmkz, X86::VANDPDZrmkz,
X86::VPANDQZrmkz, X86::VPANDDZrmkz },
{ X86::VANDPSZrrk, X86::VANDPDZrrk,
X86::VPANDQZrrk, X86::VPANDDZrrk },
{ X86::VANDPSZrrkz, X86::VANDPDZrrkz,
X86::VPANDQZrrkz, X86::VPANDDZrrkz },
{ X86::VORPSZrmk, X86::VORPDZrmk,
X86::VPORQZrmk, X86::VPORDZrmk },
{ X86::VORPSZrmkz, X86::VORPDZrmkz,
X86::VPORQZrmkz, X86::VPORDZrmkz },
{ X86::VORPSZrrk, X86::VORPDZrrk,
X86::VPORQZrrk, X86::VPORDZrrk },
{ X86::VORPSZrrkz, X86::VORPDZrrkz,
X86::VPORQZrrkz, X86::VPORDZrrkz },
{ X86::VXORPSZrmk, X86::VXORPDZrmk,
X86::VPXORQZrmk, X86::VPXORDZrmk },
{ X86::VXORPSZrmkz, X86::VXORPDZrmkz,
X86::VPXORQZrmkz, X86::VPXORDZrmkz },
{ X86::VXORPSZrrk, X86::VXORPDZrrk,
X86::VPXORQZrrk, X86::VPXORDZrrk },
{ X86::VXORPSZrrkz, X86::VXORPDZrrkz,
X86::VPXORQZrrkz, X86::VPXORDZrrkz },
// Broadcast loads can be handled the same as masked operations to avoid
// changing element size.
{ X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
{ X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
{ X86::VORPSZ128rmb, X86::VORPDZ128rmb,
X86::VPORQZ128rmb, X86::VPORDZ128rmb },
{ X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
{ X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
{ X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
{ X86::VORPSZ256rmb, X86::VORPDZ256rmb,
X86::VPORQZ256rmb, X86::VPORDZ256rmb },
{ X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
{ X86::VANDNPSZrmb, X86::VANDNPDZrmb,
X86::VPANDNQZrmb, X86::VPANDNDZrmb },
{ X86::VANDPSZrmb, X86::VANDPDZrmb,
X86::VPANDQZrmb, X86::VPANDDZrmb },
{ X86::VANDPSZrmb, X86::VANDPDZrmb,
X86::VPANDQZrmb, X86::VPANDDZrmb },
{ X86::VORPSZrmb, X86::VORPDZrmb,
X86::VPORQZrmb, X86::VPORDZrmb },
{ X86::VXORPSZrmb, X86::VXORPDZrmb,
X86::VPXORQZrmb, X86::VPXORDZrmb },
{ X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
{ X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
{ X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
{ X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
{ X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
{ X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
{ X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
{ X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
{ X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
{ X86::VANDPSZrmbk, X86::VANDPDZrmbk,
X86::VPANDQZrmbk, X86::VPANDDZrmbk },
{ X86::VANDPSZrmbk, X86::VANDPDZrmbk,
X86::VPANDQZrmbk, X86::VPANDDZrmbk },
{ X86::VORPSZrmbk, X86::VORPDZrmbk,
X86::VPORQZrmbk, X86::VPORDZrmbk },
{ X86::VXORPSZrmbk, X86::VXORPDZrmbk,
X86::VPXORQZrmbk, X86::VPXORDZrmbk },
{ X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
{ X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
{ X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
{ X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
{ X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
{ X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
{ X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
{ X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
{ X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
{ X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
{ X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
{ X86::VORPSZrmbkz, X86::VORPDZrmbkz,
X86::VPORQZrmbkz, X86::VPORDZrmbkz },
{ X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
};
// NOTE: These should only be used by the custom domain methods.
static const uint16_t ReplaceableBlendInstrs[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
{ X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
{ X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
{ X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
{ X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
{ X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
};
static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
{ X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
{ X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
{ X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
};
// Special table for changing EVEX logic instructions to VEX.
// TODO: Should we run EVEX->VEX earlier?
static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
// Two integer columns for 64-bit and 32-bit elements.
//PackedSingle PackedDouble PackedInt PackedInt
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
{ X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
{ X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
{ X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
{ X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
{ X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
{ X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
{ X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
};
// FIXME: Some shuffle and unpack instructions have equivalents in different
// domains, but they require a bit more work than just switching opcodes.
static const uint16_t *lookup(unsigned opcode, unsigned domain,
ArrayRef<uint16_t[3]> Table) {
for (const uint16_t (&Row)[3] : Table)
if (Row[domain-1] == opcode)
return Row;
return nullptr;
}
static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
ArrayRef<uint16_t[4]> Table) {
// If this is the integer domain make sure to check both integer columns.
for (const uint16_t (&Row)[4] : Table)
if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
return Row;
return nullptr;
}
// Helper to attempt to widen/narrow blend masks.
static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
unsigned NewWidth, unsigned *pNewMask = nullptr) {
assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
"Illegal blend mask scale");
unsigned NewMask = 0;
if ((OldWidth % NewWidth) == 0) {
unsigned Scale = OldWidth / NewWidth;
unsigned SubMask = (1u << Scale) - 1;
for (unsigned i = 0; i != NewWidth; ++i) {
unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
if (Sub == SubMask)
NewMask |= (1u << i);
else if (Sub != 0x0)
return false;
}
} else {
unsigned Scale = NewWidth / OldWidth;
unsigned SubMask = (1u << Scale) - 1;
for (unsigned i = 0; i != OldWidth; ++i) {
if (OldMask & (1 << i)) {
NewMask |= (SubMask << (i * Scale));
}
}
}
if (pNewMask)
*pNewMask = NewMask;
return true;
}
uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
unsigned Opcode = MI.getOpcode();
unsigned NumOperands = MI.getDesc().getNumOperands();
auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
uint16_t validDomains = 0;
if (MI.getOperand(NumOperands - 1).isImm()) {
unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
validDomains |= 0x2; // PackedSingle
if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
validDomains |= 0x4; // PackedDouble
if (!Is256 || Subtarget.hasAVX2())
validDomains |= 0x8; // PackedInt
}
return validDomains;
};
switch (Opcode) {
case X86::BLENDPDrmi:
case X86::BLENDPDrri:
case X86::VBLENDPDrmi:
case X86::VBLENDPDrri:
return GetBlendDomains(2, false);
case X86::VBLENDPDYrmi:
case X86::VBLENDPDYrri:
return GetBlendDomains(4, true);
case X86::BLENDPSrmi:
case X86::BLENDPSrri:
case X86::VBLENDPSrmi:
case X86::VBLENDPSrri:
case X86::VPBLENDDrmi:
case X86::VPBLENDDrri:
return GetBlendDomains(4, false);
case X86::VBLENDPSYrmi:
case X86::VBLENDPSYrri:
case X86::VPBLENDDYrmi:
case X86::VPBLENDDYrri:
return GetBlendDomains(8, true);
case X86::PBLENDWrmi:
case X86::PBLENDWrri:
case X86::VPBLENDWrmi:
case X86::VPBLENDWrri:
// Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
case X86::VPBLENDWYrmi:
case X86::VPBLENDWYrri:
return GetBlendDomains(8, false);
case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
case X86::VPORDZ128rr: case X86::VPORDZ128rm:
case X86::VPORDZ256rr: case X86::VPORDZ256rm:
case X86::VPORQZ128rr: case X86::VPORQZ128rm:
case X86::VPORQZ256rr: case X86::VPORQZ256rm:
case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
// If we don't have DQI see if we can still switch from an EVEX integer
// instruction to a VEX floating point instruction.
if (Subtarget.hasDQI())
return 0;
if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
return 0;
if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
return 0;
// Register forms will have 3 operands. Memory form will have more.
if (NumOperands == 3 &&
RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
return 0;
// All domains are valid.
return 0xe;
case X86::MOVHLPSrr:
// We can swap domains when both inputs are the same register.
