blob: 0c153446142ef6d1a62d31aee175dc17cbb873b1 [file] [log] [blame]
//===--- InitPreprocessor.cpp - PP initialization code. ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the clang::InitializePreprocessor function.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/FileManager.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SyncScope.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Serialization/ASTReader.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/IR/DataLayout.h"
using namespace clang;
static bool MacroBodyEndsInBackslash(StringRef MacroBody) {
while (!MacroBody.empty() && isWhitespace(MacroBody.back()))
MacroBody = MacroBody.drop_back();
return !MacroBody.empty() && MacroBody.back() == '\\';
}
// Append a #define line to Buf for Macro. Macro should be of the form XXX,
// in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit
// "#define XXX Y z W". To get a #define with no value, use "XXX=".
static void DefineBuiltinMacro(MacroBuilder &Builder, StringRef Macro,
DiagnosticsEngine &Diags) {
std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
StringRef MacroName = MacroPair.first;
StringRef MacroBody = MacroPair.second;
if (MacroName.size() != Macro.size()) {
// Per GCC -D semantics, the macro ends at \n if it exists.
StringRef::size_type End = MacroBody.find_first_of("\n\r");
if (End != StringRef::npos)
Diags.Report(diag::warn_fe_macro_contains_embedded_newline)
<< MacroName;
MacroBody = MacroBody.substr(0, End);
// We handle macro bodies which end in a backslash by appending an extra
// backslash+newline. This makes sure we don't accidentally treat the
// backslash as a line continuation marker.
if (MacroBodyEndsInBackslash(MacroBody))
Builder.defineMacro(MacroName, Twine(MacroBody) + "\\\n");
else
Builder.defineMacro(MacroName, MacroBody);
} else {
// Push "macroname 1".
Builder.defineMacro(Macro);
}
}
/// AddImplicitInclude - Add an implicit \#include of the specified file to the
/// predefines buffer.
/// As these includes are generated by -include arguments the header search
/// logic is going to search relatively to the current working directory.
static void AddImplicitInclude(MacroBuilder &Builder, StringRef File) {
Builder.append(Twine("#include \"") + File + "\"");
}
static void AddImplicitIncludeMacros(MacroBuilder &Builder, StringRef File) {
Builder.append(Twine("#__include_macros \"") + File + "\"");
// Marker token to stop the __include_macros fetch loop.
Builder.append("##"); // ##?
}
/// Add an implicit \#include using the original file used to generate
/// a PCH file.
static void AddImplicitIncludePCH(MacroBuilder &Builder, Preprocessor &PP,
const PCHContainerReader &PCHContainerRdr,
StringRef ImplicitIncludePCH) {
std::string OriginalFile = ASTReader::getOriginalSourceFile(
std::string(ImplicitIncludePCH), PP.getFileManager(), PCHContainerRdr,
PP.getDiagnostics());
if (OriginalFile.empty())
return;
AddImplicitInclude(Builder, OriginalFile);
}
/// PickFP - This is used to pick a value based on the FP semantics of the
/// specified FP model.
template <typename T>
static T PickFP(const llvm::fltSemantics *Sem, T IEEEHalfVal, T IEEESingleVal,
T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal,
T IEEEQuadVal) {
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEhalf())
return IEEEHalfVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEsingle())
return IEEESingleVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEdouble())
return IEEEDoubleVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::x87DoubleExtended())
return X87DoubleExtendedVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::PPCDoubleDouble())
return PPCDoubleDoubleVal;
assert(Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEquad());
return IEEEQuadVal;
}
static void DefineFloatMacros(MacroBuilder &Builder, StringRef Prefix,
const llvm::fltSemantics *Sem, StringRef Ext) {
const char *DenormMin, *Epsilon, *Max, *Min;
DenormMin = PickFP(Sem, "5.9604644775390625e-8", "1.40129846e-45",
"4.9406564584124654e-324", "3.64519953188247460253e-4951",
"4.94065645841246544176568792868221e-324",
"6.47517511943802511092443895822764655e-4966");
int Digits = PickFP(Sem, 3, 6, 15, 18, 31, 33);
int DecimalDigits = PickFP(Sem, 5, 9, 17, 21, 33, 36);
Epsilon = PickFP(Sem, "9.765625e-4", "1.19209290e-7",
"2.2204460492503131e-16", "1.08420217248550443401e-19",
"4.94065645841246544176568792868221e-324",
"1.92592994438723585305597794258492732e-34");
int MantissaDigits = PickFP(Sem, 11, 24, 53, 64, 106, 113);
int Min10Exp = PickFP(Sem, -4, -37, -307, -4931, -291, -4931);
int Max10Exp = PickFP(Sem, 4, 38, 308, 4932, 308, 4932);
int MinExp = PickFP(Sem, -13, -125, -1021, -16381, -968, -16381);
int MaxExp = PickFP(Sem, 16, 128, 1024, 16384, 1024, 16384);
Min = PickFP(Sem, "6.103515625e-5", "1.17549435e-38", "2.2250738585072014e-308",
"3.36210314311209350626e-4932",
"2.00416836000897277799610805135016e-292",
"3.36210314311209350626267781732175260e-4932");
Max = PickFP(Sem, "6.5504e+4", "3.40282347e+38", "1.7976931348623157e+308",
"1.18973149535723176502e+4932",
"1.79769313486231580793728971405301e+308",
"1.18973149535723176508575932662800702e+4932");
SmallString<32> DefPrefix;
DefPrefix = "__";
DefPrefix += Prefix;
DefPrefix += "_";
Builder.defineMacro(DefPrefix + "DENORM_MIN__", Twine(DenormMin)+Ext);
Builder.defineMacro(DefPrefix + "HAS_DENORM__");
Builder.defineMacro(DefPrefix + "DIG__", Twine(Digits));
Builder.defineMacro(DefPrefix + "DECIMAL_DIG__", Twine(DecimalDigits));
Builder.defineMacro(DefPrefix + "EPSILON__", Twine(Epsilon)+Ext);
Builder.defineMacro(DefPrefix + "HAS_INFINITY__");
Builder.defineMacro(DefPrefix + "HAS_QUIET_NAN__");
Builder.defineMacro(DefPrefix + "MANT_DIG__", Twine(MantissaDigits));
Builder.defineMacro(DefPrefix + "MAX_10_EXP__", Twine(Max10Exp));
Builder.defineMacro(DefPrefix + "MAX_EXP__", Twine(MaxExp));
Builder.defineMacro(DefPrefix + "MAX__", Twine(Max)+Ext);
Builder.defineMacro(DefPrefix + "MIN_10_EXP__","("+Twine(Min10Exp)+")");
Builder.defineMacro(DefPrefix + "MIN_EXP__", "("+Twine(MinExp)+")");
Builder.defineMacro(DefPrefix + "MIN__", Twine(Min)+Ext);
}
/// DefineTypeSize - Emit a macro to the predefines buffer that declares a macro
/// named MacroName with the max value for a type with width 'TypeWidth' a
/// signedness of 'isSigned' and with a value suffix of 'ValSuffix' (e.g. LL).
