blob: 48f15b02283a632ab69ef4ab1d81505ce7b19fdc [file] [log] [blame]
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLForwardCompat.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Config/abi-breaking.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#ifdef EXPENSIVE_CHECKS
#include <random> // for std::mt19937
#endif
namespace llvm {
// Only used by compiler if both template types are the same. Useful when
// using SFINAE to test for the existence of member functions.
template <typename T, T> struct SameType;
namespace detail {
template <typename RangeT>
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
template <typename RangeT>
using ValueOfRange = typename std::remove_reference<decltype(
*std::begin(std::declval<RangeT &>()))>::type;
} // end namespace detail
//===----------------------------------------------------------------------===//
// Extra additions to <type_traits>
//===----------------------------------------------------------------------===//
template <typename T> struct make_const_ptr {
using type =
typename std::add_pointer<typename std::add_const<T>::type>::type;
};
template <typename T> struct make_const_ref {
using type = typename std::add_lvalue_reference<
typename std::add_const<T>::type>::type;
};
namespace detail {
template <typename...> using void_t = void;
template <class, template <class...> class Op, class... Args> struct detector {
using value_t = std::false_type;
};
template <template <class...> class Op, class... Args>
struct detector<void_t<Op<Args...>>, Op, Args...> {
using value_t = std::true_type;
};
} // end namespace detail
/// Detects if a given trait holds for some set of arguments 'Args'.
/// For example, the given trait could be used to detect if a given type
/// has a copy assignment operator:
/// template<class T>
/// using has_copy_assign_t = decltype(std::declval<T&>()
/// = std::declval<const T&>());
/// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
template <template <class...> class Op, class... Args>
using is_detected = typename detail::detector<void, Op, Args...>::value_t;
namespace detail {
template <typename Callable, typename... Args>
using is_invocable =
decltype(std::declval<Callable &>()(std::declval<Args>()...));
} // namespace detail
/// Check if a Callable type can be invoked with the given set of arg types.
template <typename Callable, typename... Args>
using is_invocable = is_detected<detail::is_invocable, Callable, Args...>;
/// This class provides various trait information about a callable object.
/// * To access the number of arguments: Traits::num_args
/// * To access the type of an argument: Traits::arg_t<Index>
/// * To access the type of the result: Traits::result_t
template <typename T, bool isClass = std::is_class<T>::value>
struct function_traits : public function_traits<decltype(&T::operator())> {};
/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
/// The number of arguments to this function.
enum { num_args = sizeof...(Args) };
/// The result type of this function.
using result_t = ReturnType;
/// The type of an argument to this function.
template <size_t Index>
using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type;
};
/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...), false>
: function_traits<ReturnType (ClassType::*)(Args...) const> {};
/// Overload for non-class function types.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (*)(Args...), false> {
/// The number of arguments to this function.
enum { num_args = sizeof...(Args) };
/// The result type of this function.
using result_t = ReturnType;
/// The type of an argument to this function.
template <size_t i>
using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type;
};
/// Overload for non-class function type references.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (&)(Args...), false>
: public function_traits<ReturnType (*)(Args...)> {};
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template <class Ty> struct identity {
using argument_type = Ty;
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;
template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Params ...params) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Params>(params)...);
}
public:
function_ref() = default;
function_ref(std::nullptr_t) {}
template <typename Callable>
function_ref(
Callable &&callable,
// This is not the copy-constructor.
std::enable_if_t<!std::is_same<remove_cvref_t<Callable>,
function_ref>::value> * = nullptr,
// Functor must be callable and return a suitable type.
std::enable_if_t<std::is_void<Ret>::value ||
std::is_convertible<decltype(std::declval<Callable>()(
std::declval<Params>()...)),
Ret>::value> * = nullptr)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Params ...params) const {
return callback(callable, std::forward<Params>(params)...);
}
explicit operator bool() const { return callback; }
};
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
namespace adl_detail {
using std::begin;
template <typename ContainerTy>
decltype(auto) adl_begin(ContainerTy &&container) {
return begin(std::forward<ContainerTy>(container));
}
using std::end;
template <typename ContainerTy>
decltype(auto) adl_end(ContainerTy &&container) {
return end(std::forward<ContainerTy>(container));
}
using std::swap;
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
std::declval<T>()))) {
swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
} // end namespace adl_detail
template <typename ContainerTy>
decltype(auto) adl_begin(ContainerTy &&container) {
return adl_detail::adl_begin(std::forward<ContainerTy>(container));
}
template <typename ContainerTy>
decltype(auto) adl_end(ContainerTy &&container) {
return adl_detail::adl_end(std::forward<ContainerTy>(container));
}
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(
noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
template <typename T>
constexpr bool empty(const T &RangeOrContainer) {
return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
}
/// Returns true if the given container only contains a single element.
template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
auto B = std::begin(C), E = std::end(C);
return B != E && std::next(B) == E;
}
/// Return a range covering \p RangeOrContainer with the first N elements
/// excluded.
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
return make_range(std::next(adl_begin(RangeOrContainer), N),
adl_end(RangeOrContainer));
}
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be applied whenever operator* is invoked on the iterator.
template <typename ItTy, typename FuncTy,
typename ReferenceTy =
decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
class mapped_iterator
: public iterator_adaptor_base<
mapped_iterator<ItTy, FuncTy>, ItTy,
typename std::iterator_traits<ItTy>::iterator_category,
std::remove_reference_t<ReferenceTy>,
typename std::iterator_traits<ItTy>::difference_type,
std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
public:
mapped_iterator(ItTy U, FuncTy F)
: mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
ItTy getCurrent() { return this->I; }
const FuncTy &getFunction() const { return F; }
ReferenceTy operator*() const { return F(*this->I); }
private:
FuncTy F;
};
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
}
template <class ContainerTy, class FuncTy>
auto map_range(ContainerTy &&C, FuncTy F) {
return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
}
/// A base type of mapped iterator, that is useful for building derived
/// iterators that do not need/want to store the map function (as in
/// mapped_iterator). These iterators must simply provide a `mapElement` method
/// that defines how to map a value of the iterator to the provided reference
/// type.