// FIXME: This doesn't catch all the cases we would like. If the input
// register isn't KILLed by the instruction, the two address instruction
// pass puts a COPY on one input. The other input uses the original
// register. This prevents the same physical register from being used by
// both inputs.
if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
MI.getOperand(0).getSubReg() == 0 &&
MI.getOperand(1).getSubReg() == 0 &&
MI.getOperand(2).getSubReg() == 0)
return 0x6;
return 0;
case X86::SHUFPDrri:
return 0x6;
}
return 0;
}
bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
unsigned Domain) const {
assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
assert(dom && "Not an SSE instruction");
unsigned Opcode = MI.getOpcode();
unsigned NumOperands = MI.getDesc().getNumOperands();
auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
if (MI.getOperand(NumOperands - 1).isImm()) {
unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
unsigned NewImm = Imm;
const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
if (!table)
table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
if (Domain == 1) { // PackedSingle
AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
} else if (Domain == 2) { // PackedDouble
AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
} else if (Domain == 3) { // PackedInt
if (Subtarget.hasAVX2()) {
// If we are already VPBLENDW use that, else use VPBLENDD.
if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
}
} else {
assert(!Is256 && "128-bit vector expected");
AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
}
}
assert(table && table[Domain - 1] && "Unknown domain op");
MI.setDesc(get(table[Domain - 1]));
MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
}
return true;
};
switch (Opcode) {
case X86::BLENDPDrmi:
case X86::BLENDPDrri:
case X86::VBLENDPDrmi:
case X86::VBLENDPDrri:
return SetBlendDomain(2, false);
case X86::VBLENDPDYrmi:
case X86::VBLENDPDYrri:
return SetBlendDomain(4, true);
case X86::BLENDPSrmi:
case X86::BLENDPSrri:
case X86::VBLENDPSrmi:
case X86::VBLENDPSrri:
case X86::VPBLENDDrmi:
case X86::VPBLENDDrri:
return SetBlendDomain(4, false);
case X86::VBLENDPSYrmi:
case X86::VBLENDPSYrri:
case X86::VPBLENDDYrmi:
case X86::VPBLENDDYrri:
return SetBlendDomain(8, true);
case X86::PBLENDWrmi:
case X86::PBLENDWrri:
case X86::VPBLENDWrmi:
case X86::VPBLENDWrri:
return SetBlendDomain(8, false);
case X86::VPBLENDWYrmi:
case X86::VPBLENDWYrri:
return SetBlendDomain(16, true);
case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
case X86::VPORDZ128rr: case X86::VPORDZ128rm:
case X86::VPORDZ256rr: case X86::VPORDZ256rm:
case X86::VPORQZ128rr: case X86::VPORQZ128rm:
case X86::VPORQZ256rr: case X86::VPORQZ256rm:
case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
// Without DQI, convert EVEX instructions to VEX instructions.
if (Subtarget.hasDQI())
return false;
const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
ReplaceableCustomAVX512LogicInstrs);
assert(table && "Instruction not found in table?");
// Don't change integer Q instructions to D instructions and
// use D intructions if we started with a PS instruction.
if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
Domain = 4;
MI.setDesc(get(table[Domain - 1]));
return true;
}
case X86::UNPCKHPDrr:
case X86::MOVHLPSrr:
// We just need to commute the instruction which will switch the domains.
if (Domain != dom && Domain != 3 &&
MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
MI.getOperand(0).getSubReg() == 0 &&
MI.getOperand(1).getSubReg() == 0 &&
MI.getOperand(2).getSubReg() == 0) {
commuteInstruction(MI, false);
return true;
}
// We must always return true for MOVHLPSrr.
if (Opcode == X86::MOVHLPSrr)
return true;
break;
case X86::SHUFPDrri: {
if (Domain == 1) {
unsigned Imm = MI.getOperand(3).getImm();
unsigned NewImm = 0x44;
if (Imm & 1) NewImm |= 0x0a;
if (Imm & 2) NewImm |= 0xa0;
MI.getOperand(3).setImm(NewImm);
MI.setDesc(get(X86::SHUFPSrri));
}
return true;
}
}
return false;
}
std::pair<uint16_t, uint16_t>
X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
unsigned opcode = MI.getOpcode();
uint16_t validDomains = 0;
if (domain) {
// Attempt to match for custom instructions.
validDomains = getExecutionDomainCustom(MI);
if (validDomains)
return std::make_pair(domain, validDomains);
if (lookup(opcode, domain, ReplaceableInstrs)) {
validDomains = 0xe;
} else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
} else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
validDomains = 0x6;
} else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
// Insert/extract instructions should only effect domain if AVX2
// is enabled.
if (!Subtarget.hasAVX2())
return std::make_pair(0, 0);
validDomains = 0xe;
} else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
validDomains = 0xe;
} else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
ReplaceableInstrsAVX512DQ)) {
validDomains = 0xe;
} else if (Subtarget.hasDQI()) {
if (const uint16_t *table = lookupAVX512(opcode, domain,
ReplaceableInstrsAVX512DQMasked)) {
if (domain == 1 || (domain == 3 && table[3] == opcode))
validDomains = 0xa;
else
validDomains = 0xc;
}
}
}
return std::make_pair(domain, validDomains);
}
void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
assert(Domain>0 && Domain<4 && "Invalid execution domain");
uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
assert(dom && "Not an SSE instruction");
// Attempt to match for custom instructions.
if (setExecutionDomainCustom(MI, Domain))
return;
const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
if (!table) { // try the other table
assert((Subtarget.hasAVX2() || Domain < 3) &&
"256-bit vector operations only available in AVX2");
table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
}
if (!table) { // try the FP table
table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
assert((!table || Domain < 3) &&
"Can only select PackedSingle or PackedDouble");
}
if (!table) { // try the other table
assert(Subtarget.hasAVX2() &&
"256-bit insert/extract only available in AVX2");
table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
}
if (!table) { // try the AVX512 table
assert(Subtarget.hasAVX512() && "Requires AVX-512");
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
// Don't change integer Q instructions to D instructions.
if (table && Domain == 3 && table[3] == MI.getOpcode())
Domain = 4;
}
if (!table) { // try the AVX512DQ table
assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
// Don't change integer Q instructions to D instructions and
// use D instructions if we started with a PS instruction.
if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
Domain = 4;
}
if (!table) { // try the AVX512DQMasked table
assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
Domain = 4;
}
assert(table && "Cannot change domain");
MI.setDesc(get(table[Domain - 1]));
}
/// Return the noop instruction to use for a noop.
