| //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes implement wrappers around llvm::Value in order to |
| // fully represent the range of values for C L- and R- values. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H |
| #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/Type.h" |
| #include "Address.h" |
| #include "CodeGenTBAA.h" |
| |
| namespace llvm { |
| class Constant; |
| class MDNode; |
| } |
| |
| namespace clang { |
| namespace CodeGen { |
| class AggValueSlot; |
| class CodeGenFunction; |
| struct CGBitFieldInfo; |
| |
| /// RValue - This trivial value class is used to represent the result of an |
| /// expression that is evaluated. It can be one of three things: either a |
| /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the |
| /// address of an aggregate value in memory. |
| class RValue { |
| enum Flavor { Scalar, Complex, Aggregate }; |
| |
| // The shift to make to an aggregate's alignment to make it look |
| // like a pointer. |
| enum { AggAlignShift = 4 }; |
| |
| // Stores first value and flavor. |
| llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; |
| // Stores second value and volatility. |
| llvm::PointerIntPair<llvm::Value *, 1, bool> V2; |
| |
| public: |
| bool isScalar() const { return V1.getInt() == Scalar; } |
| bool isComplex() const { return V1.getInt() == Complex; } |
| bool isAggregate() const { return V1.getInt() == Aggregate; } |
| |
| bool isVolatileQualified() const { return V2.getInt(); } |
| |
| /// getScalarVal() - Return the Value* of this scalar value. |
| llvm::Value *getScalarVal() const { |
| assert(isScalar() && "Not a scalar!"); |
| return V1.getPointer(); |
| } |
| |
| /// getComplexVal - Return the real/imag components of this complex value. |
| /// |
| std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { |
| return std::make_pair(V1.getPointer(), V2.getPointer()); |
| } |
| |
| /// getAggregateAddr() - Return the Value* of the address of the aggregate. |
| Address getAggregateAddress() const { |
| assert(isAggregate() && "Not an aggregate!"); |
| auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift; |
| return Address(V1.getPointer(), CharUnits::fromQuantity(align)); |
| } |
| llvm::Value *getAggregatePointer() const { |
| assert(isAggregate() && "Not an aggregate!"); |
| return V1.getPointer(); |
| } |
| |
| static RValue getIgnored() { |
| // FIXME: should we make this a more explicit state? |
| return get(nullptr); |
| } |
| |
| static RValue get(llvm::Value *V) { |
| RValue ER; |
| ER.V1.setPointer(V); |
| ER.V1.setInt(Scalar); |
| ER.V2.setInt(false); |
| return ER; |
| } |
| static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { |
| RValue ER; |
| ER.V1.setPointer(V1); |
| ER.V2.setPointer(V2); |
| ER.V1.setInt(Complex); |
| ER.V2.setInt(false); |
| return ER; |
| } |
| static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { |
| return getComplex(C.first, C.second); |
| } |
| // FIXME: Aggregate rvalues need to retain information about whether they are |
| // volatile or not. Remove default to find all places that probably get this |
| // wrong. |
| static RValue getAggregate(Address addr, bool isVolatile = false) { |
| RValue ER; |
| ER.V1.setPointer(addr.getPointer()); |
| ER.V1.setInt(Aggregate); |
| |
| auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity()); |
| ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift)); |
| ER.V2.setInt(isVolatile); |
| return ER; |
| } |
| }; |
| |
| /// Does an ARC strong l-value have precise lifetime? |
| enum ARCPreciseLifetime_t { |
| ARCImpreciseLifetime, ARCPreciseLifetime |
| }; |
| |
| /// The source of the alignment of an l-value; an expression of |
| /// confidence in the alignment actually matching the estimate. |
| enum class AlignmentSource { |
| /// The l-value was an access to a declared entity or something |
| /// equivalently strong, like the address of an array allocated by a |
| /// language runtime. |
| Decl, |
| |
| /// The l-value was considered opaque, so the alignment was |
| /// determined from a type, but that type was an explicitly-aligned |
| /// typedef. |
| AttributedType, |
| |
| /// The l-value was considered opaque, so the alignment was |
| /// determined from a type. |
| Type |
| }; |
| |
