blob: 26ac8b63a9ba3d18f3cea25638e6cf9d7d39341b [file] [log] [blame]
//===--- PatternInit.cpp - Pattern Initialization -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PatternInit.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Type.h"
llvm::Constant *clang::CodeGen::initializationPatternFor(CodeGenModule &CGM,
llvm::Type *Ty) {
// The following value is a guaranteed unmappable pointer value and has a
// repeated byte-pattern which makes it easier to synthesize. We use it for
// pointers as well as integers so that aggregates are likely to be
// initialized with this repeated value.
// For 32-bit platforms it's a bit trickier because, across systems, only the
// zero page can reasonably be expected to be unmapped. We use max 0xFFFFFFFF
// assuming that memory access will overlap into zero page.
const uint64_t IntValue =
CGM.getContext().getTargetInfo().getMaxPointerWidth() < 64
? 0xFFFFFFFFFFFFFFFFull
: 0xAAAAAAAAAAAAAAAAull;
// Floating-point values are initialized as NaNs because they propagate. Using
// a repeated byte pattern means that it will be easier to initialize
// all-floating-point aggregates and arrays with memset. Further, aggregates
// which mix integral and a few floats might also initialize with memset
// followed by a handful of stores for the floats. Using fairly unique NaNs
// also means they'll be easier to distinguish in a crash.
constexpr bool NegativeNaN = true;
constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
if (Ty->isIntOrIntVectorTy()) {
unsigned BitWidth =
cast<llvm::IntegerType>(Ty->getScalarType())->getBitWidth();
if (BitWidth <= 64)
return llvm::ConstantInt::get(Ty, IntValue);
return llvm::ConstantInt::get(
Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, IntValue)));
}
if (Ty->isPtrOrPtrVectorTy()) {
auto *PtrTy = cast<llvm::PointerType>(Ty->getScalarType());
unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth(
PtrTy->getAddressSpace());
if (PtrWidth > 64)
llvm_unreachable("pattern initialization of unsupported pointer width");
llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
}
if (Ty->isFPOrFPVectorTy()) {
unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
Ty->getScalarType()->getFltSemantics());
llvm::APInt Payload(64, NaNPayload);
if (BitWidth >= 64)
Payload = llvm::APInt::getSplat(BitWidth, Payload);
return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
}
if (Ty->isArrayTy()) {
// Note: this doesn't touch tail padding (at the end of an object, before
// the next array object). It is instead handled by replaceUndef.
auto *ArrTy = cast<llvm::ArrayType>(Ty);
llvm::SmallVector<llvm::Constant *, 8> Element(
ArrTy->getNumElements(),
initializationPatternFor(CGM, ArrTy->getElementType()));
return llvm::ConstantArray::get(ArrTy, Element);
}
// Note: this doesn't touch struct padding. It will initialize as much union
// padding as is required for the largest type in the union. Padding is
// instead handled by replaceUndef. Stores to structs with volatile members
// don't have a volatile qualifier when initialized according to C++. This is
// fine because stack-based volatiles don't really have volatile semantics
// anyways, and the initialization shouldn't be observable.
auto *StructTy = cast<llvm::StructType>(Ty);
llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
for (unsigned El = 0; El != Struct.size(); ++El)
Struct[El] = initializationPatternFor(CGM, StructTy->getElementType(El));
return llvm::ConstantStruct::get(StructTy, Struct);
}