static void DefineTypeSize(const Twine &MacroName, unsigned TypeWidth,
StringRef ValSuffix, bool isSigned,
MacroBuilder &Builder) {
llvm::APInt MaxVal = isSigned ? llvm::APInt::getSignedMaxValue(TypeWidth)
: llvm::APInt::getMaxValue(TypeWidth);
Builder.defineMacro(MacroName, toString(MaxVal, 10, isSigned) + ValSuffix);
}
/// DefineTypeSize - An overloaded helper that uses TargetInfo to determine
/// the width, suffix, and signedness of the given type
static void DefineTypeSize(const Twine &MacroName, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
DefineTypeSize(MacroName, TI.getTypeWidth(Ty), TI.getTypeConstantSuffix(Ty),
TI.isTypeSigned(Ty), Builder);
}
static void DefineFmt(const Twine &Prefix, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
bool IsSigned = TI.isTypeSigned(Ty);
StringRef FmtModifier = TI.getTypeFormatModifier(Ty);
for (const char *Fmt = IsSigned ? "di" : "ouxX"; *Fmt; ++Fmt) {
Builder.defineMacro(Prefix + "_FMT" + Twine(*Fmt) + "__",
Twine("\"") + FmtModifier + Twine(*Fmt) + "\"");
}
}
static void DefineType(const Twine &MacroName, TargetInfo::IntType Ty,
MacroBuilder &Builder) {
Builder.defineMacro(MacroName, TargetInfo::getTypeName(Ty));
}
static void DefineTypeWidth(StringRef MacroName, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
Builder.defineMacro(MacroName, Twine(TI.getTypeWidth(Ty)));
}
static void DefineTypeSizeof(StringRef MacroName, unsigned BitWidth,
const TargetInfo &TI, MacroBuilder &Builder) {
Builder.defineMacro(MacroName,
Twine(BitWidth / TI.getCharWidth()));
}
static void DefineExactWidthIntType(TargetInfo::IntType Ty,
const TargetInfo &TI,
MacroBuilder &Builder) {
int TypeWidth = TI.getTypeWidth(Ty);
bool IsSigned = TI.isTypeSigned(Ty);
// Use the target specified int64 type, when appropriate, so that [u]int64_t
// ends up being defined in terms of the correct type.
if (TypeWidth == 64)
Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
// Use the target specified int16 type when appropriate. Some MCU targets
// (such as AVR) have definition of [u]int16_t to [un]signed int.
if (TypeWidth == 16)
Ty = IsSigned ? TI.getInt16Type() : TI.getUInt16Type();
const char *Prefix = IsSigned ? "__INT" : "__UINT";
DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
StringRef ConstSuffix(TI.getTypeConstantSuffix(Ty));
Builder.defineMacro(Prefix + Twine(TypeWidth) + "_C_SUFFIX__", ConstSuffix);
}
static void DefineExactWidthIntTypeSize(TargetInfo::IntType Ty,
const TargetInfo &TI,
MacroBuilder &Builder) {
int TypeWidth = TI.getTypeWidth(Ty);
bool IsSigned = TI.isTypeSigned(Ty);
// Use the target specified int64 type, when appropriate, so that [u]int64_t
// ends up being defined in terms of the correct type.
if (TypeWidth == 64)
Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
const char *Prefix = IsSigned ? "__INT" : "__UINT";
DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
}
static void DefineLeastWidthIntType(unsigned TypeWidth, bool IsSigned,
const TargetInfo &TI,
MacroBuilder &Builder) {
TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
if (Ty == TargetInfo::NoInt)
return;
const char *Prefix = IsSigned ? "__INT_LEAST" : "__UINT_LEAST";
DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
}
static void DefineFastIntType(unsigned TypeWidth, bool IsSigned,
const TargetInfo &TI, MacroBuilder &Builder) {
// stdint.h currently defines the fast int types as equivalent to the least
// types.
TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
if (Ty == TargetInfo::NoInt)
return;
const char *Prefix = IsSigned ? "__INT_FAST" : "__UINT_FAST";
DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
}
/// Get the value the ATOMIC_*_LOCK_FREE macro should have for a type with
/// the specified properties.
static const char *getLockFreeValue(unsigned TypeWidth, unsigned TypeAlign,
unsigned InlineWidth) {
// Fully-aligned, power-of-2 sizes no larger than the inline
// width will be inlined as lock-free operations.
if (TypeWidth == TypeAlign && (TypeWidth & (TypeWidth - 1)) == 0 &&
TypeWidth <= InlineWidth)
return "2"; // "always lock free"
// We cannot be certain what operations the lib calls might be
// able to implement as lock-free on future processors.
return "1"; // "sometimes lock free"
}
/// Add definitions required for a smooth interaction between
/// Objective-C++ automated reference counting and libstdc++ (4.2).
static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts,
MacroBuilder &Builder) {
Builder.defineMacro("_GLIBCXX_PREDEFINED_OBJC_ARC_IS_SCALAR");
std::string Result;
{
// Provide specializations for the __is_scalar type trait so that
// lifetime-qualified objects are not considered "scalar" types, which
// libstdc++ uses as an indicator of the presence of trivial copy, assign,
// default-construct, and destruct semantics (none of which hold for
// lifetime-qualified objects in ARC).
llvm::raw_string_ostream Out(Result);
Out << "namespace std {\n"
<< "\n"
<< "struct __true_type;\n"
<< "struct __false_type;\n"
<< "\n";
Out << "template<typename _Tp> struct __is_scalar;\n"
<< "\n";
if (LangOpts.ObjCAutoRefCount) {
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(strong))) _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
}
if (LangOpts.ObjCWeak) {
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(weak))) _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
}
if (LangOpts.ObjCAutoRefCount) {
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(autoreleasing)))"
<< " _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
}
Out << "}\n";
}
Builder.append(Result);
}
static void InitializeStandardPredefinedMacros(const TargetInfo &TI,
const LangOptions &LangOpts,
const FrontendOptions &FEOpts,
MacroBuilder &Builder) {
// C++ [cpp.predefined]p1:
// The following macro names shall be defined by the implementation:
// -- __STDC__
// [C++] Whether __STDC__ is predefined and if so, what its value is,
// are implementation-defined.
// (Removed in C++20.)
if (!LangOpts.MSVCCompat && !LangOpts.TraditionalCPP)
Builder.defineMacro("__STDC__");
// -- __STDC_HOSTED__
// The integer literal 1 if the implementation is a hosted
// implementation or the integer literal 0 if it is not.
if (LangOpts.Freestanding)
Builder.defineMacro("__STDC_HOSTED__", "0");
else
Builder.defineMacro("__STDC_HOSTED__");
// -- __STDC_VERSION__
// [C++] Whether __STDC_VERSION__ is predefined and if so, what its
// value is, are implementation-defined.