| /// Given that the base address has the given alignment source, what's |
| /// our confidence in the alignment of the field? |
| static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { |
| // For now, we don't distinguish fields of opaque pointers from |
| // top-level declarations, but maybe we should. |
| return AlignmentSource::Decl; |
| } |
| |
| class LValueBaseInfo { |
| AlignmentSource AlignSource; |
| |
| public: |
| explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) |
| : AlignSource(Source) {} |
| AlignmentSource getAlignmentSource() const { return AlignSource; } |
| void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } |
| |
| void mergeForCast(const LValueBaseInfo &Info) { |
| setAlignmentSource(Info.getAlignmentSource()); |
| } |
| }; |
| |
| /// LValue - This represents an lvalue references. Because C/C++ allow |
| /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a |
| /// bitrange. |
| class LValue { |
| enum { |
| Simple, // This is a normal l-value, use getAddress(). |
| VectorElt, // This is a vector element l-value (V[i]), use getVector* |
| BitField, // This is a bitfield l-value, use getBitfield*. |
| ExtVectorElt, // This is an extended vector subset, use getExtVectorComp |
| GlobalReg, // This is a register l-value, use getGlobalReg() |
| MatrixElt // This is a matrix element, use getVector* |
| } LVType; |
| |
| llvm::Value *V; |
| |
| union { |
| // Index into a vector subscript: V[i] |
| llvm::Value *VectorIdx; |
| |
| // ExtVector element subset: V.xyx |
| llvm::Constant *VectorElts; |
| |
| // BitField start bit and size |
| const CGBitFieldInfo *BitFieldInfo; |
| }; |
| |
| QualType Type; |
| |
| // 'const' is unused here |
| Qualifiers Quals; |
| |
| // The alignment to use when accessing this lvalue. (For vector elements, |
| // this is the alignment of the whole vector.) |
| unsigned Alignment; |
| |
| // objective-c's ivar |
| bool Ivar:1; |
| |
| // objective-c's ivar is an array |
| bool ObjIsArray:1; |
| |
| // LValue is non-gc'able for any reason, including being a parameter or local |
| // variable. |
| bool NonGC: 1; |
| |
| // Lvalue is a global reference of an objective-c object |
| bool GlobalObjCRef : 1; |
| |
| // Lvalue is a thread local reference |
| bool ThreadLocalRef : 1; |
| |
| // Lvalue has ARC imprecise lifetime. We store this inverted to try |
| // to make the default bitfield pattern all-zeroes. |
| bool ImpreciseLifetime : 1; |
| |
| // This flag shows if a nontemporal load/stores should be used when accessing |
| // this lvalue. |
| bool Nontemporal : 1; |
| |
| LValueBaseInfo BaseInfo; |
| TBAAAccessInfo TBAAInfo; |
| |
| Expr *BaseIvarExp; |
| |
| private: |
| void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment, |
| LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { |
| assert((!Alignment.isZero() || Type->isIncompleteType()) && |
| "initializing l-value with zero alignment!"); |
| this->Type = Type; |
| this->Quals = Quals; |
| const unsigned MaxAlign = 1U << 31; |
| this->Alignment = Alignment.getQuantity() <= MaxAlign |
| ? Alignment.getQuantity() |
| : MaxAlign; |
| assert(this->Alignment == Alignment.getQuantity() && |
| "Alignment exceeds allowed max!"); |
| this->BaseInfo = BaseInfo; |
| this->TBAAInfo = TBAAInfo; |
| |
| // Initialize Objective-C flags. |
| this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; |
| this->ImpreciseLifetime = false; |
| this->Nontemporal = false; |
| this->ThreadLocalRef = false; |
| this->BaseIvarExp = nullptr; |
| } |
| |
| public: |
| bool isSimple() const { return LVType == Simple; } |
| bool isVectorElt() const { return LVType == VectorElt; } |
| bool isBitField() const { return LVType == BitField; } |
| bool isExtVectorElt() const { return LVType == ExtVectorElt; } |
| bool isGlobalReg() const { return LVType == GlobalReg; } |
| bool isMatrixElt() const { return LVType == MatrixElt; } |
| |
| bool isVolatileQualified() const { return Quals.hasVolatile(); } |
| bool isRestrictQualified() const { return Quals.hasRestrict(); } |
| unsigned getVRQualifiers() const { |
| return Quals.getCVRQualifiers() & ~Qualifiers::Const; |
| } |
| |
| QualType getType() const { return Type; } |
| |
| Qualifiers::ObjCLifetime getObjCLifetime() const { |