template <typename DerivedT, typename ItTy, typename ReferenceTy>
class mapped_iterator_base
: public iterator_adaptor_base<
DerivedT, ItTy,
typename std::iterator_traits<ItTy>::iterator_category,
std::remove_reference_t<ReferenceTy>,
typename std::iterator_traits<ItTy>::difference_type,
std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
public:
using BaseT = mapped_iterator_base;
mapped_iterator_base(ItTy U)
: mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
ItTy getCurrent() { return this->I; }
ReferenceTy operator*() const {
return static_cast<const DerivedT &>(*this).mapElement(*this->I);
}
};
/// Helper to determine if type T has a member called rbegin().
template <typename Ty> class has_rbegin_impl {
using yes = char[1];
using no = char[2];
template <typename Inner>
static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
template <typename>
static no& test(...);
public:
static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};
/// Metafunction to determine if T& or T has a member called rbegin().
template <typename Ty>
struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
};
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(C.rbegin(), C.rend());
}
// Returns a std::reverse_iterator wrapped around the given iterator.
template <typename IteratorTy>
std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
return std::reverse_iterator<IteratorTy>(It);
}
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have begin()/end() methods which return
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)));
}
/// An iterator adaptor that filters the elements of given inner iterators.
///
/// The predicate parameter should be a callable object that accepts the wrapped
/// iterator's reference type and returns a bool. When incrementing or
/// decrementing the iterator, it will call the predicate on each element and
/// skip any where it returns false.
///
/// \code
/// int A[] = { 1, 2, 3, 4 };
/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
/// // R contains { 1, 3 }.
/// \endcode
///
/// Note: filter_iterator_base implements support for forward iteration.
/// filter_iterator_impl exists to provide support for bidirectional iteration,
/// conditional on whether the wrapped iterator supports it.
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
class filter_iterator_base
: public iterator_adaptor_base<
filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
WrappedIteratorT,
typename std::common_type<
IterTag, typename std::iterator_traits<
WrappedIteratorT>::iterator_category>::type> {
using BaseT = typename filter_iterator_base::iterator_adaptor_base;
protected:
WrappedIteratorT End;
PredicateT Pred;
void findNextValid() {
while (this->I != End && !Pred(*this->I))
BaseT::operator++();
}
// Construct the iterator. The begin iterator needs to know where the end
// is, so that it can properly stop when it gets there. The end iterator only
// needs the predicate to support bidirectional iteration.
filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin), End(End), Pred(Pred) {
findNextValid();
}
public:
using BaseT::operator++;
filter_iterator_base &operator++() {
BaseT::operator++();
findNextValid();
return *this;
}
};
/// Specialization of filter_iterator_base for forward iteration only.
template <typename WrappedIteratorT, typename PredicateT,
typename IterTag = std::forward_iterator_tag>
class filter_iterator_impl
: public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
public:
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
};
/// Specialization of filter_iterator_base for bidirectional iteration.
template <typename WrappedIteratorT, typename PredicateT>
class filter_iterator_impl<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag>
: public filter_iterator_base<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag> {
using BaseT = typename filter_iterator_impl::filter_iterator_base;
void findPrevValid() {
while (!this->Pred(*this->I))
BaseT::operator--();
}
public:
using BaseT::operator--;
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin, End, Pred) {}
filter_iterator_impl &operator--() {
BaseT::operator--();
findPrevValid();
return *this;
}
};
namespace detail {
template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
using type = std::forward_iterator_tag;
};
template <> struct fwd_or_bidi_tag_impl<true> {
using type = std::bidirectional_iterator_tag;
};
/// Helper which sets its type member to forward_iterator_tag if the category
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
/// bidirectional_iterator_tag otherwise.
template <typename IterT> struct fwd_or_bidi_tag {
using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
std::bidirectional_iterator_tag,
typename std::iterator_traits<IterT>::iterator_category>::value>::type;
};
} // namespace detail
/// Defines filter_iterator to a suitable specialization of
/// filter_iterator_impl, based on the underlying iterator's category.
template <typename WrappedIteratorT, typename PredicateT>
using filter_iterator = filter_iterator_impl<
WrappedIteratorT, PredicateT,
typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
/// Convenience function that takes a range of elements and a predicate,
/// and return a new filter_iterator range.
///
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
/// lifetime of that temporary is not kept by the returned range object, and the
/// temporary is going to be dropped on the floor after the make_iterator_range
/// full expression that contains this function call.
template <typename RangeT, typename PredicateT>
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT &&Range, PredicateT Pred) {
using FilterIteratorT =
filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
return make_range(
FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred),
FilterIteratorT(std::end(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred));
}
/// A pseudo-iterator adaptor that is designed to implement "early increment"
/// style loops.
///
/// This is *not a normal iterator* and should almost never be used directly. It
/// is intended primarily to be used with range based for loops and some range
/// algorithms.
///
/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
/// somewhere between them. The constraints of these iterators are:
///
/// - On construction or after being incremented, it is comparable and
/// dereferencable. It is *not* incrementable.
/// - After being dereferenced, it is neither comparable nor dereferencable, it
/// is only incrementable.
///
/// This means you can only dereference the iterator once, and you can only
/// increment it once between dereferences.
template <typename WrappedIteratorT>
class early_inc_iterator_impl
: public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
WrappedIteratorT, std::input_iterator_tag> {
using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
protected:
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
bool IsEarlyIncremented = false;
#endif
public:
early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
using BaseT::operator*;
decltype(*std::declval<WrappedIteratorT>()) operator*() {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
assert(!IsEarlyIncremented && "Cannot dereference twice!");
IsEarlyIncremented = true;
#endif
return *(this->I)++;
}
using BaseT::operator++;
early_inc_iterator_impl &operator++() {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
IsEarlyIncremented = false;
#endif
return *this;
}
friend bool operator==(const early_inc_iterator_impl &LHS,
const early_inc_iterator_impl &RHS) {
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
#endif
return (const BaseT &)LHS == (const BaseT &)RHS;
}
};
/// Make a range that does early increment to allow mutation of the underlying
/// range without disrupting iteration.
