| //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code dealing with C++ code generation of virtual tables. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCXXABI.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/Basic/CodeGenOptions.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "clang/CodeGen/ConstantInitBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include <algorithm> |
| #include <cstdio> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) |
| : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} |
| |
| llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, |
| GlobalDecl GD) { |
| return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, |
| /*DontDefer=*/true, /*IsThunk=*/true); |
| } |
| |
| static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, |
| llvm::Function *ThunkFn, bool ForVTable, |
| GlobalDecl GD) { |
| CGM.setFunctionLinkage(GD, ThunkFn); |
| CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, |
| !Thunk.Return.isEmpty()); |
| |
| // Set the right visibility. |
| CGM.setGVProperties(ThunkFn, GD); |
| |
| if (!CGM.getCXXABI().exportThunk()) { |
| ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| ThunkFn->setDSOLocal(true); |
| } |
| |
| if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) |
| ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); |
| } |
| |
| #ifndef NDEBUG |
| static bool similar(const ABIArgInfo &infoL, CanQualType typeL, |
| const ABIArgInfo &infoR, CanQualType typeR) { |
| return (infoL.getKind() == infoR.getKind() && |
| (typeL == typeR || |
| (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || |
| (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); |
| } |
| #endif |
| |
| static RValue PerformReturnAdjustment(CodeGenFunction &CGF, |
| QualType ResultType, RValue RV, |
| const ThunkInfo &Thunk) { |
| // Emit the return adjustment. |
| bool NullCheckValue = !ResultType->isReferenceType(); |
| |
| llvm::BasicBlock *AdjustNull = nullptr; |
| llvm::BasicBlock *AdjustNotNull = nullptr; |
| llvm::BasicBlock *AdjustEnd = nullptr; |
| |
| llvm::Value *ReturnValue = RV.getScalarVal(); |
| |
| if (NullCheckValue) { |
| AdjustNull = CGF.createBasicBlock("adjust.null"); |
| AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); |
| AdjustEnd = CGF.createBasicBlock("adjust.end"); |
| |
| llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); |
| CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); |
| CGF.EmitBlock(AdjustNotNull); |
| } |
| |
| auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); |
| auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); |
| ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, |
| Address(ReturnValue, ClassAlign), |
| Thunk.Return); |
| |
| if (NullCheckValue) { |
| CGF.Builder.CreateBr(AdjustEnd); |
| CGF.EmitBlock(AdjustNull); |
| CGF.Builder.CreateBr(AdjustEnd); |
| CGF.EmitBlock(AdjustEnd); |
| |
| llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); |
| PHI->addIncoming(ReturnValue, AdjustNotNull); |
| PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), |
| AdjustNull); |
| ReturnValue = PHI; |
| } |
| |
| return RValue::get(ReturnValue); |
| } |
| |
| /// This function clones a function's DISubprogram node and enters it into |
| /// a value map with the intent that the map can be utilized by the cloner |
| /// to short-circuit Metadata node mapping. |
| /// Furthermore, the function resolves any DILocalVariable nodes referenced |
| /// by dbg.value intrinsics so they can be properly mapped during cloning. |
| static void resolveTopLevelMetadata(llvm::Function *Fn, |
| llvm::ValueToValueMapTy &VMap) { |
| // Clone the DISubprogram node and put it into the Value map. |
| auto *DIS = Fn->getSubprogram(); |
| if (!DIS) |
| return; |
| auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); |
| VMap.MD()[DIS].reset(NewDIS); |
| |
| // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes |
| // they are referencing. |
| for (auto &BB : Fn->getBasicBlockList()) { |
| for (auto &I : BB) { |
| if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { |
| auto *DILocal = DII->getVariable(); |
| if (!DILocal->isResolved()) |
| DILocal->resolve(); |
| } |
| } |
| } |
| } |
| |
| // This function does roughly the same thing as GenerateThunk, but in a |
| // very different way, so that va_start and va_end work correctly. |
| // FIXME: This function assumes "this" is the first non-sret LLVM argument of |