MCInst X86InstrInfo::getNop() const {
MCInst Nop;
Nop.setOpcode(X86::NOOP);
return Nop;
}
bool X86InstrInfo::isHighLatencyDef(int opc) const {
switch (opc) {
default: return false;
case X86::DIVPDrm:
case X86::DIVPDrr:
case X86::DIVPSrm:
case X86::DIVPSrr:
case X86::DIVSDrm:
case X86::DIVSDrm_Int:
case X86::DIVSDrr:
case X86::DIVSDrr_Int:
case X86::DIVSSrm:
case X86::DIVSSrm_Int:
case X86::DIVSSrr:
case X86::DIVSSrr_Int:
case X86::SQRTPDm:
case X86::SQRTPDr:
case X86::SQRTPSm:
case X86::SQRTPSr:
case X86::SQRTSDm:
case X86::SQRTSDm_Int:
case X86::SQRTSDr:
case X86::SQRTSDr_Int:
case X86::SQRTSSm:
case X86::SQRTSSm_Int:
case X86::SQRTSSr:
case X86::SQRTSSr_Int:
// AVX instructions with high latency
case X86::VDIVPDrm:
case X86::VDIVPDrr:
case X86::VDIVPDYrm:
case X86::VDIVPDYrr:
case X86::VDIVPSrm:
case X86::VDIVPSrr:
case X86::VDIVPSYrm:
case X86::VDIVPSYrr:
case X86::VDIVSDrm:
case X86::VDIVSDrm_Int:
case X86::VDIVSDrr:
case X86::VDIVSDrr_Int:
case X86::VDIVSSrm:
case X86::VDIVSSrm_Int:
case X86::VDIVSSrr:
case X86::VDIVSSrr_Int:
case X86::VSQRTPDm:
case X86::VSQRTPDr:
case X86::VSQRTPDYm:
case X86::VSQRTPDYr:
case X86::VSQRTPSm:
case X86::VSQRTPSr:
case X86::VSQRTPSYm:
case X86::VSQRTPSYr:
case X86::VSQRTSDm:
case X86::VSQRTSDm_Int:
case X86::VSQRTSDr:
case X86::VSQRTSDr_Int:
case X86::VSQRTSSm:
case X86::VSQRTSSm_Int:
case X86::VSQRTSSr:
case X86::VSQRTSSr_Int:
// AVX512 instructions with high latency
case X86::VDIVPDZ128rm:
case X86::VDIVPDZ128rmb:
case X86::VDIVPDZ128rmbk:
case X86::VDIVPDZ128rmbkz:
case X86::VDIVPDZ128rmk:
case X86::VDIVPDZ128rmkz:
case X86::VDIVPDZ128rr:
case X86::VDIVPDZ128rrk:
case X86::VDIVPDZ128rrkz:
case X86::VDIVPDZ256rm:
case X86::VDIVPDZ256rmb:
case X86::VDIVPDZ256rmbk:
case X86::VDIVPDZ256rmbkz:
case X86::VDIVPDZ256rmk:
case X86::VDIVPDZ256rmkz:
case X86::VDIVPDZ256rr:
case X86::VDIVPDZ256rrk:
case X86::VDIVPDZ256rrkz:
case X86::VDIVPDZrrb:
case X86::VDIVPDZrrbk:
case X86::VDIVPDZrrbkz:
case X86::VDIVPDZrm:
case X86::VDIVPDZrmb:
case X86::VDIVPDZrmbk:
case X86::VDIVPDZrmbkz:
case X86::VDIVPDZrmk:
case X86::VDIVPDZrmkz:
case X86::VDIVPDZrr:
case X86::VDIVPDZrrk:
case X86::VDIVPDZrrkz:
case X86::VDIVPSZ128rm:
case X86::VDIVPSZ128rmb:
case X86::VDIVPSZ128rmbk:
case X86::VDIVPSZ128rmbkz:
case X86::VDIVPSZ128rmk:
case X86::VDIVPSZ128rmkz:
case X86::VDIVPSZ128rr:
case X86::VDIVPSZ128rrk:
case X86::VDIVPSZ128rrkz:
case X86::VDIVPSZ256rm:
case X86::VDIVPSZ256rmb:
case X86::VDIVPSZ256rmbk:
case X86::VDIVPSZ256rmbkz:
case X86::VDIVPSZ256rmk:
case X86::VDIVPSZ256rmkz:
case X86::VDIVPSZ256rr:
case X86::VDIVPSZ256rrk:
case X86::VDIVPSZ256rrkz:
case X86::VDIVPSZrrb:
case X86::VDIVPSZrrbk:
case X86::VDIVPSZrrbkz:
case X86::VDIVPSZrm:
case X86::VDIVPSZrmb:
case X86::VDIVPSZrmbk:
case X86::VDIVPSZrmbkz:
case X86::VDIVPSZrmk:
case X86::VDIVPSZrmkz:
case X86::VDIVPSZrr:
case X86::VDIVPSZrrk:
case X86::VDIVPSZrrkz:
case X86::VDIVSDZrm:
case X86::VDIVSDZrr:
case X86::VDIVSDZrm_Int:
case X86::VDIVSDZrm_Intk:
case X86::VDIVSDZrm_Intkz:
case X86::VDIVSDZrr_Int:
case X86::VDIVSDZrr_Intk:
case X86::VDIVSDZrr_Intkz:
case X86::VDIVSDZrrb_Int:
case X86::VDIVSDZrrb_Intk:
case X86::VDIVSDZrrb_Intkz:
case X86::VDIVSSZrm:
case X86::VDIVSSZrr:
case X86::VDIVSSZrm_Int:
case X86::VDIVSSZrm_Intk:
case X86::VDIVSSZrm_Intkz:
case X86::VDIVSSZrr_Int:
case X86::VDIVSSZrr_Intk:
case X86::VDIVSSZrr_Intkz:
case X86::VDIVSSZrrb_Int:
case X86::VDIVSSZrrb_Intk:
case X86::VDIVSSZrrb_Intkz:
case X86::VSQRTPDZ128m:
case X86::VSQRTPDZ128mb:
case X86::VSQRTPDZ128mbk:
case X86::VSQRTPDZ128mbkz:
case X86::VSQRTPDZ128mk:
case X86::VSQRTPDZ128mkz:
case X86::VSQRTPDZ128r:
case X86::VSQRTPDZ128rk:
case X86::VSQRTPDZ128rkz:
case X86::VSQRTPDZ256m:
case X86::VSQRTPDZ256mb:
case X86::VSQRTPDZ256mbk:
case X86::VSQRTPDZ256mbkz:
case X86::VSQRTPDZ256mk:
case X86::VSQRTPDZ256mkz:
case X86::VSQRTPDZ256r:
case X86::VSQRTPDZ256rk:
case X86::VSQRTPDZ256rkz:
case X86::VSQRTPDZm:
case X86::VSQRTPDZmb:
case X86::VSQRTPDZmbk:
case X86::VSQRTPDZmbkz:
case X86::VSQRTPDZmk:
case X86::VSQRTPDZmkz:
case X86::VSQRTPDZr:
case X86::VSQRTPDZrb:
case X86::VSQRTPDZrbk:
case X86::VSQRTPDZrbkz:
case X86::VSQRTPDZrk:
case X86::VSQRTPDZrkz:
case X86::VSQRTPSZ128m:
case X86::VSQRTPSZ128mb:
case X86::VSQRTPSZ128mbk:
case X86::VSQRTPSZ128mbkz:
case X86::VSQRTPSZ128mk:
case X86::VSQRTPSZ128mkz:
case X86::VSQRTPSZ128r:
case X86::VSQRTPSZ128rk:
case X86::VSQRTPSZ128rkz:
case X86::VSQRTPSZ256m:
case X86::VSQRTPSZ256mb:
case X86::VSQRTPSZ256mbk:
case X86::VSQRTPSZ256mbkz:
case X86::VSQRTPSZ256mk:
case X86::VSQRTPSZ256mkz:
case X86::VSQRTPSZ256r:
case X86::VSQRTPSZ256rk:
case X86::VSQRTPSZ256rkz:
case X86::VSQRTPSZm:
case X86::VSQRTPSZmb:
case X86::VSQRTPSZmbk:
case X86::VSQRTPSZmbkz:
case X86::VSQRTPSZmk:
case X86::VSQRTPSZmkz:
case X86::VSQRTPSZr:
case X86::VSQRTPSZrb:
case X86::VSQRTPSZrbk:
case X86::VSQRTPSZrbkz:
case X86::VSQRTPSZrk:
case X86::VSQRTPSZrkz:
case X86::VSQRTSDZm:
case X86::VSQRTSDZm_Int:
case X86::VSQRTSDZm_Intk:
case X86::VSQRTSDZm_Intkz:
case X86::VSQRTSDZr:
case X86::VSQRTSDZr_Int:
case X86::VSQRTSDZr_Intk:
case X86::VSQRTSDZr_Intkz:
case X86::VSQRTSDZrb_Int:
case X86::VSQRTSDZrb_Intk:
case X86::VSQRTSDZrb_Intkz:
case X86::VSQRTSSZm:
case X86::VSQRTSSZm_Int:
case X86::VSQRTSSZm_Intk:
case X86::VSQRTSSZm_Intkz:
case X86::VSQRTSSZr:
case X86::VSQRTSSZr_Int:
case X86::VSQRTSSZr_Intk:
case X86::VSQRTSSZr_Intkz:
case X86::VSQRTSSZrb_Int:
case X86::VSQRTSSZrb_Intk:
case X86::VSQRTSSZrb_Intkz:
case X86::VGATHERDPDYrm:
case X86::VGATHERDPDZ128rm:
case X86::VGATHERDPDZ256rm:
case X86::VGATHERDPDZrm:
case X86::VGATHERDPDrm:
case X86::VGATHERDPSYrm:
case X86::VGATHERDPSZ128rm:
case X86::VGATHERDPSZ256rm:
case X86::VGATHERDPSZrm:
case X86::VGATHERDPSrm:
case X86::VGATHERPF0DPDm:
case X86::VGATHERPF0DPSm:
case X86::VGATHERPF0QPDm:
case X86::VGATHERPF0QPSm:
case X86::VGATHERPF1DPDm:
case X86::VGATHERPF1DPSm:
case X86::VGATHERPF1QPDm:
case X86::VGATHERPF1QPSm:
case X86::VGATHERQPDYrm:
case X86::VGATHERQPDZ128rm:
case X86::VGATHERQPDZ256rm:
case X86::VGATHERQPDZrm:
case X86::VGATHERQPDrm:
case X86::VGATHERQPSYrm:
case X86::VGATHERQPSZ128rm:
case X86::VGATHERQPSZ256rm:
case X86::VGATHERQPSZrm:
case X86::VGATHERQPSrm:
case X86::VPGATHERDDYrm:
case X86::VPGATHERDDZ128rm:
case X86::VPGATHERDDZ256rm:
case X86::VPGATHERDDZrm:
case X86::VPGATHERDDrm:
case X86::VPGATHERDQYrm:
case X86::VPGATHERDQZ128rm:
case X86::VPGATHERDQZ256rm:
case X86::VPGATHERDQZrm:
case X86::VPGATHERDQrm:
case X86::VPGATHERQDYrm:
case X86::VPGATHERQDZ128rm:
case X86::VPGATHERQDZ256rm:
case X86::VPGATHERQDZrm:
case X86::VPGATHERQDrm:
case X86::VPGATHERQQYrm:
case X86::VPGATHERQQZ128rm:
case X86::VPGATHERQQZ256rm:
case X86::VPGATHERQQZrm:
case X86::VPGATHERQQrm:
case X86::VSCATTERDPDZ128mr:
case X86::VSCATTERDPDZ256mr:
case X86::VSCATTERDPDZmr:
case X86::VSCATTERDPSZ128mr:
case X86::VSCATTERDPSZ256mr:
case X86::VSCATTERDPSZmr:
case X86::VSCATTERPF0DPDm:
case X86::VSCATTERPF0DPSm:
case X86::VSCATTERPF0QPDm:
case X86::VSCATTERPF0QPSm:
case X86::VSCATTERPF1DPDm:
case X86::VSCATTERPF1DPSm:
case X86::VSCATTERPF1QPDm:
case X86::VSCATTERPF1QPSm:
case X86::VSCATTERQPDZ128mr:
case X86::VSCATTERQPDZ256mr:
case X86::VSCATTERQPDZmr:
case X86::VSCATTERQPSZ128mr:
case X86::VSCATTERQPSZ256mr:
case X86::VSCATTERQPSZmr:
case X86::VPSCATTERDDZ128mr:
case X86::VPSCATTERDDZ256mr:
case X86::VPSCATTERDDZmr:
case X86::VPSCATTERDQZ128mr:
case X86::VPSCATTERDQZ256mr:
case X86::VPSCATTERDQZmr:
case X86::VPSCATTERQDZ128mr:
case X86::VPSCATTERQDZ256mr:
case X86::VPSCATTERQDZmr:
case X86::VPSCATTERQQZ128mr:
case X86::VPSCATTERQQZ256mr:
case X86::VPSCATTERQQZmr:
return true;
}
}
bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
const MachineRegisterInfo *MRI,
const MachineInstr &DefMI,
unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const {
return isHighLatencyDef(DefMI.getOpcode());
}
bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
const MachineBasicBlock *MBB) const {
assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
// Integer binary math/logic instructions have a third source operand:
// the EFLAGS register. That operand must be both defined here and never
// used; ie, it must be dead. If the EFLAGS operand is live, then we can
// not change anything because rearranging the operands could affect other
// instructions that depend on the exact status flags (zero, sign, etc.)