///
/// The underlying iterator will be incremented immediately after it is
/// dereferenced, allowing deletion of the current node or insertion of nodes to
/// not disrupt iteration provided they do not invalidate the *next* iterator --
/// the current iterator can be invalidated.
///
/// This requires a very exact pattern of use that is only really suitable to
/// range based for loops and other range algorithms that explicitly guarantee
/// to dereference exactly once each element, and to increment exactly once each
/// element.
template <typename RangeT>
iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
make_early_inc_range(RangeT &&Range) {
using EarlyIncIteratorT =
early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
}
// forward declarations required by zip_shortest/zip_first/zip_longest
template <typename R, typename UnaryPredicate>
bool all_of(R &&range, UnaryPredicate P);
template <typename R, typename UnaryPredicate>
bool any_of(R &&range, UnaryPredicate P);
namespace detail {
using std::declval;
// We have to alias this since inlining the actual type at the usage site
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
template<typename... Iters> struct ZipTupleType {
using type = std::tuple<decltype(*declval<Iters>())...>;
};
template <typename ZipType, typename... Iters>
using zip_traits = iterator_facade_base<
ZipType, typename std::common_type<std::bidirectional_iterator_tag,
typename std::iterator_traits<
Iters>::iterator_category...>::type,
// ^ TODO: Implement random access methods.
typename ZipTupleType<Iters...>::type,
typename std::iterator_traits<typename std::tuple_element<
0, std::tuple<Iters...>>::type>::difference_type,
// ^ FIXME: This follows boost::make_zip_iterator's assumption that all
// inner iterators have the same difference_type. It would fail if, for
// instance, the second field's difference_type were non-numeric while the
// first is.
typename ZipTupleType<Iters...>::type *,
typename ZipTupleType<Iters...>::type>;
template <typename ZipType, typename... Iters>
struct zip_common : public zip_traits<ZipType, Iters...> {
using Base = zip_traits<ZipType, Iters...>;
using value_type = typename Base::value_type;
std::tuple<Iters...> iterators;
protected:
template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
return value_type(*std::get<Ns>(iterators)...);
}
template <size_t... Ns>
decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
}
template <size_t... Ns>
decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
}
template <size_t... Ns>
bool test_all_equals(const zip_common &other,
std::index_sequence<Ns...>) const {
return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) ==
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
public:
zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
value_type operator*() const {
return deref(std::index_sequence_for<Iters...>{});
}
ZipType &operator++() {
iterators = tup_inc(std::index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
ZipType &operator--() {
static_assert(Base::IsBidirectional,
"All inner iterators must be at least bidirectional.");
iterators = tup_dec(std::index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
/// Return true if all the iterator are matching `other`'s iterators.
bool all_equals(zip_common &other) {
return test_all_equals(other, std::index_sequence_for<Iters...>{});
}
};
template <typename... Iters>
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
using Base = zip_common<zip_first<Iters...>, Iters...>;
bool operator==(const zip_first<Iters...> &other) const {
return std::get<0>(this->iterators) == std::get<0>(other.iterators);
}
zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
};
template <typename... Iters>
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
template <size_t... Ns>
bool test(const zip_shortest<Iters...> &other,
std::index_sequence<Ns...>) const {
return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
public:
using Base = zip_common<zip_shortest<Iters...>, Iters...>;
zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
bool operator==(const zip_shortest<Iters...> &other) const {
return !test(other, std::index_sequence_for<Iters...>{});
}
};
template <template <typename...> class ItType, typename... Args> class zippy {
public:
using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
using iterator_category = typename iterator::iterator_category;
using value_type = typename iterator::value_type;
using difference_type = typename iterator::difference_type;
using pointer = typename iterator::pointer;
using reference = typename iterator::reference;
private:
std::tuple<Args...> ts;
template <size_t... Ns>
iterator begin_impl(std::index_sequence<Ns...>) const {
return iterator(std::begin(std::get<Ns>(ts))...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
return iterator(std::end(std::get<Ns>(ts))...);
}
public:
zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
iterator begin() const {
return begin_impl(std::index_sequence_for<Args...>{});
}
iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
};
} // end namespace detail
/// zip iterator for two or more iteratable types.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_shortest, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
/// be the shortest.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_first, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
namespace detail {
template <typename Iter>
Iter next_or_end(const Iter &I, const Iter &End) {
if (I == End)
return End;
return std::next(I);
}
template <typename Iter>
auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional<
std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
if (I == End)
return None;
return *I;
}
template <typename Iter> struct ZipLongestItemType {
using type =
llvm::Optional<typename std::remove_const<typename std::remove_reference<
decltype(*std::declval<Iter>())>::type>::type>;
};
template <typename... Iters> struct ZipLongestTupleType {
using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
};
template <typename... Iters>
class zip_longest_iterator
: public iterator_facade_base<
zip_longest_iterator<Iters...>,
typename std::common_type<
std::forward_iterator_tag,
typename std::iterator_traits<Iters>::iterator_category...>::type,
typename ZipLongestTupleType<Iters...>::type,
typename std::iterator_traits<typename std::tuple_element<
0, std::tuple<Iters...>>::type>::difference_type,
typename ZipLongestTupleType<Iters...>::type *,
typename ZipLongestTupleType<Iters...>::type> {
public:
using value_type = typename ZipLongestTupleType<Iters...>::type;
private:
std::tuple<Iters...> iterators;
std::tuple<Iters...> end_iterators;
template <size_t... Ns>
bool test(const zip_longest_iterator<Iters...> &other,
std::index_sequence<Ns...>) const {
return llvm::any_of(
std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
return value_type(
deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
}
template <size_t... Ns>
decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(
next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
}
public:
zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
: iterators(std::forward<Iters>(ts.first)...),
end_iterators(std::forward<Iters>(ts.second)...) {}
value_type operator*() const {
return deref(std::index_sequence_for<Iters...>{});
}
zip_longest_iterator<Iters...> &operator++() {
iterators = tup_inc(std::index_sequence_for<Iters...>{});
return *this;
}
bool operator==(const zip_longest_iterator<Iters...> &other) const {
return !test(other, std::index_sequence_for<Iters...>{});
}
};
template <typename... Args> class zip_longest_range {
public:
using iterator =
zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
using iterator_category = typename iterator::iterator_category;
using value_type = typename iterator::value_type;
using difference_type = typename iterator::difference_type;
using pointer = typename iterator::pointer;
using reference = typename iterator::reference;
private:
std::tuple<Args...> ts;
template <size_t... Ns>
iterator begin_impl(std::index_sequence<Ns...>) const {
return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
adl_end(std::get<Ns>(ts)))...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
adl_end(std::get<Ns>(ts)))...);
}
public:
zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
iterator begin() const {
return begin_impl(std::index_sequence_for<Args...>{});
}
iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
};
} // namespace detail
/// Iterate over two or more iterators at the same time. Iteration continues
/// until all iterators reach the end. The llvm::Optional only contains a value
/// if the iterator has not reached the end.