| // a function, and that there is an alloca built in the entry block |
| // for all accesses to "this". |
| // FIXME: This function assumes there is only one "ret" statement per function. |
| // FIXME: Cloning isn't correct in the presence of indirect goto! |
| // FIXME: This implementation of thunks bloats codesize by duplicating the |
| // function definition. There are alternatives: |
| // 1. Add some sort of stub support to LLVM for cases where we can |
| // do a this adjustment, then a sibcall. |
| // 2. We could transform the definition to take a va_list instead of an |
| // actual variable argument list, then have the thunks (including a |
| // no-op thunk for the regular definition) call va_start/va_end. |
| // There's a bit of per-call overhead for this solution, but it's |
| // better for codesize if the definition is long. |
| llvm::Function * |
| CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, |
| const CGFunctionInfo &FnInfo, |
| GlobalDecl GD, const ThunkInfo &Thunk) { |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| QualType ResultType = FPT->getReturnType(); |
| |
| // Get the original function |
| assert(FnInfo.isVariadic()); |
| llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); |
| llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); |
| llvm::Function *BaseFn = cast<llvm::Function>(Callee); |
| |
| // Cloning can't work if we don't have a definition. The Microsoft ABI may |
| // require thunks when a definition is not available. Emit an error in these |
| // cases. |
| if (!MD->isDefined()) { |
| CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); |
| return Fn; |
| } |
| assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); |
| |
| // Clone to thunk. |
| llvm::ValueToValueMapTy VMap; |
| |
| // We are cloning a function while some Metadata nodes are still unresolved. |
| // Ensure that the value mapper does not encounter any of them. |
| resolveTopLevelMetadata(BaseFn, VMap); |
| llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); |
| Fn->replaceAllUsesWith(NewFn); |
| NewFn->takeName(Fn); |
| Fn->eraseFromParent(); |
| Fn = NewFn; |
| |
| // "Initialize" CGF (minimally). |
| CurFn = Fn; |
| |
| // Get the "this" value |
| llvm::Function::arg_iterator AI = Fn->arg_begin(); |
| if (CGM.ReturnTypeUsesSRet(FnInfo)) |
| ++AI; |
| |
| // Find the first store of "this", which will be to the alloca associated |
| // with "this". |
| Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); |
| llvm::BasicBlock *EntryBB = &Fn->front(); |
| llvm::BasicBlock::iterator ThisStore = |
| llvm::find_if(*EntryBB, [&](llvm::Instruction &I) { |
| return isa<llvm::StoreInst>(I) && |
| I.getOperand(0) == ThisPtr.getPointer(); |
| }); |
| assert(ThisStore != EntryBB->end() && |
| "Store of this should be in entry block?"); |
| // Adjust "this", if necessary. |
| Builder.SetInsertPoint(&*ThisStore); |
| llvm::Value *AdjustedThisPtr = |
| CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); |
| AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, |
| ThisStore->getOperand(0)->getType()); |
| ThisStore->setOperand(0, AdjustedThisPtr); |
| |
| if (!Thunk.Return.isEmpty()) { |
| // Fix up the returned value, if necessary. |
| for (llvm::BasicBlock &BB : *Fn) { |
| llvm::Instruction *T = BB.getTerminator(); |
| if (isa<llvm::ReturnInst>(T)) { |
| RValue RV = RValue::get(T->getOperand(0)); |
| T->eraseFromParent(); |
| Builder.SetInsertPoint(&BB); |
| RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); |
| Builder.CreateRet(RV.getScalarVal()); |
| break; |
| } |
| } |
| } |
| |
| return Fn; |
| } |
| |
| void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, |
| const CGFunctionInfo &FnInfo, |
| bool IsUnprototyped) { |
| assert(!CurGD.getDecl() && "CurGD was already set!"); |
| CurGD = GD; |
| CurFuncIsThunk = true; |
| |
| // Build FunctionArgs. |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| QualType ThisType = MD->getThisType(); |
| QualType ResultType; |
| if (IsUnprototyped) |
| ResultType = CGM.getContext().VoidTy; |
| else if (CGM.getCXXABI().HasThisReturn(GD)) |
| ResultType = ThisType; |
| else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) |
| ResultType = CGM.getContext().VoidPtrTy; |
| else |
| ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); |
| FunctionArgList FunctionArgs; |
| |
| // Create the implicit 'this' parameter declaration. |