| return Quals.getObjCLifetime(); |
| } |
| |
| bool isObjCIvar() const { return Ivar; } |
| void setObjCIvar(bool Value) { Ivar = Value; } |
| |
| bool isObjCArray() const { return ObjIsArray; } |
| void setObjCArray(bool Value) { ObjIsArray = Value; } |
| |
| bool isNonGC () const { return NonGC; } |
| void setNonGC(bool Value) { NonGC = Value; } |
| |
| bool isGlobalObjCRef() const { return GlobalObjCRef; } |
| void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } |
| |
| bool isThreadLocalRef() const { return ThreadLocalRef; } |
| void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} |
| |
| ARCPreciseLifetime_t isARCPreciseLifetime() const { |
| return ARCPreciseLifetime_t(!ImpreciseLifetime); |
| } |
| void setARCPreciseLifetime(ARCPreciseLifetime_t value) { |
| ImpreciseLifetime = (value == ARCImpreciseLifetime); |
| } |
| bool isNontemporal() const { return Nontemporal; } |
| void setNontemporal(bool Value) { Nontemporal = Value; } |
| |
| bool isObjCWeak() const { |
| return Quals.getObjCGCAttr() == Qualifiers::Weak; |
| } |
| bool isObjCStrong() const { |
| return Quals.getObjCGCAttr() == Qualifiers::Strong; |
| } |
| |
| bool isVolatile() const { |
| return Quals.hasVolatile(); |
| } |
| |
| Expr *getBaseIvarExp() const { return BaseIvarExp; } |
| void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } |
| |
| TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } |
| void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } |
| |
| const Qualifiers &getQuals() const { return Quals; } |
| Qualifiers &getQuals() { return Quals; } |
| |
| LangAS getAddressSpace() const { return Quals.getAddressSpace(); } |
| |
| CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } |
| void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } |
| |
| LValueBaseInfo getBaseInfo() const { return BaseInfo; } |
| void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } |
| |
| // simple lvalue |
| llvm::Value *getPointer(CodeGenFunction &CGF) const { |
| assert(isSimple()); |
| return V; |
| } |
| Address getAddress(CodeGenFunction &CGF) const { |
| return Address(getPointer(CGF), getAlignment()); |
| } |
| void setAddress(Address address) { |
| assert(isSimple()); |
| V = address.getPointer(); |
| Alignment = address.getAlignment().getQuantity(); |
| } |
| |
| // vector elt lvalue |
| Address getVectorAddress() const { |
| return Address(getVectorPointer(), getAlignment()); |
| } |
| llvm::Value *getVectorPointer() const { |
| assert(isVectorElt()); |
| return V; |
| } |
| llvm::Value *getVectorIdx() const { |
| assert(isVectorElt()); |
| return VectorIdx; |
| } |
| |
| Address getMatrixAddress() const { |
| return Address(getMatrixPointer(), getAlignment()); |
| } |
| llvm::Value *getMatrixPointer() const { |
| assert(isMatrixElt()); |
| return V; |
| } |
| llvm::Value *getMatrixIdx() const { |
| assert(isMatrixElt()); |
| return VectorIdx; |
| } |
| |
| // extended vector elements. |
| Address getExtVectorAddress() const { |
| return Address(getExtVectorPointer(), getAlignment()); |
| } |
| llvm::Value *getExtVectorPointer() const { |
| assert(isExtVectorElt()); |
| return V; |
| } |
| llvm::Constant *getExtVectorElts() const { |
| assert(isExtVectorElt()); |
| return VectorElts; |
| } |
| |
| // bitfield lvalue |
| Address getBitFieldAddress() const { |
| return Address(getBitFieldPointer(), getAlignment()); |
| } |
| llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; } |
| const CGBitFieldInfo &getBitFieldInfo() const { |
| assert(isBitField()); |
| return *BitFieldInfo; |
| } |
| |
| // global register lvalue |
| llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } |
| |
| static LValue MakeAddr(Address address, QualType type, ASTContext &Context, |
| LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { |
| Qualifiers qs = type.getQualifiers(); |
| qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); |
| |
| LValue R; |
| R.LVType = Simple; |
| assert(address.getPointer()->getType()->isPointerTy()); |
| R.V = address.getPointer(); |
| R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo); |
| return R; |
| } |
| |
| static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, |
| QualType type, LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo) { |