// (Removed in C++20.)
if (!LangOpts.CPlusPlus) {
// FIXME: Use correct value for C23.
if (LangOpts.C2x)
Builder.defineMacro("__STDC_VERSION__", "202000L");
else if (LangOpts.C17)
Builder.defineMacro("__STDC_VERSION__", "201710L");
else if (LangOpts.C11)
Builder.defineMacro("__STDC_VERSION__", "201112L");
else if (LangOpts.C99)
Builder.defineMacro("__STDC_VERSION__", "199901L");
else if (!LangOpts.GNUMode && LangOpts.Digraphs)
Builder.defineMacro("__STDC_VERSION__", "199409L");
} else {
// -- __cplusplus
// FIXME: Use correct value for C++23.
if (LangOpts.CPlusPlus2b)
Builder.defineMacro("__cplusplus", "202101L");
// [C++20] The integer literal 202002L.
else if (LangOpts.CPlusPlus20)
Builder.defineMacro("__cplusplus", "202002L");
// [C++17] The integer literal 201703L.
else if (LangOpts.CPlusPlus17)
Builder.defineMacro("__cplusplus", "201703L");
// [C++14] The name __cplusplus is defined to the value 201402L when
// compiling a C++ translation unit.
else if (LangOpts.CPlusPlus14)
Builder.defineMacro("__cplusplus", "201402L");
// [C++11] The name __cplusplus is defined to the value 201103L when
// compiling a C++ translation unit.
else if (LangOpts.CPlusPlus11)
Builder.defineMacro("__cplusplus", "201103L");
// [C++03] The name __cplusplus is defined to the value 199711L when
// compiling a C++ translation unit.
else
Builder.defineMacro("__cplusplus", "199711L");
// -- __STDCPP_DEFAULT_NEW_ALIGNMENT__
// [C++17] An integer literal of type std::size_t whose value is the
// alignment guaranteed by a call to operator new(std::size_t)
//
// We provide this in all language modes, since it seems generally useful.
Builder.defineMacro("__STDCPP_DEFAULT_NEW_ALIGNMENT__",
Twine(TI.getNewAlign() / TI.getCharWidth()) +
TI.getTypeConstantSuffix(TI.getSizeType()));
// -- __STDCPP_­THREADS__
// Defined, and has the value integer literal 1, if and only if a
// program can have more than one thread of execution.
if (LangOpts.getThreadModel() == LangOptions::ThreadModelKind::POSIX)
Builder.defineMacro("__STDCPP_THREADS__", "1");
}
// In C11 these are environment macros. In C++11 they are only defined
// as part of <cuchar>. To prevent breakage when mixing C and C++
// code, define these macros unconditionally. We can define them
// unconditionally, as Clang always uses UTF-16 and UTF-32 for 16-bit
// and 32-bit character literals.
Builder.defineMacro("__STDC_UTF_16__", "1");
Builder.defineMacro("__STDC_UTF_32__", "1");
if (LangOpts.ObjC)
Builder.defineMacro("__OBJC__");
// OpenCL v1.0/1.1 s6.9, v1.2/2.0 s6.10: Preprocessor Directives and Macros.
if (LangOpts.OpenCL) {
if (LangOpts.CPlusPlus) {
switch (LangOpts.OpenCLCPlusPlusVersion) {
case 100:
Builder.defineMacro("__OPENCL_CPP_VERSION__", "100");
break;
case 202100:
Builder.defineMacro("__OPENCL_CPP_VERSION__", "202100");
break;
default:
llvm_unreachable("Unsupported C++ version for OpenCL");
}
Builder.defineMacro("__CL_CPP_VERSION_1_0__", "100");
Builder.defineMacro("__CL_CPP_VERSION_2021__", "202100");
} else {
// OpenCL v1.0 and v1.1 do not have a predefined macro to indicate the
// language standard with which the program is compiled. __OPENCL_VERSION__
// is for the OpenCL version supported by the OpenCL device, which is not
// necessarily the language standard with which the program is compiled.
// A shared OpenCL header file requires a macro to indicate the language
// standard. As a workaround, __OPENCL_C_VERSION__ is defined for
// OpenCL v1.0 and v1.1.
switch (LangOpts.OpenCLVersion) {
case 100:
Builder.defineMacro("__OPENCL_C_VERSION__", "100");
break;
case 110:
Builder.defineMacro("__OPENCL_C_VERSION__", "110");
break;
case 120:
Builder.defineMacro("__OPENCL_C_VERSION__", "120");
break;
case 200:
Builder.defineMacro("__OPENCL_C_VERSION__", "200");
break;
case 300:
Builder.defineMacro("__OPENCL_C_VERSION__", "300");
break;
default:
llvm_unreachable("Unsupported OpenCL version");
}
}
Builder.defineMacro("CL_VERSION_1_0", "100");
Builder.defineMacro("CL_VERSION_1_1", "110");
Builder.defineMacro("CL_VERSION_1_2", "120");
Builder.defineMacro("CL_VERSION_2_0", "200");
Builder.defineMacro("CL_VERSION_3_0", "300");
if (TI.isLittleEndian())
Builder.defineMacro("__ENDIAN_LITTLE__");
if (LangOpts.FastRelaxedMath)
Builder.defineMacro("__FAST_RELAXED_MATH__");
}
if (LangOpts.SYCLIsDevice || LangOpts.SYCLIsHost) {
// SYCL Version is set to a value when building SYCL applications
if (LangOpts.getSYCLVersion() == LangOptions::SYCL_2017)
Builder.defineMacro("CL_SYCL_LANGUAGE_VERSION", "121");
else if (LangOpts.getSYCLVersion() == LangOptions::SYCL_2020)
Builder.defineMacro("SYCL_LANGUAGE_VERSION", "202001");
}
// Not "standard" per se, but available even with the -undef flag.
if (LangOpts.AsmPreprocessor)
Builder.defineMacro("__ASSEMBLER__");
if (LangOpts.CUDA && !LangOpts.HIP)
Builder.defineMacro("__CUDA__");
if (LangOpts.HIP) {
Builder.defineMacro("__HIP__");
Builder.defineMacro("__HIPCC__");
Builder.defineMacro("__HIP_MEMORY_SCOPE_SINGLETHREAD", "1");
Builder.defineMacro("__HIP_MEMORY_SCOPE_WAVEFRONT", "2");
Builder.defineMacro("__HIP_MEMORY_SCOPE_WORKGROUP", "3");
Builder.defineMacro("__HIP_MEMORY_SCOPE_AGENT", "4");
Builder.defineMacro("__HIP_MEMORY_SCOPE_SYSTEM", "5");
if (LangOpts.CUDAIsDevice)
Builder.defineMacro("__HIP_DEVICE_COMPILE__");
}
}
/// Initialize the predefined C++ language feature test macros defined in
/// ISO/IEC JTC1/SC22/WG21 (C++) SD-6: "SG10 Feature Test Recommendations".
static void InitializeCPlusPlusFeatureTestMacros(const LangOptions &LangOpts,
MacroBuilder &Builder) {
// C++98 features.
if (LangOpts.RTTI)
Builder.defineMacro("__cpp_rtti", "199711L");
if (LangOpts.CXXExceptions)
Builder.defineMacro("__cpp_exceptions", "199711L");
// C++11 features.
if (LangOpts.CPlusPlus11) {
Builder.defineMacro("__cpp_unicode_characters", "200704L");
Builder.defineMacro("__cpp_raw_strings", "200710L");
Builder.defineMacro("__cpp_unicode_literals", "200710L");
Builder.defineMacro("__cpp_user_defined_literals", "200809L");
Builder.defineMacro("__cpp_lambdas", "200907L");
Builder.defineMacro("__cpp_constexpr",
LangOpts.CPlusPlus20 ? "201907L" :
LangOpts.CPlusPlus17 ? "201603L" :
LangOpts.CPlusPlus14 ? "201304L" : "200704");
Builder.defineMacro("__cpp_constexpr_in_decltype", "201711L");
Builder.defineMacro("__cpp_range_based_for",
LangOpts.CPlusPlus17 ? "201603L" : "200907");
Builder.defineMacro("__cpp_static_assert",
LangOpts.CPlusPlus17 ? "201411L" : "200410");
Builder.defineMacro("__cpp_decltype", "200707L");
Builder.defineMacro("__cpp_attributes", "200809L");
Builder.defineMacro("__cpp_rvalue_references", "200610L");
Builder.defineMacro("__cpp_variadic_templates", "200704L");
Builder.defineMacro("__cpp_initializer_lists", "200806L");
Builder.defineMacro("__cpp_delegating_constructors", "200604L");
Builder.defineMacro("__cpp_nsdmi", "200809L");
Builder.defineMacro("__cpp_inheriting_constructors", "201511L");
Builder.defineMacro("__cpp_ref_qualifiers", "200710L");
Builder.defineMacro("__cpp_alias_templates", "200704L");
}
if (LangOpts.ThreadsafeStatics)
Builder.defineMacro("__cpp_threadsafe_static_init", "200806L");
// C++14 features.