| CGM.getCXXABI().buildThisParam(*this, FunctionArgs); |
| |
| // Add the rest of the parameters, if we have a prototype to work with. |
| if (!IsUnprototyped) { |
| FunctionArgs.append(MD->param_begin(), MD->param_end()); |
| |
| if (isa<CXXDestructorDecl>(MD)) |
| CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, |
| FunctionArgs); |
| } |
| |
| // Start defining the function. |
| auto NL = ApplyDebugLocation::CreateEmpty(*this); |
| StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, |
| MD->getLocation()); |
| // Create a scope with an artificial location for the body of this function. |
| auto AL = ApplyDebugLocation::CreateArtificial(*this); |
| |
| // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. |
| CGM.getCXXABI().EmitInstanceFunctionProlog(*this); |
| CXXThisValue = CXXABIThisValue; |
| CurCodeDecl = MD; |
| CurFuncDecl = MD; |
| } |
| |
| void CodeGenFunction::FinishThunk() { |
| // Clear these to restore the invariants expected by |
| // StartFunction/FinishFunction. |
| CurCodeDecl = nullptr; |
| CurFuncDecl = nullptr; |
| |
| FinishFunction(); |
| } |
| |
| void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, |
| const ThunkInfo *Thunk, |
| bool IsUnprototyped) { |
| assert(isa<CXXMethodDecl>(CurGD.getDecl()) && |
| "Please use a new CGF for this thunk"); |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); |
| |
| // Adjust the 'this' pointer if necessary |
| llvm::Value *AdjustedThisPtr = |
| Thunk ? CGM.getCXXABI().performThisAdjustment( |
| *this, LoadCXXThisAddress(), Thunk->This) |
| : LoadCXXThis(); |
| |
| // If perfect forwarding is required a variadic method, a method using |
| // inalloca, or an unprototyped thunk, use musttail. Emit an error if this |
| // thunk requires a return adjustment, since that is impossible with musttail. |
| if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { |
| if (Thunk && !Thunk->Return.isEmpty()) { |
| if (IsUnprototyped) |
| CGM.ErrorUnsupported( |
| MD, "return-adjusting thunk with incomplete parameter type"); |
| else if (CurFnInfo->isVariadic()) |
| llvm_unreachable("shouldn't try to emit musttail return-adjusting " |
| "thunks for variadic functions"); |
| else |
| CGM.ErrorUnsupported( |
| MD, "non-trivial argument copy for return-adjusting thunk"); |
| } |
| EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); |
| return; |
| } |
| |
| // Start building CallArgs. |
| CallArgList CallArgs; |
| QualType ThisType = MD->getThisType(); |
| CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); |
| |
| if (isa<CXXDestructorDecl>(MD)) |
| CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); |
| |
| #ifndef NDEBUG |
| unsigned PrefixArgs = CallArgs.size() - 1; |
| #endif |
| // Add the rest of the arguments. |
| for (const ParmVarDecl *PD : MD->parameters()) |
| EmitDelegateCallArg(CallArgs, PD, SourceLocation()); |
| |
| const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| |
| #ifndef NDEBUG |
| const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( |
| CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); |
| assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && |
| CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && |
| CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); |
| assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types |
| similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), |
| CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); |
| assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); |
| for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) |
| assert(similar(CallFnInfo.arg_begin()[i].info, |
| CallFnInfo.arg_begin()[i].type, |
| CurFnInfo->arg_begin()[i].info, |
| CurFnInfo->arg_begin()[i].type)); |
| #endif |
| |
| // Determine whether we have a return value slot to use. |
| QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) |
| ? ThisType |
| : CGM.getCXXABI().hasMostDerivedReturn(CurGD) |
| ? CGM.getContext().VoidPtrTy |
| : FPT->getReturnType(); |
| ReturnValueSlot Slot; |
| if (!ResultType->isVoidType() && |
| (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || |
| hasAggregateEvaluationKind(ResultType))) |
| Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), |
| /*IsUnused=*/false, /*IsExternallyDestructed=*/true); |
| |
| // Now emit our call. |
| llvm::CallBase *CallOrInvoke; |
| RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, |
| CallArgs, &CallOrInvoke); |
| |