template <typename T, typename U, typename... Args>
detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
Args &&... args) {
return detail::zip_longest_range<T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// Iterator wrapper that concatenates sequences together.
///
/// This can concatenate different iterators, even with different types, into
/// a single iterator provided the value types of all the concatenated
/// iterators expose `reference` and `pointer` types that can be converted to
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
/// interesting/customized pointer or reference types.
///
/// Currently this only supports forward or higher iterator categories as
/// inputs and always exposes a forward iterator interface.
template <typename ValueT, typename... IterTs>
class concat_iterator
: public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
std::forward_iterator_tag, ValueT> {
using BaseT = typename concat_iterator::iterator_facade_base;
/// We store both the current and end iterators for each concatenated
/// sequence in a tuple of pairs.
///
/// Note that something like iterator_range seems nice at first here, but the
/// range properties are of little benefit and end up getting in the way
/// because we need to do mutation on the current iterators.
std::tuple<IterTs...> Begins;
std::tuple<IterTs...> Ends;
/// Attempts to increment a specific iterator.
///
/// Returns true if it was able to increment the iterator. Returns false if
/// the iterator is already at the end iterator.
template <size_t Index> bool incrementHelper() {
auto &Begin = std::get<Index>(Begins);
auto &End = std::get<Index>(Ends);
if (Begin == End)
return false;
++Begin;
return true;
}
/// Increments the first non-end iterator.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
// Build a sequence of functions to increment each iterator if possible.
bool (concat_iterator::*IncrementHelperFns[])() = {
&concat_iterator::incrementHelper<Ns>...};
// Loop over them, and stop as soon as we succeed at incrementing one.
for (auto &IncrementHelperFn : IncrementHelperFns)
if ((this->*IncrementHelperFn)())
return;
llvm_unreachable("Attempted to increment an end concat iterator!");
}
/// Returns null if the specified iterator is at the end. Otherwise,
/// dereferences the iterator and returns the address of the resulting
/// reference.
template <size_t Index> ValueT *getHelper() const {
auto &Begin = std::get<Index>(Begins);
auto &End = std::get<Index>(Ends);
if (Begin == End)
return nullptr;
return &*Begin;
}
/// Finds the first non-end iterator, dereferences, and returns the resulting
/// reference.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
// Build a sequence of functions to get from iterator if possible.
ValueT *(concat_iterator::*GetHelperFns[])() const = {
&concat_iterator::getHelper<Ns>...};
// Loop over them, and return the first result we find.
for (auto &GetHelperFn : GetHelperFns)
if (ValueT *P = (this->*GetHelperFn)())
return *P;
llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
}
public:
/// Constructs an iterator from a sequence of ranges.
///
/// We need the full range to know how to switch between each of the
/// iterators.
template <typename... RangeTs>
explicit concat_iterator(RangeTs &&... Ranges)
: Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
using BaseT::operator++;
concat_iterator &operator++() {
increment(std::index_sequence_for<IterTs...>());
return *this;
}
ValueT &operator*() const {
return get(std::index_sequence_for<IterTs...>());
}
bool operator==(const concat_iterator &RHS) const {
return Begins == RHS.Begins && Ends == RHS.Ends;
}
};
namespace detail {
/// Helper to store a sequence of ranges being concatenated and access them.
///
/// This is designed to facilitate providing actual storage when temporaries
/// are passed into the constructor such that we can use it as part of range
/// based for loops.
template <typename ValueT, typename... RangeTs> class concat_range {
public:
using iterator =
concat_iterator<ValueT,
decltype(std::begin(std::declval<RangeTs &>()))...>;
private:
std::tuple<RangeTs...> Ranges;
template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
return iterator(std::get<Ns>(Ranges)...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
return iterator(make_range(std::end(std::get<Ns>(Ranges)),
std::end(std::get<Ns>(Ranges)))...);
}
public:
concat_range(RangeTs &&... Ranges)
: Ranges(std::forward<RangeTs>(Ranges)...) {}
iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
};
} // end namespace detail
/// Concatenated range across two or more ranges.
///
/// The desired value type must be explicitly specified.
template <typename ValueT, typename... RangeTs>
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
static_assert(sizeof...(RangeTs) > 1,
"Need more than one range to concatenate!");
return detail::concat_range<ValueT, RangeTs...>(
std::forward<RangeTs>(Ranges)...);
}
/// A utility class used to implement an iterator that contains some base object
/// and an index. The iterator moves the index but keeps the base constant.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_iterator
: public llvm::iterator_facade_base<DerivedT,
std::random_access_iterator_tag, T,
std::ptrdiff_t, PointerT, ReferenceT> {
public:
ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
assert(base == rhs.base && "incompatible iterators");
return index - rhs.index;
}
bool operator==(const indexed_accessor_iterator &rhs) const {
return base == rhs.base && index == rhs.index;
}
bool operator<(const indexed_accessor_iterator &rhs) const {
assert(base == rhs.base && "incompatible iterators");
return index < rhs.index;
}
DerivedT &operator+=(ptrdiff_t offset) {
this->index += offset;
return static_cast<DerivedT &>(*this);
}
DerivedT &operator-=(ptrdiff_t offset) {
this->index -= offset;
return static_cast<DerivedT &>(*this);
}
/// Returns the current index of the iterator.
ptrdiff_t getIndex() const { return index; }
/// Returns the current base of the iterator.
const BaseT &getBase() const { return base; }
protected:
indexed_accessor_iterator(BaseT base, ptrdiff_t index)
: base(base), index(index) {}
BaseT base;
ptrdiff_t index;
};
namespace detail {
/// The class represents the base of a range of indexed_accessor_iterators. It
/// provides support for many different range functionalities, e.g.