if (LangOpts.CPlusPlus14) {
Builder.defineMacro("__cpp_binary_literals", "201304L");
Builder.defineMacro("__cpp_digit_separators", "201309L");
Builder.defineMacro("__cpp_init_captures",
LangOpts.CPlusPlus20 ? "201803L" : "201304L");
Builder.defineMacro("__cpp_generic_lambdas",
LangOpts.CPlusPlus20 ? "201707L" : "201304L");
Builder.defineMacro("__cpp_decltype_auto", "201304L");
Builder.defineMacro("__cpp_return_type_deduction", "201304L");
Builder.defineMacro("__cpp_aggregate_nsdmi", "201304L");
Builder.defineMacro("__cpp_variable_templates", "201304L");
}
if (LangOpts.SizedDeallocation)
Builder.defineMacro("__cpp_sized_deallocation", "201309L");
// C++17 features.
if (LangOpts.CPlusPlus17) {
Builder.defineMacro("__cpp_hex_float", "201603L");
Builder.defineMacro("__cpp_inline_variables", "201606L");
Builder.defineMacro("__cpp_noexcept_function_type", "201510L");
Builder.defineMacro("__cpp_capture_star_this", "201603L");
Builder.defineMacro("__cpp_if_constexpr", "201606L");
Builder.defineMacro("__cpp_deduction_guides", "201703L"); // (not latest)
Builder.defineMacro("__cpp_template_auto", "201606L"); // (old name)
Builder.defineMacro("__cpp_namespace_attributes", "201411L");
Builder.defineMacro("__cpp_enumerator_attributes", "201411L");
Builder.defineMacro("__cpp_nested_namespace_definitions", "201411L");
Builder.defineMacro("__cpp_variadic_using", "201611L");
Builder.defineMacro("__cpp_aggregate_bases", "201603L");
Builder.defineMacro("__cpp_structured_bindings", "201606L");
Builder.defineMacro("__cpp_nontype_template_args",
"201411L"); // (not latest)
Builder.defineMacro("__cpp_fold_expressions", "201603L");
Builder.defineMacro("__cpp_guaranteed_copy_elision", "201606L");
Builder.defineMacro("__cpp_nontype_template_parameter_auto", "201606L");
}
if (LangOpts.AlignedAllocation && !LangOpts.AlignedAllocationUnavailable)
Builder.defineMacro("__cpp_aligned_new", "201606L");
if (LangOpts.RelaxedTemplateTemplateArgs)
Builder.defineMacro("__cpp_template_template_args", "201611L");
// C++20 features.
if (LangOpts.CPlusPlus20) {
//Builder.defineMacro("__cpp_aggregate_paren_init", "201902L");
Builder.defineMacro("__cpp_concepts", "201907L");
Builder.defineMacro("__cpp_conditional_explicit", "201806L");
//Builder.defineMacro("__cpp_consteval", "201811L");
Builder.defineMacro("__cpp_constexpr_dynamic_alloc", "201907L");
Builder.defineMacro("__cpp_constinit", "201907L");
Builder.defineMacro("__cpp_impl_coroutine", "201902L");
Builder.defineMacro("__cpp_designated_initializers", "201707L");
Builder.defineMacro("__cpp_impl_three_way_comparison", "201907L");
//Builder.defineMacro("__cpp_modules", "201907L");
Builder.defineMacro("__cpp_using_enum", "201907L");
}
// C++2b features.
if (LangOpts.CPlusPlus2b) {
Builder.defineMacro("__cpp_implicit_move", "202011L");
Builder.defineMacro("__cpp_size_t_suffix", "202011L");
Builder.defineMacro("__cpp_if_consteval", "202106L");
}
if (LangOpts.Char8)
Builder.defineMacro("__cpp_char8_t", "201811L");
Builder.defineMacro("__cpp_impl_destroying_delete", "201806L");
// TS features.
if (LangOpts.Coroutines)
Builder.defineMacro("__cpp_coroutines", "201703L");
}
/// InitializeOpenCLFeatureTestMacros - Define OpenCL macros based on target
/// settings and language version
void InitializeOpenCLFeatureTestMacros(const TargetInfo &TI,
const LangOptions &Opts,
MacroBuilder &Builder) {
const llvm::StringMap<bool> &OpenCLFeaturesMap = TI.getSupportedOpenCLOpts();
// FIXME: OpenCL options which affect language semantics/syntax
// should be moved into LangOptions.
auto defineOpenCLExtMacro = [&](llvm::StringRef Name, auto... OptArgs) {
// Check if extension is supported by target and is available in this
// OpenCL version
if (TI.hasFeatureEnabled(OpenCLFeaturesMap, Name) &&
OpenCLOptions::isOpenCLOptionAvailableIn(Opts, OptArgs...))
Builder.defineMacro(Name);
};
#define OPENCL_GENERIC_EXTENSION(Ext, ...) \
defineOpenCLExtMacro(#Ext, __VA_ARGS__);
#include "clang/Basic/OpenCLExtensions.def"
// Assume compiling for FULL profile
Builder.defineMacro("__opencl_c_int64");
}
static void InitializePredefinedMacros(const TargetInfo &TI,
const LangOptions &LangOpts,
const FrontendOptions &FEOpts,
const PreprocessorOptions &PPOpts,
MacroBuilder &Builder) {
// Compiler version introspection macros.
Builder.defineMacro("__llvm__"); // LLVM Backend
Builder.defineMacro("__clang__"); // Clang Frontend
#define TOSTR2(X) #X
#define TOSTR(X) TOSTR2(X)
Builder.defineMacro("__clang_major__", TOSTR(CLANG_VERSION_MAJOR));
Builder.defineMacro("__clang_minor__", TOSTR(CLANG_VERSION_MINOR));
Builder.defineMacro("__clang_patchlevel__", TOSTR(CLANG_VERSION_PATCHLEVEL));
#undef TOSTR
#undef TOSTR2
Builder.defineMacro("__clang_version__",
"\"" CLANG_VERSION_STRING " "
+ getClangFullRepositoryVersion() + "\"");
if (LangOpts.GNUCVersion != 0) {
// Major, minor, patch, are given two decimal places each, so 4.2.1 becomes
// 40201.
unsigned GNUCMajor = LangOpts.GNUCVersion / 100 / 100;
unsigned GNUCMinor = LangOpts.GNUCVersion / 100 % 100;
unsigned GNUCPatch = LangOpts.GNUCVersion % 100;
Builder.defineMacro("__GNUC__", Twine(GNUCMajor));
Builder.defineMacro("__GNUC_MINOR__", Twine(GNUCMinor));
Builder.defineMacro("__GNUC_PATCHLEVEL__", Twine(GNUCPatch));
Builder.defineMacro("__GXX_ABI_VERSION", "1002");
if (LangOpts.CPlusPlus) {
Builder.defineMacro("__GNUG__", Twine(GNUCMajor));
Builder.defineMacro("__GXX_WEAK__");
}
}
// Define macros for the C11 / C++11 memory orderings
Builder.defineMacro("__ATOMIC_RELAXED", "0");
Builder.defineMacro("__ATOMIC_CONSUME", "1");
Builder.defineMacro("__ATOMIC_ACQUIRE", "2");
Builder.defineMacro("__ATOMIC_RELEASE", "3");
Builder.defineMacro("__ATOMIC_ACQ_REL", "4");
Builder.defineMacro("__ATOMIC_SEQ_CST", "5");
// Define macros for the OpenCL memory scope.