// that are set by using these particular operands with this operation.
const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
assert((Inst.getNumDefs() == 1 || FlagDef) &&
"Implicit def isn't flags?");
if (FlagDef && !FlagDef->isDead())
return false;
return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
}
// TODO: There are many more machine instruction opcodes to match:
// 1. Other data types (integer, vectors)
// 2. Other math / logic operations (xor, or)
// 3. Other forms of the same operation (intrinsics and other variants)
bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
switch (Inst.getOpcode()) {
case X86::AND8rr:
case X86::AND16rr:
case X86::AND32rr:
case X86::AND64rr:
case X86::OR8rr:
case X86::OR16rr:
case X86::OR32rr:
case X86::OR64rr:
case X86::XOR8rr:
case X86::XOR16rr:
case X86::XOR32rr:
case X86::XOR64rr:
case X86::IMUL16rr:
case X86::IMUL32rr:
case X86::IMUL64rr:
case X86::PANDrr:
case X86::PORrr:
case X86::PXORrr:
case X86::ANDPDrr:
case X86::ANDPSrr:
case X86::ORPDrr:
case X86::ORPSrr:
case X86::XORPDrr:
case X86::XORPSrr:
case X86::PADDBrr:
case X86::PADDWrr:
case X86::PADDDrr:
case X86::PADDQrr:
case X86::PMULLWrr:
case X86::PMULLDrr:
case X86::PMAXSBrr:
case X86::PMAXSDrr:
case X86::PMAXSWrr:
case X86::PMAXUBrr:
case X86::PMAXUDrr:
case X86::PMAXUWrr:
case X86::PMINSBrr:
case X86::PMINSDrr:
case X86::PMINSWrr:
case X86::PMINUBrr:
case X86::PMINUDrr:
case X86::PMINUWrr:
case X86::VPANDrr:
case X86::VPANDYrr:
case X86::VPANDDZ128rr:
case X86::VPANDDZ256rr:
case X86::VPANDDZrr:
case X86::VPANDQZ128rr:
case X86::VPANDQZ256rr:
case X86::VPANDQZrr:
case X86::VPORrr:
case X86::VPORYrr:
case X86::VPORDZ128rr:
case X86::VPORDZ256rr:
case X86::VPORDZrr:
case X86::VPORQZ128rr:
case X86::VPORQZ256rr:
case X86::VPORQZrr:
case X86::VPXORrr:
case X86::VPXORYrr:
case X86::VPXORDZ128rr:
case X86::VPXORDZ256rr:
case X86::VPXORDZrr:
case X86::VPXORQZ128rr:
case X86::VPXORQZ256rr:
case X86::VPXORQZrr:
case X86::VANDPDrr:
case X86::VANDPSrr:
case X86::VANDPDYrr:
case X86::VANDPSYrr:
case X86::VANDPDZ128rr:
case X86::VANDPSZ128rr:
case X86::VANDPDZ256rr:
case X86::VANDPSZ256rr:
case X86::VANDPDZrr:
case X86::VANDPSZrr:
case X86::VORPDrr:
case X86::VORPSrr:
case X86::VORPDYrr:
case X86::VORPSYrr:
case X86::VORPDZ128rr:
case X86::VORPSZ128rr:
case X86::VORPDZ256rr:
case X86::VORPSZ256rr:
case X86::VORPDZrr:
case X86::VORPSZrr:
case X86::VXORPDrr:
case X86::VXORPSrr:
case X86::VXORPDYrr:
case X86::VXORPSYrr:
case X86::VXORPDZ128rr:
case X86::VXORPSZ128rr:
case X86::VXORPDZ256rr:
case X86::VXORPSZ256rr:
case X86::VXORPDZrr:
case X86::VXORPSZrr:
case X86::KADDBrr:
case X86::KADDWrr:
case X86::KADDDrr:
case X86::KADDQrr:
case X86::KANDBrr:
case X86::KANDWrr:
case X86::KANDDrr:
case X86::KANDQrr:
case X86::KORBrr:
case X86::KORWrr:
case X86::KORDrr:
case X86::KORQrr:
case X86::KXORBrr:
case X86::KXORWrr:
case X86::KXORDrr:
case X86::KXORQrr:
case X86::VPADDBrr:
case X86::VPADDWrr:
case X86::VPADDDrr:
case X86::VPADDQrr:
case X86::VPADDBYrr:
case X86::VPADDWYrr:
case X86::VPADDDYrr:
case X86::VPADDQYrr:
case X86::VPADDBZ128rr:
case X86::VPADDWZ128rr:
case X86::VPADDDZ128rr:
case X86::VPADDQZ128rr:
case X86::VPADDBZ256rr:
case X86::VPADDWZ256rr:
case X86::VPADDDZ256rr:
case X86::VPADDQZ256rr:
case X86::VPADDBZrr:
case X86::VPADDWZrr:
case X86::VPADDDZrr:
case X86::VPADDQZrr:
case X86::VPMULLWrr:
case X86::VPMULLWYrr:
case X86::VPMULLWZ128rr:
case X86::VPMULLWZ256rr:
case X86::VPMULLWZrr:
case X86::VPMULLDrr:
case X86::VPMULLDYrr:
case X86::VPMULLDZ128rr:
case X86::VPMULLDZ256rr:
case X86::VPMULLDZrr:
case X86::VPMULLQZ128rr:
case X86::VPMULLQZ256rr:
case X86::VPMULLQZrr:
case X86::VPMAXSBrr:
case X86::VPMAXSBYrr:
case X86::VPMAXSBZ128rr:
case X86::VPMAXSBZ256rr:
case X86::VPMAXSBZrr:
case X86::VPMAXSDrr:
case X86::VPMAXSDYrr:
case X86::VPMAXSDZ128rr:
case X86::VPMAXSDZ256rr:
case X86::VPMAXSDZrr:
case X86::VPMAXSQZ128rr:
case X86::VPMAXSQZ256rr:
case X86::VPMAXSQZrr:
case X86::VPMAXSWrr:
case X86::VPMAXSWYrr:
case X86::VPMAXSWZ128rr:
case X86::VPMAXSWZ256rr:
case X86::VPMAXSWZrr:
case X86::VPMAXUBrr:
case X86::VPMAXUBYrr:
case X86::VPMAXUBZ128rr:
case X86::VPMAXUBZ256rr:
case X86::VPMAXUBZrr:
case X86::VPMAXUDrr:
case X86::VPMAXUDYrr:
case X86::VPMAXUDZ128rr:
case X86::VPMAXUDZ256rr:
case X86::VPMAXUDZrr:
case X86::VPMAXUQZ128rr:
case X86::VPMAXUQZ256rr:
case X86::VPMAXUQZrr:
case X86::VPMAXUWrr:
case X86::VPMAXUWYrr:
case X86::VPMAXUWZ128rr:
case X86::VPMAXUWZ256rr:
case X86::VPMAXUWZrr:
case X86::VPMINSBrr:
case X86::VPMINSBYrr:
case X86::VPMINSBZ128rr:
case X86::VPMINSBZ256rr:
case X86::VPMINSBZrr:
case X86::VPMINSDrr:
case X86::VPMINSDYrr:
case X86::VPMINSDZ128rr:
case X86::VPMINSDZ256rr:
case X86::VPMINSDZrr:
case X86::VPMINSQZ128rr:
case X86::VPMINSQZ256rr:
case X86::VPMINSQZrr:
case X86::VPMINSWrr:
case X86::VPMINSWYrr:
case X86::VPMINSWZ128rr:
case X86::VPMINSWZ256rr:
case X86::VPMINSWZrr:
case X86::VPMINUBrr:
case X86::VPMINUBYrr:
case X86::VPMINUBZ128rr:
case X86::VPMINUBZ256rr:
case X86::VPMINUBZrr:
case X86::VPMINUDrr:
case X86::VPMINUDYrr:
case X86::VPMINUDZ128rr:
case X86::VPMINUDZ256rr:
case X86::VPMINUDZrr:
case X86::VPMINUQZ128rr:
case X86::VPMINUQZ256rr:
case X86::VPMINUQZrr:
case X86::VPMINUWrr:
case X86::VPMINUWYrr:
case X86::VPMINUWZ128rr:
case X86::VPMINUWZ256rr:
case X86::VPMINUWZrr:
// Normal min/max instructions are not commutative because of NaN and signed
// zero semantics, but these are. Thus, there's no need to check for global
// relaxed math; the instructions themselves have the properties we need.