/// drop_front/slice/etc.. Derived range classes must implement the following
/// static methods:
/// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
/// - Dereference an iterator pointing to the base object at the given
/// index.
/// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
/// - Return a new base that is offset from the provide base by 'index'
/// elements.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range_base {
public:
using RangeBaseT = indexed_accessor_range_base;
/// An iterator element of this range.
class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
PointerT, ReferenceT> {
public:
// Index into this iterator, invoking a static method on the derived type.
ReferenceT operator*() const {
return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
}
private:
iterator(BaseT owner, ptrdiff_t curIndex)
: iterator::indexed_accessor_iterator(owner, curIndex) {}
/// Allow access to the constructor.
friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
ReferenceT>;
};
indexed_accessor_range_base(iterator begin, iterator end)
: base(offset_base(begin.getBase(), begin.getIndex())),
count(end.getIndex() - begin.getIndex()) {}
indexed_accessor_range_base(const iterator_range<iterator> &range)
: indexed_accessor_range_base(range.begin(), range.end()) {}
indexed_accessor_range_base(BaseT base, ptrdiff_t count)
: base(base), count(count) {}
iterator begin() const { return iterator(base, 0); }
iterator end() const { return iterator(base, count); }
ReferenceT operator[](size_t Index) const {
assert(Index < size() && "invalid index for value range");
return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
}
ReferenceT front() const {
assert(!empty() && "expected non-empty range");
return (*this)[0];
}
ReferenceT back() const {
assert(!empty() && "expected non-empty range");
return (*this)[size() - 1];
}
/// Compare this range with another.
template <typename OtherT> bool operator==(const OtherT &other) const {
return size() ==
static_cast<size_t>(std::distance(other.begin(), other.end())) &&
std::equal(begin(), end(), other.begin());
}
template <typename OtherT> bool operator!=(const OtherT &other) const {
return !(*this == other);
}
/// Return the size of this range.
size_t size() const { return count; }
/// Return if the range is empty.
bool empty() const { return size() == 0; }
/// Drop the first N elements, and keep M elements.
DerivedT slice(size_t n, size_t m) const {
assert(n + m <= size() && "invalid size specifiers");
return DerivedT(offset_base(base, n), m);
}
/// Drop the first n elements.
DerivedT drop_front(size_t n = 1) const {
assert(size() >= n && "Dropping more elements than exist");
return slice(n, size() - n);
}
/// Drop the last n elements.
DerivedT drop_back(size_t n = 1) const {
assert(size() >= n && "Dropping more elements than exist");
return DerivedT(base, size() - n);
}
/// Take the first n elements.
DerivedT take_front(size_t n = 1) const {
return n < size() ? drop_back(size() - n)
: static_cast<const DerivedT &>(*this);
}
/// Take the last n elements.
DerivedT take_back(size_t n = 1) const {
return n < size() ? drop_front(size() - n)
: static_cast<const DerivedT &>(*this);
}
/// Allow conversion to any type accepting an iterator_range.
template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
RangeT, iterator_range<iterator>>::value>>
operator RangeT() const {
return RangeT(iterator_range<iterator>(*this));
}
/// Returns the base of this range.
const BaseT &getBase() const { return base; }
private:
/// Offset the given base by the given amount.
static BaseT offset_base(const BaseT &base, size_t n) {
return n == 0 ? base : DerivedT::offset_base(base, n);
}
protected:
indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
indexed_accessor_range_base &
operator=(const indexed_accessor_range_base &) = default;
/// The base that owns the provided range of values.
BaseT base;
/// The size from the owning range.
ptrdiff_t count;
};
} // end namespace detail
/// This class provides an implementation of a range of
/// indexed_accessor_iterators where the base is not indexable. Ranges with
/// bases that are offsetable should derive from indexed_accessor_range_base
/// instead. Derived range classes are expected to implement the following
/// static method:
/// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
/// - Dereference an iterator pointing to a parent base at the given index.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range
: public detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
public:
indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
: detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
std::make_pair(base, startIndex), count) {}
using detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
ReferenceT>::indexed_accessor_range_base;
/// Returns the current base of the range.
const BaseT &getBase() const { return this->base.first; }
/// Returns the current start index of the range.
ptrdiff_t getStartIndex() const { return this->base.second; }
/// See `detail::indexed_accessor_range_base` for details.
static std::pair<BaseT, ptrdiff_t>
offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
// We encode the internal base as a pair of the derived base and a start
// index into the derived base.
return std::make_pair(base.first, base.second + index);
}
/// See `detail::indexed_accessor_range_base` for details.
static ReferenceT
dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
ptrdiff_t index) {
return DerivedT::dereference(base.first, base.second + index);
}
};
namespace detail {
/// Return a reference to the first or second member of a reference. Otherwise,
/// return a copy of the member of a temporary.
///
/// When passing a range whose iterators return values instead of references,
/// the reference must be dropped from `decltype((elt.first))`, which will
/// always be a reference, to avoid returning a reference to a temporary.
template <typename EltTy, typename FirstTy> class first_or_second_type {
public:
using type =
typename std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
std::remove_reference_t<FirstTy>>;
};
} // end namespace detail
/// Given a container of pairs, return a range over the first elements.
template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
using EltTy = decltype((*std::begin(c)));
return llvm::map_range(std::forward<ContainerTy>(c),
[](EltTy elt) -> typename detail::first_or_second_type<
EltTy, decltype((elt.first))>::type {
return elt.first;
});
}
/// Given a container of pairs, return a range over the second elements.
template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
using EltTy = decltype((*std::begin(c)));
return llvm::map_range(
std::forward<ContainerTy>(c),
[](EltTy elt) ->
typename detail::first_or_second_type<EltTy,
decltype((elt.second))>::type {
return elt.second;
});
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
/// Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return std::less<>()(lhs.first, rhs.first);
}
};
/// Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return std::less<>()(lhs.second, rhs.second);
}
};
/// \brief Function object to apply a binary function to the first component of
/// a std::pair.