// The values should match AtomicScopeOpenCLModel::ID enum.
static_assert(
static_cast<unsigned>(AtomicScopeOpenCLModel::WorkGroup) == 1 &&
static_cast<unsigned>(AtomicScopeOpenCLModel::Device) == 2 &&
static_cast<unsigned>(AtomicScopeOpenCLModel::AllSVMDevices) == 3 &&
static_cast<unsigned>(AtomicScopeOpenCLModel::SubGroup) == 4,
"Invalid OpenCL memory scope enum definition");
Builder.defineMacro("__OPENCL_MEMORY_SCOPE_WORK_ITEM", "0");
Builder.defineMacro("__OPENCL_MEMORY_SCOPE_WORK_GROUP", "1");
Builder.defineMacro("__OPENCL_MEMORY_SCOPE_DEVICE", "2");
Builder.defineMacro("__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES", "3");
Builder.defineMacro("__OPENCL_MEMORY_SCOPE_SUB_GROUP", "4");
// Support for #pragma redefine_extname (Sun compatibility)
Builder.defineMacro("__PRAGMA_REDEFINE_EXTNAME", "1");
// Previously this macro was set to a string aiming to achieve compatibility
// with GCC 4.2.1. Now, just return the full Clang version
Builder.defineMacro("__VERSION__", "\"" +
Twine(getClangFullCPPVersion()) + "\"");
// Initialize language-specific preprocessor defines.
// Standard conforming mode?
if (!LangOpts.GNUMode && !LangOpts.MSVCCompat)
Builder.defineMacro("__STRICT_ANSI__");
if (LangOpts.GNUCVersion && LangOpts.CPlusPlus11)
Builder.defineMacro("__GXX_EXPERIMENTAL_CXX0X__");
if (LangOpts.ObjC) {
if (LangOpts.ObjCRuntime.isNonFragile()) {
Builder.defineMacro("__OBJC2__");
if (LangOpts.ObjCExceptions)
Builder.defineMacro("OBJC_ZEROCOST_EXCEPTIONS");
}
if (LangOpts.getGC() != LangOptions::NonGC)
Builder.defineMacro("__OBJC_GC__");
if (LangOpts.ObjCRuntime.isNeXTFamily())
Builder.defineMacro("__NEXT_RUNTIME__");
if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::GNUstep) {
auto version = LangOpts.ObjCRuntime.getVersion();
std::string versionString = "1";
// Don't rely on the tuple argument, because we can be asked to target
// later ABIs than we actually support, so clamp these values to those
// currently supported
if (version >= VersionTuple(2, 0))
Builder.defineMacro("__OBJC_GNUSTEP_RUNTIME_ABI__", "20");
else
Builder.defineMacro("__OBJC_GNUSTEP_RUNTIME_ABI__",
"1" + Twine(std::min(8U, version.getMinor().getValueOr(0))));
}
if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::ObjFW) {
VersionTuple tuple = LangOpts.ObjCRuntime.getVersion();
unsigned minor = 0;
if (tuple.getMinor().hasValue())
minor = tuple.getMinor().getValue();
unsigned subminor = 0;
if (tuple.getSubminor().hasValue())
subminor = tuple.getSubminor().getValue();
Builder.defineMacro("__OBJFW_RUNTIME_ABI__",
Twine(tuple.getMajor() * 10000 + minor * 100 +
subminor));
}
Builder.defineMacro("IBOutlet", "__attribute__((iboutlet))");
Builder.defineMacro("IBOutletCollection(ClassName)",
"__attribute__((iboutletcollection(ClassName)))");
Builder.defineMacro("IBAction", "void)__attribute__((ibaction)");
Builder.defineMacro("IBInspectable", "");
Builder.defineMacro("IB_DESIGNABLE", "");
}
// Define a macro that describes the Objective-C boolean type even for C
// and C++ since BOOL can be used from non Objective-C code.
Builder.defineMacro("__OBJC_BOOL_IS_BOOL",
Twine(TI.useSignedCharForObjCBool() ? "0" : "1"));
if (LangOpts.CPlusPlus)
InitializeCPlusPlusFeatureTestMacros(LangOpts, Builder);
// darwin_constant_cfstrings controls this. This is also dependent
// on other things like the runtime I believe. This is set even for C code.
if (!LangOpts.NoConstantCFStrings)
Builder.defineMacro("__CONSTANT_CFSTRINGS__");
if (LangOpts.ObjC)
Builder.defineMacro("OBJC_NEW_PROPERTIES");
if (LangOpts.PascalStrings)
Builder.defineMacro("__PASCAL_STRINGS__");
if (LangOpts.Blocks) {
Builder.defineMacro("__block", "__attribute__((__blocks__(byref)))");
Builder.defineMacro("__BLOCKS__");
}
if (!LangOpts.MSVCCompat && LangOpts.Exceptions)
Builder.defineMacro("__EXCEPTIONS");
if (LangOpts.GNUCVersion && LangOpts.RTTI)
Builder.defineMacro("__GXX_RTTI");
if (LangOpts.hasSjLjExceptions())
Builder.defineMacro("__USING_SJLJ_EXCEPTIONS__");
else if (LangOpts.hasSEHExceptions())
Builder.defineMacro("__SEH__");
else if (LangOpts.hasDWARFExceptions() &&
(TI.getTriple().isThumb() || TI.getTriple().isARM()))
Builder.defineMacro("__ARM_DWARF_EH__");
if (LangOpts.Deprecated)
Builder.defineMacro("__DEPRECATED");
if (!LangOpts.MSVCCompat && LangOpts.CPlusPlus)
Builder.defineMacro("__private_extern__", "extern");
if (LangOpts.MicrosoftExt) {
if (LangOpts.WChar) {
// wchar_t supported as a keyword.
Builder.defineMacro("_WCHAR_T_DEFINED");
Builder.defineMacro("_NATIVE_WCHAR_T_DEFINED");
}
}
// Macros to help identify the narrow and wide character sets
// FIXME: clang currently ignores -fexec-charset=. If this changes,
// then this may need to be updated.
Builder.defineMacro("__clang_literal_encoding__", "\"UTF-8\"");
if (TI.getTypeWidth(TI.getWCharType()) >= 32) {
// FIXME: 32-bit wchar_t signals UTF-32. This may change
// if -fwide-exec-charset= is ever supported.
Builder.defineMacro("__clang_wide_literal_encoding__", "\"UTF-32\"");
} else {
// FIXME: Less-than 32-bit wchar_t generally means UTF-16
// (e.g., Windows, 32-bit IBM). This may need to be
// updated if -fwide-exec-charset= is ever supported.