case X86::MAXCPDrr:
case X86::MAXCPSrr:
case X86::MAXCSDrr:
case X86::MAXCSSrr:
case X86::MINCPDrr:
case X86::MINCPSrr:
case X86::MINCSDrr:
case X86::MINCSSrr:
case X86::VMAXCPDrr:
case X86::VMAXCPSrr:
case X86::VMAXCPDYrr:
case X86::VMAXCPSYrr:
case X86::VMAXCPDZ128rr:
case X86::VMAXCPSZ128rr:
case X86::VMAXCPDZ256rr:
case X86::VMAXCPSZ256rr:
case X86::VMAXCPDZrr:
case X86::VMAXCPSZrr:
case X86::VMAXCSDrr:
case X86::VMAXCSSrr:
case X86::VMAXCSDZrr:
case X86::VMAXCSSZrr:
case X86::VMINCPDrr:
case X86::VMINCPSrr:
case X86::VMINCPDYrr:
case X86::VMINCPSYrr:
case X86::VMINCPDZ128rr:
case X86::VMINCPSZ128rr:
case X86::VMINCPDZ256rr:
case X86::VMINCPSZ256rr:
case X86::VMINCPDZrr:
case X86::VMINCPSZrr:
case X86::VMINCSDrr:
case X86::VMINCSSrr:
case X86::VMINCSDZrr:
case X86::VMINCSSZrr:
case X86::VMAXCPHZ128rr:
case X86::VMAXCPHZ256rr:
case X86::VMAXCPHZrr:
case X86::VMAXCSHZrr:
case X86::VMINCPHZ128rr:
case X86::VMINCPHZ256rr:
case X86::VMINCPHZrr:
case X86::VMINCSHZrr:
return true;
case X86::ADDPDrr:
case X86::ADDPSrr:
case X86::ADDSDrr:
case X86::ADDSSrr:
case X86::MULPDrr:
case X86::MULPSrr:
case X86::MULSDrr:
case X86::MULSSrr:
case X86::VADDPDrr:
case X86::VADDPSrr:
case X86::VADDPDYrr:
case X86::VADDPSYrr:
case X86::VADDPDZ128rr:
case X86::VADDPSZ128rr:
case X86::VADDPDZ256rr:
case X86::VADDPSZ256rr:
case X86::VADDPDZrr:
case X86::VADDPSZrr:
case X86::VADDSDrr:
case X86::VADDSSrr:
case X86::VADDSDZrr:
case X86::VADDSSZrr:
case X86::VMULPDrr:
case X86::VMULPSrr:
case X86::VMULPDYrr:
case X86::VMULPSYrr:
case X86::VMULPDZ128rr:
case X86::VMULPSZ128rr:
case X86::VMULPDZ256rr:
case X86::VMULPSZ256rr:
case X86::VMULPDZrr:
case X86::VMULPSZrr:
case X86::VMULSDrr:
case X86::VMULSSrr:
case X86::VMULSDZrr:
case X86::VMULSSZrr:
case X86::VADDPHZ128rr:
case X86::VADDPHZ256rr:
case X86::VADDPHZrr:
case X86::VADDSHZrr:
case X86::VMULPHZ128rr:
case X86::VMULPHZ256rr:
case X86::VMULPHZrr:
case X86::VMULSHZrr:
return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
Inst.getFlag(MachineInstr::MIFlag::FmNsz);
default:
return false;
}
}
/// If \p DescribedReg overlaps with the MOVrr instruction's destination
/// register then, if possible, describe the value in terms of the source
/// register.
static Optional<ParamLoadedValue>
describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
const TargetRegisterInfo *TRI) {
Register DestReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
// If the described register is the destination, just return the source.
if (DestReg == DescribedReg)
return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
// If the described register is a sub-register of the destination register,
// then pick out the source register's corresponding sub-register.
if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
}
// The remaining case to consider is when the described register is a
// super-register of the destination register. MOV8rr and MOV16rr does not
// write to any of the other bytes in the register, meaning that we'd have to
// describe the value using a combination of the source register and the
// non-overlapping bits in the described register, which is not currently
// possible.
if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
!TRI->isSuperRegister(DestReg, DescribedReg))
return None;
assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
}
Optional<ParamLoadedValue>
X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
const MachineOperand *Op = nullptr;
DIExpression *Expr = nullptr;
const TargetRegisterInfo *TRI = &getRegisterInfo();
switch (MI.getOpcode()) {
case X86::LEA32r:
case X86::LEA64r:
case X86::LEA64_32r: {
// We may need to describe a 64-bit parameter with a 32-bit LEA.
if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
return None;
// Operand 4 could be global address. For now we do not support
// such situation.
if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
return None;
const MachineOperand &Op1 = MI.getOperand(1);
const MachineOperand &Op2 = MI.getOperand(3);
assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
Register::isPhysicalRegister(Op2.getReg())));
// Omit situations like:
// %rsi = lea %rsi, 4, ...
if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
Op2.getReg() == MI.getOperand(0).getReg())
return None;
else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
(Op2.getReg() != X86::NoRegister &&
TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
return None;
int64_t Coef = MI.getOperand(2).getImm();
int64_t Offset = MI.getOperand(4).getImm();
SmallVector<uint64_t, 8> Ops;
if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
Op = &Op1;
} else if (Op1.isFI())
Op = &Op1;
if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(Coef + 1);
Ops.push_back(dwarf::DW_OP_mul);
} else {
if (Op && Op2.getReg() != X86::NoRegister) {
int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
if (dwarfReg < 0)
return None;
else if (dwarfReg < 32) {
Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
Ops.push_back(0);
} else {
Ops.push_back(dwarf::DW_OP_bregx);
Ops.push_back(dwarfReg);
Ops.push_back(0);
}
} else if (!Op) {
assert(Op2.getReg() != X86::NoRegister);
Op = &Op2;
}
if (Coef > 1) {
assert(Op2.getReg() != X86::NoRegister);
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(Coef);
Ops.push_back(dwarf::DW_OP_mul);
}
if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
Op2.getReg() != X86::NoRegister) {
Ops.push_back(dwarf::DW_OP_plus);
}
}
DIExpression::appendOffset(Ops, Offset);
Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
return ParamLoadedValue(*Op, Expr);;
}
case X86::MOV8ri:
case X86::MOV16ri:
// TODO: Handle MOV8ri and MOV16ri.
return None;
case X86::MOV32ri:
case X86::MOV64ri:
case X86::MOV64ri32:
// MOV32ri may be used for producing zero-extended 32-bit immediates in
// 64-bit parameters, so we need to consider super-registers.
if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
return None;
return ParamLoadedValue(MI.getOperand(1), Expr);
case X86::MOV8rr:
case X86::MOV16rr:
case X86::MOV32rr:
case X86::MOV64rr:
return describeMOVrrLoadedValue(MI, Reg, TRI);
case X86::XOR32rr: {
// 64-bit parameters are zero-materialized using XOR32rr, so also consider
// super-registers.
if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
return None;
if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
return None;
}
case X86::MOVSX64rr32: {
// We may need to describe the lower 32 bits of the MOVSX; for example, in
// cases like this:
//
// $ebx = [...]