template<typename FuncTy>
struct on_first {
FuncTy func;
template <typename T>
decltype(auto) operator()(const T &lhs, const T &rhs) const {
return func(lhs.first, rhs.first);
}
};
/// Utility type to build an inheritance chain that makes it easy to rank
/// overload candidates.
template <int N> struct rank : rank<N - 1> {};
template <> struct rank<0> {};
/// traits class for checking whether type T is one of any of the given
/// types in the variadic list.
template <typename T, typename... Ts>
using is_one_of = disjunction<std::is_same<T, Ts>...>;
/// traits class for checking whether type T is a base class for all
/// the given types in the variadic list.
template <typename T, typename... Ts>
using are_base_of = conjunction<std::is_base_of<T, Ts>...>;
namespace detail {
template <typename... Ts> struct Visitor;
template <typename HeadT, typename... TailTs>
struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
: remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
using remove_cvref_t<HeadT>::operator();
using Visitor<TailTs...>::operator();
};
template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
explicit constexpr Visitor(HeadT &&Head)
: remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
using remove_cvref_t<HeadT>::operator();
};
} // namespace detail
/// Returns an opaquely-typed Callable object whose operator() overload set is
/// the sum of the operator() overload sets of each CallableT in CallableTs.
///
/// The type of the returned object derives from each CallableT in CallableTs.
/// The returned object is constructed by invoking the appropriate copy or move
/// constructor of each CallableT, as selected by overload resolution on the
/// corresponding argument to makeVisitor.
///
/// Example:
///
/// \code
/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
/// [](int i) { return "int"; },
/// [](std::string s) { return "str"; });
/// auto a = visitor(42); // `a` is now "int".
/// auto b = visitor("foo"); // `b` is now "str".
/// auto c = visitor(3.14f); // `c` is now "unhandled type".
/// \endcode
///
/// Example of making a visitor with a lambda which captures a move-only type:
///
/// \code
/// std::unique_ptr<FooHandler> FH = /* ... */;
/// auto visitor = makeVisitor(
/// [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
/// [](int i) { return i; },
/// [](std::string s) { return atoi(s); });
/// \endcode
template <typename... CallableTs>
constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
}
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
// We have a copy here so that LLVM behaves the same when using different
// standard libraries.
template <class Iterator, class RNG>
void shuffle(Iterator first, Iterator last, RNG &&g) {
// It would be better to use a std::uniform_int_distribution,
// but that would be stdlib dependent.
typedef
typename std::iterator_traits<Iterator>::difference_type difference_type;
for (auto size = last - first; size > 1; ++first, (void)--size) {
difference_type offset = g() % size;
// Avoid self-assignment due to incorrect assertions in libstdc++
// containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
if (offset != difference_type(0))
std::iter_swap(first, first + offset);
}
}
/// Find the length of an array.
template <class T, std::size_t N>
constexpr inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
*reinterpret_cast<const T*>(P2)))
return -1;
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
*reinterpret_cast<const T*>(P1)))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
#ifdef EXPENSIVE_CHECKS
namespace detail {
inline unsigned presortShuffleEntropy() {
static unsigned Result(std::random_device{}());
return Result;
}
template <class IteratorTy>
inline void presortShuffle(IteratorTy Start, IteratorTy End) {
std::mt19937 Generator(presortShuffleEntropy());
llvm::shuffle(Start, End, Generator);
}
} // end namespace detail
#endif
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
}
template <class IteratorTy>
inline void array_pod_sort(
IteratorTy Start, IteratorTy End,
int (*Compare)(
const typename std::iterator_traits<IteratorTy>::value_type *,
const typename std::iterator_traits<IteratorTy>::value_type *)) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
qsort(&*Start, NElts, sizeof(*Start),
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}
namespace detail {
template <typename T>
// We can use qsort if the iterator type is a pointer and the underlying value
// is trivially copyable.
using sort_trivially_copyable = conjunction<
std::is_pointer<T>,
std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
} // namespace detail
// Provide wrappers to std::sort which shuffle the elements before sorting
// to help uncover non-deterministic behavior (PR35135).
template <typename IteratorTy,
std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value,
int> = 0>
inline void sort(IteratorTy Start, IteratorTy End) {
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
std::sort(Start, End);
}
// Forward trivially copyable types to array_pod_sort. This avoids a large
// amount of code bloat for a minor performance hit.
template <typename IteratorTy,
std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value,
int> = 0>
inline void sort(IteratorTy Start, IteratorTy End) {
array_pod_sort(Start, End);
}
template <typename Container> inline void sort(Container &&C) {
llvm::sort(adl_begin(C), adl_end(C));
}
template <typename IteratorTy, typename Compare>
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
std::sort(Start, End, Comp);
}
template <typename Container, typename Compare>
inline void sort(Container &&C, Compare Comp) {
llvm::sort(adl_begin(C), adl_end(C), Comp);
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// Get the size of a range. This is a wrapper function around std::distance
/// which is only enabled when the operation is O(1).
template <typename R>
auto size(R &&Range,
std::enable_if_t<
std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<decltype(
Range.begin())>::iterator_category>::value,
void> * = nullptr) {
return std::distance(Range.begin(), Range.end());
}
/// Provide wrappers to std::for_each which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryFunction>
UnaryFunction for_each(R &&Range, UnaryFunction F) {
return std::for_each(adl_begin(Range), adl_end(Range), F);
}
/// Provide wrappers to std::all_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool all_of(R &&Range, UnaryPredicate P) {
return std::all_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::any_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool any_of(R &&Range, UnaryPredicate P) {
return std::any_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::none_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool none_of(R &&Range, UnaryPredicate P) {
return std::none_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T> auto find(R &&Range, const T &Val) {
return std::find(adl_begin(Range), adl_end(Range), Val);
}
/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) {
return std::find_if(adl_begin(Range), adl_end(Range), P);
}
template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) {
return std::find_if_not(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) {
return std::remove_if(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::copy_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
}
template <typename R, typename OutputIt>
OutputIt copy(R &&Range, OutputIt Out) {
return std::copy(adl_begin(Range), adl_end(Range), Out);
}
/// Provide wrappers to std::move which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt>
OutputIt move(R &&Range, OutputIt Out) {
return std::move(adl_begin(Range), adl_end(Range), Out);
}
/// Wrapper function around std::find to detect if an element exists
/// in a container.