Builder.defineMacro("__clang_wide_literal_encoding__", "\"UTF-16\"");
}
if (LangOpts.Optimize)
Builder.defineMacro("__OPTIMIZE__");
if (LangOpts.OptimizeSize)
Builder.defineMacro("__OPTIMIZE_SIZE__");
if (LangOpts.FastMath)
Builder.defineMacro("__FAST_MATH__");
// Initialize target-specific preprocessor defines.
// __BYTE_ORDER__ was added in GCC 4.6. It's analogous
// to the macro __BYTE_ORDER (no trailing underscores)
// from glibc's <endian.h> header.
// We don't support the PDP-11 as a target, but include
// the define so it can still be compared against.
Builder.defineMacro("__ORDER_LITTLE_ENDIAN__", "1234");
Builder.defineMacro("__ORDER_BIG_ENDIAN__", "4321");
Builder.defineMacro("__ORDER_PDP_ENDIAN__", "3412");
if (TI.isBigEndian()) {
Builder.defineMacro("__BYTE_ORDER__", "__ORDER_BIG_ENDIAN__");
Builder.defineMacro("__BIG_ENDIAN__");
} else {
Builder.defineMacro("__BYTE_ORDER__", "__ORDER_LITTLE_ENDIAN__");
Builder.defineMacro("__LITTLE_ENDIAN__");
}
if (TI.getPointerWidth(0) == 64 && TI.getLongWidth() == 64
&& TI.getIntWidth() == 32) {
Builder.defineMacro("_LP64");
Builder.defineMacro("__LP64__");
}
if (TI.getPointerWidth(0) == 32 && TI.getLongWidth() == 32
&& TI.getIntWidth() == 32) {
Builder.defineMacro("_ILP32");
Builder.defineMacro("__ILP32__");
}
// Define type sizing macros based on the target properties.
assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far");
Builder.defineMacro("__CHAR_BIT__", Twine(TI.getCharWidth()));
DefineTypeSize("__SCHAR_MAX__", TargetInfo::SignedChar, TI, Builder);
DefineTypeSize("__SHRT_MAX__", TargetInfo::SignedShort, TI, Builder);
DefineTypeSize("__INT_MAX__", TargetInfo::SignedInt, TI, Builder);
DefineTypeSize("__LONG_MAX__", TargetInfo::SignedLong, TI, Builder);
DefineTypeSize("__LONG_LONG_MAX__", TargetInfo::SignedLongLong, TI, Builder);
DefineTypeSize("__WCHAR_MAX__", TI.getWCharType(), TI, Builder);
DefineTypeSize("__WINT_MAX__", TI.getWIntType(), TI, Builder);
DefineTypeSize("__INTMAX_MAX__", TI.getIntMaxType(), TI, Builder);
DefineTypeSize("__SIZE_MAX__", TI.getSizeType(), TI, Builder);
DefineTypeSize("__UINTMAX_MAX__", TI.getUIntMaxType(), TI, Builder);
DefineTypeSize("__PTRDIFF_MAX__", TI.getPtrDiffType(0), TI, Builder);
DefineTypeSize("__INTPTR_MAX__", TI.getIntPtrType(), TI, Builder);
DefineTypeSize("__UINTPTR_MAX__", TI.getUIntPtrType(), TI, Builder);
DefineTypeSizeof("__SIZEOF_DOUBLE__", TI.getDoubleWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_FLOAT__", TI.getFloatWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_INT__", TI.getIntWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_LONG__", TI.getLongWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_LONG_DOUBLE__",TI.getLongDoubleWidth(),TI,Builder);
DefineTypeSizeof("__SIZEOF_LONG_LONG__", TI.getLongLongWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_POINTER__", TI.getPointerWidth(0), TI, Builder);
DefineTypeSizeof("__SIZEOF_SHORT__", TI.getShortWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_PTRDIFF_T__",
TI.getTypeWidth(TI.getPtrDiffType(0)), TI, Builder);
DefineTypeSizeof("__SIZEOF_SIZE_T__",
TI.getTypeWidth(TI.getSizeType()), TI, Builder);
DefineTypeSizeof("__SIZEOF_WCHAR_T__",
TI.getTypeWidth(TI.getWCharType()), TI, Builder);
DefineTypeSizeof("__SIZEOF_WINT_T__",
TI.getTypeWidth(TI.getWIntType()), TI, Builder);
if (TI.hasInt128Type())
DefineTypeSizeof("__SIZEOF_INT128__", 128, TI, Builder);
DefineType("__INTMAX_TYPE__", TI.getIntMaxType(), Builder);
DefineFmt("__INTMAX", TI.getIntMaxType(), TI, Builder);
Builder.defineMacro("__INTMAX_C_SUFFIX__",
TI.getTypeConstantSuffix(TI.getIntMaxType()));
DefineType("__UINTMAX_TYPE__", TI.getUIntMaxType(), Builder);
DefineFmt("__UINTMAX", TI.getUIntMaxType(), TI, Builder);
Builder.defineMacro("__UINTMAX_C_SUFFIX__",
TI.getTypeConstantSuffix(TI.getUIntMaxType()));
DefineTypeWidth("__INTMAX_WIDTH__", TI.getIntMaxType(), TI, Builder);
DefineType("__PTRDIFF_TYPE__", TI.getPtrDiffType(0), Builder);
DefineFmt("__PTRDIFF", TI.getPtrDiffType(0), TI, Builder);
DefineTypeWidth("__PTRDIFF_WIDTH__", TI.getPtrDiffType(0), TI, Builder);
DefineType("__INTPTR_TYPE__", TI.getIntPtrType(), Builder);
DefineFmt("__INTPTR", TI.getIntPtrType(), TI, Builder);
DefineTypeWidth("__INTPTR_WIDTH__", TI.getIntPtrType(), TI, Builder);
DefineType("__SIZE_TYPE__", TI.getSizeType(), Builder);
DefineFmt("__SIZE", TI.getSizeType(), TI, Builder);
DefineTypeWidth("__SIZE_WIDTH__", TI.getSizeType(), TI, Builder);
DefineType("__WCHAR_TYPE__", TI.getWCharType(), Builder);
DefineTypeWidth("__WCHAR_WIDTH__", TI.getWCharType(), TI, Builder);
DefineType("__WINT_TYPE__", TI.getWIntType(), Builder);
DefineTypeWidth("__WINT_WIDTH__", TI.getWIntType(), TI, Builder);
DefineTypeWidth("__SIG_ATOMIC_WIDTH__", TI.getSigAtomicType(), TI, Builder);
DefineTypeSize("__SIG_ATOMIC_MAX__", TI.getSigAtomicType(), TI, Builder);
DefineType("__CHAR16_TYPE__", TI.getChar16Type(), Builder);
DefineType("__CHAR32_TYPE__", TI.getChar32Type(), Builder);
DefineTypeWidth("__UINTMAX_WIDTH__", TI.getUIntMaxType(), TI, Builder);
DefineType("__UINTPTR_TYPE__", TI.getUIntPtrType(), Builder);
DefineFmt("__UINTPTR", TI.getUIntPtrType(), TI, Builder);
DefineTypeWidth("__UINTPTR_WIDTH__", TI.getUIntPtrType(), TI, Builder);
if (TI.hasFloat16Type())
DefineFloatMacros(Builder, "FLT16", &TI.getHalfFormat(), "F16");
DefineFloatMacros(Builder, "FLT", &TI.getFloatFormat(), "F");
DefineFloatMacros(Builder, "DBL", &TI.getDoubleFormat(), "");
DefineFloatMacros(Builder, "LDBL", &TI.getLongDoubleFormat(), "L");
// Define a __POINTER_WIDTH__ macro for stdint.h.