| LValue R; |
| R.LVType = VectorElt; |
| R.V = vecAddress.getPointer(); |
| R.VectorIdx = Idx; |
| R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), |
| BaseInfo, TBAAInfo); |
| return R; |
| } |
| |
| static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts, |
| QualType type, LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo) { |
| LValue R; |
| R.LVType = ExtVectorElt; |
| R.V = vecAddress.getPointer(); |
| R.VectorElts = Elts; |
| R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), |
| BaseInfo, TBAAInfo); |
| return R; |
| } |
| |
| /// Create a new object to represent a bit-field access. |
| /// |
| /// \param Addr - The base address of the bit-field sequence this |
| /// bit-field refers to. |
| /// \param Info - The information describing how to perform the bit-field |
| /// access. |
| static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, |
| QualType type, LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo) { |
| LValue R; |
| R.LVType = BitField; |
| R.V = Addr.getPointer(); |
| R.BitFieldInfo = &Info; |
| R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo, |
| TBAAInfo); |
| return R; |
| } |
| |
| static LValue MakeGlobalReg(Address Reg, QualType type) { |
| LValue R; |
| R.LVType = GlobalReg; |
| R.V = Reg.getPointer(); |
| R.Initialize(type, type.getQualifiers(), Reg.getAlignment(), |
| LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); |
| return R; |
| } |
| |
| static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx, |
| QualType type, LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo) { |
| LValue R; |
| R.LVType = MatrixElt; |
| R.V = matAddress.getPointer(); |
| R.VectorIdx = Idx; |
| R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(), |
| BaseInfo, TBAAInfo); |
| return R; |
| } |
| |
| RValue asAggregateRValue(CodeGenFunction &CGF) const { |
| return RValue::getAggregate(getAddress(CGF), isVolatileQualified()); |
| } |
| }; |
| |
| /// An aggregate value slot. |
| class AggValueSlot { |
| /// The address. |
| llvm::Value *Addr; |
| |
| // Qualifiers |
| Qualifiers Quals; |
| |
| unsigned Alignment; |
| |
| /// DestructedFlag - This is set to true if some external code is |
| /// responsible for setting up a destructor for the slot. Otherwise |
| /// the code which constructs it should push the appropriate cleanup. |
| bool DestructedFlag : 1; |
| |
| /// ObjCGCFlag - This is set to true if writing to the memory in the |
| /// slot might require calling an appropriate Objective-C GC |
| /// barrier. The exact interaction here is unnecessarily mysterious. |
| bool ObjCGCFlag : 1; |
| |
| /// ZeroedFlag - This is set to true if the memory in the slot is |
| /// known to be zero before the assignment into it. This means that |
| /// zero fields don't need to be set. |
| bool ZeroedFlag : 1; |
| |
| /// AliasedFlag - This is set to true if the slot might be aliased |
| /// and it's not undefined behavior to access it through such an |
| /// alias. Note that it's always undefined behavior to access a C++ |
| /// object that's under construction through an alias derived from |
| /// outside the construction process. |
| /// |
| /// This flag controls whether calls that produce the aggregate |
| /// value may be evaluated directly into the slot, or whether they |
| /// must be evaluated into an unaliased temporary and then memcpy'ed |
| /// over. Since it's invalid in general to memcpy a non-POD C++ |
| /// object, it's important that this flag never be set when |
| /// evaluating an expression which constructs such an object. |
| bool AliasedFlag : 1; |
| |
| /// This is set to true if the tail padding of this slot might overlap |
| /// another object that may have already been initialized (and whose |
| /// value must be preserved by this initialization). If so, we may only |
| /// store up to the dsize of the type. Otherwise we can widen stores to |
| /// the size of the type. |
| bool OverlapFlag : 1; |
| |
| /// If is set to true, sanitizer checks are already generated for this address |
| /// or not required. For instance, if this address represents an object |
| /// created in 'new' expression, sanitizer checks for memory is made as a part |
| /// of 'operator new' emission and object constructor should not generate |