template <typename R, typename E>
bool is_contained(R &&Range, const E &Element) {
return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
}
/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted with respect to a comparator \p C.
template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
return std::is_sorted(adl_begin(Range), adl_end(Range), C);
}
/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted in non-descending order.
template <typename R> bool is_sorted(R &&Range) {
return std::is_sorted(adl_begin(Range), adl_end(Range));
}
/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E> auto count(R &&Range, const E &Element) {
return std::count(adl_begin(Range), adl_end(Range), Element);
}
/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) {
return std::count_if(adl_begin(Range), adl_end(Range), P);
}
/// Wrapper function around std::transform to apply a function to a range and
/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryFunction>
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
}
/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) {
return std::partition(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::lower_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto lower_bound(R &&Range, T &&Value, Compare C) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
/// Provide wrappers to std::upper_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto upper_bound(R &&Range, T &&Value, Compare C) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
template <typename R>
void stable_sort(R &&Range) {
std::stable_sort(adl_begin(Range), adl_end(Range));
}
template <typename R, typename Compare>
void stable_sort(R &&Range, Compare C) {
std::stable_sort(adl_begin(Range), adl_end(Range), C);
}
/// Binary search for the first iterator in a range where a predicate is false.
/// Requires that C is always true below some limit, and always false above it.
template <typename R, typename Predicate,
typename Val = decltype(*adl_begin(std::declval<R>()))>
auto partition_point(R &&Range, Predicate P) {
return std::partition_point(adl_begin(Range), adl_end(Range), P);
}
template<typename Range, typename Predicate>
auto unique(Range &&R, Predicate P) {
return std::unique(adl_begin(R), adl_end(R), P);
}
/// Wrapper function around std::equal to detect if pair-wise elements between
/// two ranges are the same.
template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
adl_end(RRange));
}
/// Wrapper function around std::equal to detect if all elements
/// in a container are same.
template <typename R>
bool is_splat(R &&Range) {
size_t range_size = size(Range);
return range_size != 0 && (range_size == 1 ||
std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
}
/// Provide a container algorithm similar to C++ Library Fundamentals v2's
/// `erase_if` which is equivalent to:
///
/// C.erase(remove_if(C, pred), C.end());
///
/// This version works for any container with an erase method call accepting
/// two iterators.
template <typename Container, typename UnaryPredicate>
void erase_if(Container &C, UnaryPredicate P) {
C.erase(remove_if(C, P), C.end());
}
/// Wrapper function to remove a value from a container:
///
/// C.erase(remove(C.begin(), C.end(), V), C.end());
template <typename Container, typename ValueType>
void erase_value(Container &C, ValueType V) {
C.erase(std::remove(C.begin(), C.end(), V), C.end());
}
/// Wrapper function to append a range to a container.
///
/// C.insert(C.end(), R.begin(), R.end());
template <typename Container, typename Range>
inline void append_range(Container &C, Range &&R) {
C.insert(C.end(), R.begin(), R.end());
}
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range [ValIt, ValEnd) (which is not from the same container).
template<typename Container, typename RandomAccessIterator>
void replace(Container &Cont, typename Container::iterator ContIt,
typename Container::iterator ContEnd, RandomAccessIterator ValIt,
RandomAccessIterator ValEnd) {
while (true) {
if (ValIt == ValEnd) {
Cont.erase(ContIt, ContEnd);
return;
} else if (ContIt == ContEnd) {
Cont.insert(ContIt, ValIt, ValEnd);
return;
}
*ContIt++ = *ValIt++;
}
}
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range R.
template<typename Container, typename Range = std::initializer_list<
typename Container::value_type>>
void replace(Container &Cont, typename Container::iterator ContIt,
typename Container::iterator ContEnd, Range R) {
replace(Cont, ContIt, ContEnd, R.begin(), R.end());
}
/// An STL-style algorithm similar to std::for_each that applies a second
/// functor between every pair of elements.
///
/// This provides the control flow logic to, for example, print a
/// comma-separated list:
/// \code
/// interleave(names.begin(), names.end(),
/// [&](StringRef name) { os << name; },
/// [&] { os << ", "; });
/// \endcode
template <typename ForwardIterator, typename UnaryFunctor,
typename NullaryFunctor,
typename = typename std::enable_if<
!std::is_constructible<StringRef, UnaryFunctor>::value &&
!std::is_constructible<StringRef, NullaryFunctor>::value>::type>
inline void interleave(ForwardIterator begin, ForwardIterator end,
UnaryFunctor each_fn, NullaryFunctor between_fn) {
if (begin == end)
return;
each_fn(*begin);
++begin;
for (; begin != end; ++begin) {
between_fn();
each_fn(*begin);
}
}
template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
typename = typename std::enable_if<
!std::is_constructible<StringRef, UnaryFunctor>::value &&
!std::is_constructible<StringRef, NullaryFunctor>::value>::type>
inline void interleave(const Container &c, UnaryFunctor each_fn,
NullaryFunctor between_fn) {
interleave(c.begin(), c.end(), each_fn, between_fn);
}
/// Overload of interleave for the common case of string separator.
template <typename Container, typename UnaryFunctor, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
const StringRef &separator) {
interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
}
template <typename Container, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os,
const StringRef &separator) {
interleave(
c, os, [&](const T &a) { os << a; }, separator);
}
template <typename Container, typename UnaryFunctor, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os,
UnaryFunctor each_fn) {
interleave(c, os, each_fn, ", ");
}
template <typename Container, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os) {
interleaveComma(c, os, [&](const T &a) { os << a; });
}
//===----------------------------------------------------------------------===//
// Extra additions to <memory>
//===----------------------------------------------------------------------===//
struct FreeDeleter {
void operator()(void* v) {
::free(v);
}
};
template<typename First, typename Second>
struct pair_hash {
size_t operator()(const std::pair<First, Second> &P) const {
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
}
};
/// Binary functor that adapts to any other binary functor after dereferencing
/// operands.