Builder.defineMacro("__POINTER_WIDTH__",
Twine((int)TI.getPointerWidth(0)));
// Define __BIGGEST_ALIGNMENT__ to be compatible with gcc.
Builder.defineMacro("__BIGGEST_ALIGNMENT__",
Twine(TI.getSuitableAlign() / TI.getCharWidth()) );
if (!LangOpts.CharIsSigned)
Builder.defineMacro("__CHAR_UNSIGNED__");
if (!TargetInfo::isTypeSigned(TI.getWCharType()))
Builder.defineMacro("__WCHAR_UNSIGNED__");
if (!TargetInfo::isTypeSigned(TI.getWIntType()))
Builder.defineMacro("__WINT_UNSIGNED__");
// Define exact-width integer types for stdint.h
DefineExactWidthIntType(TargetInfo::SignedChar, TI, Builder);
if (TI.getShortWidth() > TI.getCharWidth())
DefineExactWidthIntType(TargetInfo::SignedShort, TI, Builder);
if (TI.getIntWidth() > TI.getShortWidth())
DefineExactWidthIntType(TargetInfo::SignedInt, TI, Builder);
if (TI.getLongWidth() > TI.getIntWidth())
DefineExactWidthIntType(TargetInfo::SignedLong, TI, Builder);
if (TI.getLongLongWidth() > TI.getLongWidth())
DefineExactWidthIntType(TargetInfo::SignedLongLong, TI, Builder);
DefineExactWidthIntType(TargetInfo::UnsignedChar, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedChar, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedChar, TI, Builder);
if (TI.getShortWidth() > TI.getCharWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedShort, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedShort, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedShort, TI, Builder);
}
if (TI.getIntWidth() > TI.getShortWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedInt, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedInt, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedInt, TI, Builder);
}
if (TI.getLongWidth() > TI.getIntWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedLong, TI, Builder);
}
if (TI.getLongLongWidth() > TI.getLongWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedLongLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedLongLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedLongLong, TI, Builder);
}
DefineLeastWidthIntType(8, true, TI, Builder);
DefineLeastWidthIntType(8, false, TI, Builder);
DefineLeastWidthIntType(16, true, TI, Builder);
DefineLeastWidthIntType(16, false, TI, Builder);
DefineLeastWidthIntType(32, true, TI, Builder);
DefineLeastWidthIntType(32, false, TI, Builder);
DefineLeastWidthIntType(64, true, TI, Builder);
DefineLeastWidthIntType(64, false, TI, Builder);
DefineFastIntType(8, true, TI, Builder);
DefineFastIntType(8, false, TI, Builder);
DefineFastIntType(16, true, TI, Builder);
DefineFastIntType(16, false, TI, Builder);
DefineFastIntType(32, true, TI, Builder);
DefineFastIntType(32, false, TI, Builder);
DefineFastIntType(64, true, TI, Builder);
DefineFastIntType(64, false, TI, Builder);
Builder.defineMacro("__USER_LABEL_PREFIX__", TI.getUserLabelPrefix());
if (LangOpts.FastMath || LangOpts.FiniteMathOnly)
Builder.defineMacro("__FINITE_MATH_ONLY__", "1");
else
Builder.defineMacro("__FINITE_MATH_ONLY__", "0");
if (LangOpts.GNUCVersion) {
if (LangOpts.GNUInline || LangOpts.CPlusPlus)
Builder.defineMacro("__GNUC_GNU_INLINE__");
else
Builder.defineMacro("__GNUC_STDC_INLINE__");
// The value written by __atomic_test_and_set.
// FIXME: This is target-dependent.
Builder.defineMacro("__GCC_ATOMIC_TEST_AND_SET_TRUEVAL", "1");
}
auto addLockFreeMacros = [&](const llvm::Twine &Prefix) {
// Used by libc++ and libstdc++ to implement ATOMIC_<foo>_LOCK_FREE.
unsigned InlineWidthBits = TI.getMaxAtomicInlineWidth();
#define DEFINE_LOCK_FREE_MACRO(TYPE, Type) \
Builder.defineMacro(Prefix + #TYPE "_LOCK_FREE", \
getLockFreeValue(TI.get##Type##Width(), \
TI.get##Type##Align(), \
InlineWidthBits));
DEFINE_LOCK_FREE_MACRO(BOOL, Bool);
DEFINE_LOCK_FREE_MACRO(CHAR, Char);
if (LangOpts.Char8)
DEFINE_LOCK_FREE_MACRO(CHAR8_T, Char); // Treat char8_t like char.
DEFINE_LOCK_FREE_MACRO(CHAR16_T, Char16);
DEFINE_LOCK_FREE_MACRO(CHAR32_T, Char32);
DEFINE_LOCK_FREE_MACRO(WCHAR_T, WChar);
DEFINE_LOCK_FREE_MACRO(SHORT, Short);
DEFINE_LOCK_FREE_MACRO(INT, Int);
DEFINE_LOCK_FREE_MACRO(LONG, Long);
DEFINE_LOCK_FREE_MACRO(LLONG, LongLong);
Builder.defineMacro(Prefix + "POINTER_LOCK_FREE",
getLockFreeValue(TI.getPointerWidth(0),
TI.getPointerAlign(0),
InlineWidthBits));
#undef DEFINE_LOCK_FREE_MACRO
};
addLockFreeMacros("__CLANG_ATOMIC_");
if (LangOpts.GNUCVersion)
addLockFreeMacros("__GCC_ATOMIC_");
if (LangOpts.NoInlineDefine)
Builder.defineMacro("__NO_INLINE__");
if (unsigned PICLevel = LangOpts.PICLevel) {
Builder.defineMacro("__PIC__", Twine(PICLevel));
Builder.defineMacro("__pic__", Twine(PICLevel));
if (LangOpts.PIE) {
Builder.defineMacro("__PIE__", Twine(PICLevel));
Builder.defineMacro("__pie__", Twine(PICLevel));
}
}
// Macros to control C99 numerics and <float.h>
Builder.defineMacro("__FLT_EVAL_METHOD__", Twine(TI.getFloatEvalMethod()));
Builder.defineMacro("__FLT_RADIX__", "2");
Builder.defineMacro("__DECIMAL_DIG__", "__LDBL_DECIMAL_DIG__");
if (LangOpts.getStackProtector() == LangOptions::SSPOn)
Builder.defineMacro("__SSP__");
else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
Builder.defineMacro("__SSP_STRONG__", "2");
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
Builder.defineMacro("__SSP_ALL__", "3");
if (PPOpts.SetUpStaticAnalyzer)
Builder.defineMacro("__clang_analyzer__");
if (LangOpts.FastRelaxedMath)
Builder.defineMacro("__FAST_RELAXED_MATH__");
if (FEOpts.ProgramAction == frontend::RewriteObjC ||
LangOpts.getGC() != LangOptions::NonGC) {
Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))");
Builder.defineMacro("__strong", "__attribute__((objc_gc(strong)))");
Builder.defineMacro("__autoreleasing", "");
Builder.defineMacro("__unsafe_unretained", "");
} else if (LangOpts.ObjC) {
Builder.defineMacro("__weak", "__attribute__((objc_ownership(weak)))");
Builder.defineMacro("__strong", "__attribute__((objc_ownership(strong)))");
Builder.defineMacro("__autoreleasing",
"__attribute__((objc_ownership(autoreleasing)))");
Builder.defineMacro("__unsafe_unretained",
"__attribute__((objc_ownership(none)))");
}
// On Darwin, there are __double_underscored variants of the type
// nullability qualifiers.