// $rdi = MOVSX64rr32 $ebx
// $esi = MOV32rr $edi
if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
return None;
Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
// If the described register is the destination register we need to
// sign-extend the source register from 32 bits. The other case we handle
// is when the described register is the 32-bit sub-register of the
// destination register, in case we just need to return the source
// register.
if (Reg == MI.getOperand(0).getReg())
Expr = DIExpression::appendExt(Expr, 32, 64, true);
else
assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
"Unhandled sub-register case for MOVSX64rr32");
return ParamLoadedValue(MI.getOperand(1), Expr);
}
default:
assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
return TargetInstrInfo::describeLoadedValue(MI, Reg);
}
}
/// This is an architecture-specific helper function of reassociateOps.
/// Set special operand attributes for new instructions after reassociation.
void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
MachineInstr &OldMI2,
MachineInstr &NewMI1,
MachineInstr &NewMI2) const {
// Propagate FP flags from the original instructions.
// But clear poison-generating flags because those may not be valid now.
// TODO: There should be a helper function for copying only fast-math-flags.
uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
NewMI1.setFlags(IntersectedFlags);
NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
NewMI2.setFlags(IntersectedFlags);
NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
// Integer instructions may define an implicit EFLAGS dest register operand.
MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
assert(!OldFlagDef1 == !OldFlagDef2 &&
"Unexpected instruction type for reassociation");
if (!OldFlagDef1 || !OldFlagDef2)
return;
assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
"Must have dead EFLAGS operand in reassociable instruction");
MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
assert(NewFlagDef1 && NewFlagDef2 &&
"Unexpected operand in reassociable instruction");
// Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
// of this pass or other passes. The EFLAGS operands must be dead in these new
// instructions because the EFLAGS operands in the original instructions must
// be dead in order for reassociation to occur.
NewFlagDef1->setIsDead();
NewFlagDef2->setIsDead();
}
std::pair<unsigned, unsigned>
X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
return std::make_pair(TF, 0u);
}
ArrayRef<std::pair<unsigned, const char *>>
X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace X86II;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
{MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
{MO_GOT, "x86-got"},
{MO_GOTOFF, "x86-gotoff"},
{MO_GOTPCREL, "x86-gotpcrel"},
{MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
{MO_PLT, "x86-plt"},
{MO_TLSGD, "x86-tlsgd"},
{MO_TLSLD, "x86-tlsld"},
{MO_TLSLDM, "x86-tlsldm"},
{MO_GOTTPOFF, "x86-gottpoff"},
{MO_INDNTPOFF, "x86-indntpoff"},
{MO_TPOFF, "x86-tpoff"},
{MO_DTPOFF, "x86-dtpoff"},
{MO_NTPOFF, "x86-ntpoff"},
{MO_GOTNTPOFF, "x86-gotntpoff"},
{MO_DLLIMPORT, "x86-dllimport"},
{MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
{MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
{MO_TLVP, "x86-tlvp"},
{MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
{MO_SECREL, "x86-secrel"},
{MO_COFFSTUB, "x86-coffstub"}};
return makeArrayRef(TargetFlags);
}
namespace {
/// Create Global Base Reg pass. This initializes the PIC
/// global base register for x86-32.
struct CGBR : public MachineFunctionPass {
static char ID;
CGBR() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
const X86TargetMachine *TM =
static_cast<const X86TargetMachine *>(&MF.getTarget());
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
// Don't do anything in the 64-bit small and kernel code models. They use
// RIP-relative addressing for everything.
if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
TM->getCodeModel() == CodeModel::Kernel))
return false;
// Only emit a global base reg in PIC mode.
if (!TM->isPositionIndependent())
return false;
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
Register GlobalBaseReg = X86FI->getGlobalBaseReg();
// If we didn't need a GlobalBaseReg, don't insert code.
if (GlobalBaseReg == 0)
return false;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF.front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
const X86InstrInfo *TII = STI.getInstrInfo();
Register PC;
if (STI.isPICStyleGOT())
PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
else
PC = GlobalBaseReg;
if (STI.is64Bit()) {
if (TM->getCodeModel() == CodeModel::Medium) {
// In the medium code model, use a RIP-relative LEA to materialize the
// GOT.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
.addReg(0);
} else if (TM->getCodeModel() == CodeModel::Large) {
// In the large code model, we are aiming for this code, though the
// register allocation may vary:
// leaq .LN$pb(%rip), %rax
// movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
// addq %rcx, %rax
// RAX now holds address of _GLOBAL_OFFSET_TABLE_.
Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addSym(MF.getPICBaseSymbol())
.addReg(0);
std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
.addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_PIC_BASE_OFFSET);
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
.addReg(PBReg, RegState::Kill)
.addReg(GOTReg, RegState::Kill);
} else {
llvm_unreachable("unexpected code model");
}
} else {
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative
// addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
if (STI.isPICStyleGOT()) {
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
// %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC)
.addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_GOT_ABSOLUTE_ADDRESS);
}
}
return true;
}
StringRef getPassName() const override {
return "X86 PIC Global Base Reg Initialization";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // namespace
char CGBR::ID = 0;
FunctionPass*
llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
namespace {
struct LDTLSCleanup : public MachineFunctionPass {
static char ID;
LDTLSCleanup() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
// No point folding accesses if there isn't at least two.
return false;
}
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
return VisitNode(DT->getRootNode(), 0);
}
// Visit the dominator subtree rooted at Node in pre-order.
// If TLSBaseAddrReg is non-null, then use that to replace any
// TLS_base_addr instructions. Otherwise, create the register
// when the first such instruction is seen, and then use it
// as we encounter more instructions.
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
MachineBasicBlock *BB = Node->getBlock();
bool Changed = false;
// Traverse the current block.
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
++I) {
switch (I->getOpcode()) {
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
if (TLSBaseAddrReg)
I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
else
I = SetRegister(*I, &TLSBaseAddrReg);
Changed = true;
break;
default:
break;
}
}
// Visit the children of this block in the dominator tree.
for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
Changed |= VisitNode(*I, TLSBaseAddrReg);
}
return Changed;
}
// Replace the TLS_base_addr instruction I with a copy from
// TLSBaseAddrReg, returning the new instruction.
MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
unsigned TLSBaseAddrReg) {
MachineFunction *MF = I.getParent()->getParent();
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
const bool is64Bit = STI.is64Bit();
const X86InstrInfo *TII = STI.getInstrInfo();
// Insert a Copy from TLSBaseAddrReg to RAX/EAX.