template <typename T> struct deref {
T func;
// Could be further improved to cope with non-derivable functors and
// non-binary functors (should be a variadic template member function
// operator()).
template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
assert(lhs);
assert(rhs);
return func(*lhs, *rhs);
}
};
namespace detail {
template <typename R> class enumerator_iter;
template <typename R> struct result_pair {
using value_reference =
typename std::iterator_traits<IterOfRange<R>>::reference;
friend class enumerator_iter<R>;
result_pair() = default;
result_pair(std::size_t Index, IterOfRange<R> Iter)
: Index(Index), Iter(Iter) {}
result_pair(const result_pair<R> &Other)
: Index(Other.Index), Iter(Other.Iter) {}
result_pair &operator=(const result_pair &Other) {
Index = Other.Index;
Iter = Other.Iter;
return *this;
}
std::size_t index() const { return Index; }
value_reference value() const { return *Iter; }
private:
std::size_t Index = std::numeric_limits<std::size_t>::max();
IterOfRange<R> Iter;
};
template <typename R>
class enumerator_iter
: public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag,
const result_pair<R>> {
using result_type = result_pair<R>;
public:
explicit enumerator_iter(IterOfRange<R> EndIter)
: Result(std::numeric_limits<size_t>::max(), EndIter) {}
enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
: Result(Index, Iter) {}
const result_type &operator*() const { return Result; }
enumerator_iter &operator++() {
assert(Result.Index != std::numeric_limits<size_t>::max());
++Result.Iter;
++Result.Index;
return *this;
}
bool operator==(const enumerator_iter &RHS) const {
// Don't compare indices here, only iterators. It's possible for an end
// iterator to have different indices depending on whether it was created
// by calling std::end() versus incrementing a valid iterator.
return Result.Iter == RHS.Result.Iter;
}
enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
enumerator_iter &operator=(const enumerator_iter &Other) {
Result = Other.Result;
return *this;
}
private:
result_type Result;
};
template <typename R> class enumerator {
public:
explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
enumerator_iter<R> begin() {
return enumerator_iter<R>(0, std::begin(TheRange));
}
enumerator_iter<R> end() {
return enumerator_iter<R>(std::end(TheRange));
}
private:
R TheRange;
};
} // end namespace detail
/// Given an input range, returns a new range whose values are are pair (A,B)
/// such that A is the 0-based index of the item in the sequence, and B is
/// the value from the original sequence. Example:
///
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
/// for (auto X : enumerate(Items)) {
/// printf("Item %d - %c\n", X.index(), X.value());
/// }
///
/// Output:
/// Item 0 - A
/// Item 1 - B
/// Item 2 - C
/// Item 3 - D
///
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
return detail::enumerator<R>(std::forward<R>(TheRange));
}
namespace detail {
template <typename F, typename Tuple, std::size_t... I>
decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
} // end namespace detail
/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
/// return the result.
template <typename F, typename Tuple>
decltype(auto) apply_tuple(F &&f, Tuple &&t) {
using Indices = std::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>;
return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
Indices{});
}
namespace detail {
template <typename Predicate, typename... Args>
bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
auto z = zip(args...);
auto it = z.begin();
auto end = z.end();
while (it != end) {
if (!apply_tuple([&](auto &&...args) { return P(args...); }, *it))
return false;
++it;
}
return it.all_equals(end);
}
// Just an adaptor to switch the order of argument and have the predicate before
// the zipped inputs.
template <typename... ArgsThenPredicate, size_t... InputIndexes>
bool all_of_zip_predicate_last(
std::tuple<ArgsThenPredicate...> argsThenPredicate,
std::index_sequence<InputIndexes...>) {
auto constexpr OutputIndex =
std::tuple_size<decltype(argsThenPredicate)>::value - 1;
return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
std::get<InputIndexes>(argsThenPredicate)...);
}
} // end namespace detail
/// Compare two zipped ranges using the provided predicate (as last argument).
/// Return true if all elements satisfy the predicate and false otherwise.
// Return false if the zipped iterator aren't all at end (size mismatch).
template <typename... ArgsAndPredicate>
bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
return detail::all_of_zip_predicate_last(
std::forward_as_tuple(argsAndPredicate...),
std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
}
/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to filter lazily some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItems(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted =
[](const decltype(*std::declval<IterTy>()) &) { return true; },
std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
void> * = nullptr) {
for (; N; ++Begin) {
if (Begin == End)
return false; // Too few.
N -= ShouldBeCounted(*Begin);
}
for (; Begin != End; ++Begin)
if (ShouldBeCounted(*Begin))
return false; // Too many.
return true;
}
/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to lazily filter some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrMore(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted =
[](const decltype(*std::declval<IterTy>()) &) { return true; },
std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
void> * = nullptr) {
for (; N; ++Begin) {
if (Begin == End)
return false; // Too few.
N -= ShouldBeCounted(*Begin);
}
return true;
}
/// Returns true if the sequence [Begin, End) has N or less items. Can
/// optionally take a predicate to lazily filter some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrLess(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
return true;
}) {
assert(N != std::numeric_limits<unsigned>::max());
return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
}
/// Returns true if the given container has exactly N items
template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
return hasNItems(std::begin(C), std::end(C), N);
}
/// Returns true if the given container has N or more items
template <typename ContainerTy>
bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
return hasNItemsOrMore(std::begin(C), std::end(C), N);
}
/// Returns true if the given container has N or less items
template <typename ContainerTy>
bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
return hasNItemsOrLess(std::begin(C), std::end(C), N);
}
/// Returns a raw pointer that represents the same address as the argument.
///
/// This implementation can be removed once we move to C++20 where it's defined
/// as std::to_address().
///
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
/// not been implemented.
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
template <class T> constexpr T *to_address(T *P) { return P; }
} // end namespace llvm
#endif // LLVM_ADT_STLEXTRAS_H