if (TI.getTriple().isOSDarwin()) {
Builder.defineMacro("__nonnull", "_Nonnull");
Builder.defineMacro("__null_unspecified", "_Null_unspecified");
Builder.defineMacro("__nullable", "_Nullable");
}
// Add a macro to differentiate between regular iOS/tvOS/watchOS targets and
// the corresponding simulator targets.
if (TI.getTriple().isOSDarwin() && TI.getTriple().isSimulatorEnvironment())
Builder.defineMacro("__APPLE_EMBEDDED_SIMULATOR__", "1");
// OpenMP definition
// OpenMP 2.2:
// In implementations that support a preprocessor, the _OPENMP
// macro name is defined to have the decimal value yyyymm where
// yyyy and mm are the year and the month designations of the
// version of the OpenMP API that the implementation support.
if (!LangOpts.OpenMPSimd) {
switch (LangOpts.OpenMP) {
case 0:
break;
case 31:
Builder.defineMacro("_OPENMP", "201107");
break;
case 40:
Builder.defineMacro("_OPENMP", "201307");
break;
case 45:
Builder.defineMacro("_OPENMP", "201511");
break;
case 51:
Builder.defineMacro("_OPENMP", "202011");
break;
case 52:
Builder.defineMacro("_OPENMP", "202111");
break;
default:
// Default version is OpenMP 5.0
Builder.defineMacro("_OPENMP", "201811");
break;
}
}
// CUDA device path compilaton
if (LangOpts.CUDAIsDevice && !LangOpts.HIP) {
// The CUDA_ARCH value is set for the GPU target specified in the NVPTX
// backend's target defines.
Builder.defineMacro("__CUDA_ARCH__");
}
// We need to communicate this to our CUDA header wrapper, which in turn
// informs the proper CUDA headers of this choice.
if (LangOpts.CUDADeviceApproxTranscendentals || LangOpts.FastMath) {
Builder.defineMacro("__CLANG_CUDA_APPROX_TRANSCENDENTALS__");
}
// Define a macro indicating that the source file is being compiled with a
// SYCL device compiler which doesn't produce host binary.
if (LangOpts.SYCLIsDevice) {
Builder.defineMacro("__SYCL_DEVICE_ONLY__", "1");
}
// OpenCL definitions.
if (LangOpts.OpenCL) {
InitializeOpenCLFeatureTestMacros(TI, LangOpts, Builder);
if (TI.getTriple().isSPIR() || TI.getTriple().isSPIRV())
Builder.defineMacro("__IMAGE_SUPPORT__");
}
if (TI.hasInt128Type() && LangOpts.CPlusPlus && LangOpts.GNUMode) {
// For each extended integer type, g++ defines a macro mapping the
// index of the type (0 in this case) in some list of extended types
// to the type.
Builder.defineMacro("__GLIBCXX_TYPE_INT_N_0", "__int128");
Builder.defineMacro("__GLIBCXX_BITSIZE_INT_N_0", "128");
}
// Get other target #defines.
TI.getTargetDefines(LangOpts, Builder);
}
/// InitializePreprocessor - Initialize the preprocessor getting it and the
/// environment ready to process a single file. This returns true on error.
///
void clang::InitializePreprocessor(
Preprocessor &PP, const PreprocessorOptions &InitOpts,
const PCHContainerReader &PCHContainerRdr,
const FrontendOptions &FEOpts) {
const LangOptions &LangOpts = PP.getLangOpts();
std::string PredefineBuffer;
PredefineBuffer.reserve(4080);
llvm::raw_string_ostream Predefines(PredefineBuffer);
MacroBuilder Builder(Predefines);
// Emit line markers for various builtin sections of the file. We don't do
// this in asm preprocessor mode, because "# 4" is not a line marker directive
// in this mode.
if (!PP.getLangOpts().AsmPreprocessor)
Builder.append("# 1 \"<built-in>\" 3");
// Install things like __POWERPC__, __GNUC__, etc into the macro table.
if (InitOpts.UsePredefines) {
// FIXME: This will create multiple definitions for most of the predefined
// macros. This is not the right way to handle this.
if ((LangOpts.CUDA || LangOpts.OpenMPIsDevice || LangOpts.SYCLIsDevice) &&
PP.getAuxTargetInfo())
InitializePredefinedMacros(*PP.getAuxTargetInfo(), LangOpts, FEOpts,
PP.getPreprocessorOpts(), Builder);
InitializePredefinedMacros(PP.getTargetInfo(), LangOpts, FEOpts,
PP.getPreprocessorOpts(), Builder);
// Install definitions to make Objective-C++ ARC work well with various
// C++ Standard Library implementations.
if (LangOpts.ObjC && LangOpts.CPlusPlus &&
(LangOpts.ObjCAutoRefCount || LangOpts.ObjCWeak)) {
switch (InitOpts.ObjCXXARCStandardLibrary) {
case ARCXX_nolib:
case ARCXX_libcxx:
break;
case ARCXX_libstdcxx:
AddObjCXXARCLibstdcxxDefines(LangOpts, Builder);
break;
}
}
}
// Even with predefines off, some macros are still predefined.
// These should all be defined in the preprocessor according to the
// current language configuration.
InitializeStandardPredefinedMacros(PP.getTargetInfo(), PP.getLangOpts(),
FEOpts, Builder);
// Add on the predefines from the driver. Wrap in a #line directive to report
// that they come from the command line.
if (!PP.getLangOpts().AsmPreprocessor)
Builder.append("# 1 \"<command line>\" 1");
// Process #define's and #undef's in the order they are given.
for (unsigned i = 0, e = InitOpts.Macros.size(); i != e; ++i) {
if (InitOpts.Macros[i].second) // isUndef
Builder.undefineMacro(InitOpts.Macros[i].first);
else
DefineBuiltinMacro(Builder, InitOpts.Macros[i].first,
PP.getDiagnostics());
}
// Exit the command line and go back to <built-in> (2 is LC_LEAVE).
if (!PP.getLangOpts().AsmPreprocessor)
Builder.append("# 1 \"<built-in>\" 2");
// If -imacros are specified, include them now. These are processed before
// any -include directives.
for (unsigned i = 0, e = InitOpts.MacroIncludes.size(); i != e; ++i)
AddImplicitIncludeMacros(Builder, InitOpts.MacroIncludes[i]);
// Process -include-pch/-include-pth directives.
if (!InitOpts.ImplicitPCHInclude.empty())
AddImplicitIncludePCH(Builder, PP, PCHContainerRdr,
InitOpts.ImplicitPCHInclude);
// Process -include directives.
for (unsigned i = 0, e = InitOpts.Includes.size(); i != e; ++i) {
const std::string &Path = InitOpts.Includes[i];
AddImplicitInclude(Builder, Path);
}
// Instruct the preprocessor to skip the preamble.
PP.setSkipMainFilePreamble(InitOpts.PrecompiledPreambleBytes.first,
InitOpts.PrecompiledPreambleBytes.second);
// Copy PredefinedBuffer into the Preprocessor.
PP.setPredefines(Predefines.str());
}