| /// them. |
| bool SanitizerCheckedFlag : 1; |
| |
| public: |
| enum IsAliased_t { IsNotAliased, IsAliased }; |
| enum IsDestructed_t { IsNotDestructed, IsDestructed }; |
| enum IsZeroed_t { IsNotZeroed, IsZeroed }; |
| enum Overlap_t { DoesNotOverlap, MayOverlap }; |
| enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; |
| enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked }; |
| |
| /// ignored - Returns an aggregate value slot indicating that the |
| /// aggregate value is being ignored. |
| static AggValueSlot ignored() { |
| return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, |
| DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); |
| } |
| |
| /// forAddr - Make a slot for an aggregate value. |
| /// |
| /// \param quals - The qualifiers that dictate how the slot should |
| /// be initialied. Only 'volatile' and the Objective-C lifetime |
| /// qualifiers matter. |
| /// |
| /// \param isDestructed - true if something else is responsible |
| /// for calling destructors on this object |
| /// \param needsGC - true if the slot is potentially located |
| /// somewhere that ObjC GC calls should be emitted for |
| static AggValueSlot forAddr(Address addr, |
| Qualifiers quals, |
| IsDestructed_t isDestructed, |
| NeedsGCBarriers_t needsGC, |
| IsAliased_t isAliased, |
| Overlap_t mayOverlap, |
| IsZeroed_t isZeroed = IsNotZeroed, |
| IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { |
| AggValueSlot AV; |
| if (addr.isValid()) { |
| AV.Addr = addr.getPointer(); |
| AV.Alignment = addr.getAlignment().getQuantity(); |
| } else { |
| AV.Addr = nullptr; |
| AV.Alignment = 0; |
| } |
| AV.Quals = quals; |
| AV.DestructedFlag = isDestructed; |
| AV.ObjCGCFlag = needsGC; |
| AV.ZeroedFlag = isZeroed; |
| AV.AliasedFlag = isAliased; |
| AV.OverlapFlag = mayOverlap; |
| AV.SanitizerCheckedFlag = isChecked; |
| return AV; |
| } |
| |
| static AggValueSlot |
| forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed, |
| NeedsGCBarriers_t needsGC, IsAliased_t isAliased, |
| Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, |
| IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { |
| return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC, |
| isAliased, mayOverlap, isZeroed, isChecked); |
| } |
| |
| IsDestructed_t isExternallyDestructed() const { |
| return IsDestructed_t(DestructedFlag); |
| } |
| void setExternallyDestructed(bool destructed = true) { |
| DestructedFlag = destructed; |
| } |
| |
| Qualifiers getQualifiers() const { return Quals; } |
| |
| bool isVolatile() const { |
| return Quals.hasVolatile(); |
| } |
| |
| void setVolatile(bool flag) { |
| if (flag) |
| Quals.addVolatile(); |
| else |
| Quals.removeVolatile(); |
| } |
| |
| Qualifiers::ObjCLifetime getObjCLifetime() const { |
| return Quals.getObjCLifetime(); |
| } |
| |
| NeedsGCBarriers_t requiresGCollection() const { |
| return NeedsGCBarriers_t(ObjCGCFlag); |
| } |
| |
| llvm::Value *getPointer() const { |
| return Addr; |
| } |
| |
| Address getAddress() const { |
| return Address(Addr, getAlignment()); |
| } |
| |
| bool isIgnored() const { |
| return Addr == nullptr; |
| } |
| |
| CharUnits getAlignment() const { |
| return CharUnits::fromQuantity(Alignment); |
| } |
| |
| IsAliased_t isPotentiallyAliased() const { |
| return IsAliased_t(AliasedFlag); |
| } |
| |
| Overlap_t mayOverlap() const { |
| return Overlap_t(OverlapFlag); |
| } |
| |
| bool isSanitizerChecked() const { |
| return SanitizerCheckedFlag; |
| } |
| |
| RValue asRValue() const { |
| if (isIgnored()) { |
| return RValue::getIgnored(); |
| } else { |
| return RValue::getAggregate(getAddress(), isVolatile()); |
| } |
| } |
| |
| void setZeroed(bool V = true) { ZeroedFlag = V; } |
| IsZeroed_t isZeroed() const { |
| return IsZeroed_t(ZeroedFlag); |
| } |
| |
| /// Get the preferred size to use when storing a value to this slot. This |
| /// is the type size unless that might overlap another object, in which |
| /// case it's the dsize. |
| CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { |
| return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width |
| : Ctx.getTypeSizeInChars(Type); |
| } |
| }; |
| |
| } // end namespace CodeGen |
| } // end namespace clang |
| |
| #endif |