MachineInstr *Copy =
BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
.addReg(TLSBaseAddrReg);
// Erase the TLS_base_addr instruction.
I.eraseFromParent();
return Copy;
}
// Create a virtual register in *TLSBaseAddrReg, and populate it by
// inserting a copy instruction after I. Returns the new instruction.
MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
MachineFunction *MF = I.getParent()->getParent();
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
const bool is64Bit = STI.is64Bit();
const X86InstrInfo *TII = STI.getInstrInfo();
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
*TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
? &X86::GR64RegClass
: &X86::GR32RegClass);
// Insert a copy from RAX/EAX to TLSBaseAddrReg.
MachineInstr *Next = I.getNextNode();
MachineInstr *Copy =
BuildMI(*I.getParent(), Next, I.getDebugLoc(),
TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
.addReg(is64Bit ? X86::RAX : X86::EAX);
return Copy;
}
StringRef getPassName() const override {
return "Local Dynamic TLS Access Clean-up";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char LDTLSCleanup::ID = 0;
FunctionPass*
llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
/// Constants defining how certain sequences should be outlined.
///
/// \p MachineOutlinerDefault implies that the function is called with a call
/// instruction, and a return must be emitted for the outlined function frame.
///
/// That is,
///
/// I1 OUTLINED_FUNCTION:
/// I2 --> call OUTLINED_FUNCTION I1
/// I3 I2
/// I3
/// ret
///
/// * Call construction overhead: 1 (call instruction)
/// * Frame construction overhead: 1 (return instruction)
///
/// \p MachineOutlinerTailCall implies that the function is being tail called.
/// A jump is emitted instead of a call, and the return is already present in
/// the outlined sequence. That is,
///
/// I1 OUTLINED_FUNCTION:
/// I2 --> jmp OUTLINED_FUNCTION I1
/// ret I2
/// ret
///
/// * Call construction overhead: 1 (jump instruction)
/// * Frame construction overhead: 0 (don't need to return)
///
enum MachineOutlinerClass {
MachineOutlinerDefault,
MachineOutlinerTailCall
};
outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
unsigned SequenceSize =
std::accumulate(RepeatedSequenceLocs[0].front(),
std::next(RepeatedSequenceLocs[0].back()), 0,
[](unsigned Sum, const MachineInstr &MI) {
// FIXME: x86 doesn't implement getInstSizeInBytes, so
// we can't tell the cost. Just assume each instruction
// is one byte.
if (MI.isDebugInstr() || MI.isKill())
return Sum;
return Sum + 1;
});
// We check to see if CFI Instructions are present, and if they are
// we find the number of CFI Instructions in the candidates.
unsigned CFICount = 0;
MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
if (MBBI->isCFIInstruction())
CFICount++;
MBBI++;
}
// We compare the number of found CFI Instructions to the number of CFI
// instructions in the parent function for each candidate. We must check this
// since if we outline one of the CFI instructions in a function, we have to
// outline them all for correctness. If we do not, the address offsets will be
// incorrect between the two sections of the program.
for (outliner::Candidate &C : RepeatedSequenceLocs) {
std::vector<MCCFIInstruction> CFIInstructions =
C.getMF()->getFrameInstructions();
if (CFICount > 0 && CFICount != CFIInstructions.size())
return outliner::OutlinedFunction();
}
// FIXME: Use real size in bytes for call and ret instructions.
if (RepeatedSequenceLocs[0].back()->isTerminator()) {
for (outliner::Candidate &C : RepeatedSequenceLocs)
C.setCallInfo(MachineOutlinerTailCall, 1);
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
0, // Number of bytes to emit frame.
MachineOutlinerTailCall // Type of frame.
);
}
if (CFICount > 0)
return outliner::OutlinedFunction();
for (outliner::Candidate &C : RepeatedSequenceLocs)
C.setCallInfo(MachineOutlinerDefault, 1);
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
MachineOutlinerDefault);
}
bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
bool OutlineFromLinkOnceODRs) const {
const Function &F = MF.getFunction();
// Does the function use a red zone? If it does, then we can't risk messing
// with the stack.
if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
// It could have a red zone. If it does, then we don't want to touch it.
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
if (!X86FI || X86FI->getUsesRedZone())
return false;
}
// If we *don't* want to outline from things that could potentially be deduped
// then return false.
if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
return false;
// This function is viable for outlining, so return true.
return true;
}
outliner::InstrType
X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
MachineInstr &MI = *MIT;
// Don't allow debug values to impact outlining type.
if (MI.isDebugInstr() || MI.isIndirectDebugValue())
return outliner::InstrType::Invisible;
// At this point, KILL instructions don't really tell us much so we can go
// ahead and skip over them.
if (MI.isKill())
return outliner::InstrType::Invisible;
// Is this a tail call? If yes, we can outline as a tail call.
if (isTailCall(MI))
return outliner::InstrType::Legal;
// Is this the terminator of a basic block?
if (MI.isTerminator() || MI.isReturn()) {
// Does its parent have any successors in its MachineFunction?
if (MI.getParent()->succ_empty())
return outliner::InstrType::Legal;
// It does, so we can't tail call it.
return outliner::InstrType::Illegal;
}
// Don't outline anything that modifies or reads from the stack pointer.
//
// FIXME: There are instructions which are being manually built without
// explicit uses/defs so we also have to check the MCInstrDesc. We should be
// able to remove the extra checks once those are fixed up. For example,
// sometimes we might get something like %rax = POP64r 1. This won't be
// caught by modifiesRegister or readsRegister even though the instruction
// really ought to be formed so that modifiesRegister/readsRegister would
// catch it.
if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
return outliner::InstrType::Illegal;
// Outlined calls change the instruction pointer, so don't read from it.
if (MI.readsRegister(X86::RIP, &RI) ||
MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
return outliner::InstrType::Illegal;
// Positions can't safely be outlined.
if (MI.isPosition())
return outliner::InstrType::Illegal;
// Make sure none of the operands of this instruction do anything tricky.
for (const MachineOperand &MOP : MI.operands())
if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
MOP.isTargetIndex())
return outliner::InstrType::Illegal;
return outliner::InstrType::Legal;
}
void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
MachineFunction &MF,
const outliner::OutlinedFunction &OF)
const {
// If we're a tail call, we already have a return, so don't do anything.
if (OF.FrameConstructionID == MachineOutlinerTailCall)
return;
// We're a normal call, so our sequence doesn't have a return instruction.
// Add it in.
MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
MBB.insert(MBB.end(), retq);
}
MachineBasicBlock::iterator
X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
MachineBasicBlock::iterator &It,
MachineFunction &MF,
const outliner::Candidate &C) const {
// Is it a tail call?
if (C.CallConstructionID == MachineOutlinerTailCall) {
// Yes, just insert a JMP.
It = MBB.insert(It,
BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
.addGlobalAddress(M.getNamedValue(MF.getName())));
} else {
// No, insert a call.
It = MBB.insert(It,
BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
.addGlobalAddress(M.getNamedValue(MF.getName())));
}
return It;
}
#define GET_INSTRINFO_HELPERS
#include "X86GenInstrInfo.inc"