| // Consider return adjustment if we have ThunkInfo. |
| if (Thunk && !Thunk->Return.isEmpty()) |
| RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); |
| else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) |
| Call->setTailCallKind(llvm::CallInst::TCK_Tail); |
| |
| // Emit return. |
| if (!ResultType->isVoidType() && Slot.isNull()) |
| CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); |
| |
| // Disable the final ARC autorelease. |
| AutoreleaseResult = false; |
| |
| FinishThunk(); |
| } |
| |
| void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, |
| llvm::Value *AdjustedThisPtr, |
| llvm::FunctionCallee Callee) { |
| // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery |
| // to translate AST arguments into LLVM IR arguments. For thunks, we know |
| // that the caller prototype more or less matches the callee prototype with |
| // the exception of 'this'. |
| SmallVector<llvm::Value *, 8> Args; |
| for (llvm::Argument &A : CurFn->args()) |
| Args.push_back(&A); |
| |
| // Set the adjusted 'this' pointer. |
| const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; |
| if (ThisAI.isDirect()) { |
| const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); |
| int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; |
| llvm::Type *ThisType = Args[ThisArgNo]->getType(); |
| if (ThisType != AdjustedThisPtr->getType()) |
| AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); |
| Args[ThisArgNo] = AdjustedThisPtr; |
| } else { |
| assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); |
| Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); |
| llvm::Type *ThisType = ThisAddr.getElementType(); |
| if (ThisType != AdjustedThisPtr->getType()) |
| AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); |
| Builder.CreateStore(AdjustedThisPtr, ThisAddr); |
| } |
| |
| // Emit the musttail call manually. Even if the prologue pushed cleanups, we |
| // don't actually want to run them. |
| llvm::CallInst *Call = Builder.CreateCall(Callee, Args); |
| Call->setTailCallKind(llvm::CallInst::TCK_MustTail); |
| |
| // Apply the standard set of call attributes. |
| unsigned CallingConv; |
| llvm::AttributeList Attrs; |
| CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, |
| Attrs, CallingConv, /*AttrOnCallSite=*/true, |
| /*IsThunk=*/false); |
| Call->setAttributes(Attrs); |
| Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| |
| if (Call->getType()->isVoidTy()) |
| Builder.CreateRetVoid(); |
| else |
| Builder.CreateRet(Call); |
| |
| // Finish the function to maintain CodeGenFunction invariants. |
| // FIXME: Don't emit unreachable code. |
| EmitBlock(createBasicBlock()); |
| |
| FinishThunk(); |
| } |
| |
| void CodeGenFunction::generateThunk(llvm::Function *Fn, |
| const CGFunctionInfo &FnInfo, GlobalDecl GD, |
| const ThunkInfo &Thunk, |
| bool IsUnprototyped) { |
| StartThunk(Fn, GD, FnInfo, IsUnprototyped); |
| // Create a scope with an artificial location for the body of this function. |
| auto AL = ApplyDebugLocation::CreateArtificial(*this); |
| |
| // Get our callee. Use a placeholder type if this method is unprototyped so |
| // that CodeGenModule doesn't try to set attributes. |
| llvm::Type *Ty; |
| if (IsUnprototyped) |
| Ty = llvm::StructType::get(getLLVMContext()); |
| else |
| Ty = CGM.getTypes().GetFunctionType(FnInfo); |
| |
| llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); |
| |
| // Fix up the function type for an unprototyped musttail call. |
| if (IsUnprototyped) |
| Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); |
| |
| // Make the call and return the result. |
| EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), |
| &Thunk, IsUnprototyped); |
| } |
| |
| static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, |
| bool IsUnprototyped, bool ForVTable) { |
| // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to |
| // provide thunks for us. |
| if (CGM.getTarget().getCXXABI().isMicrosoft()) |
| return true; |
| |
| // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide |
| // definitions of the main method. Therefore, emitting thunks with the vtable |
| // is purely an optimization. Emit the thunk if optimizations are enabled and |
| // all of the parameter types are complete. |
| if (ForVTable) |
| return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; |
| |
| // Always emit thunks along with the method definition. |
| return true; |
| } |
| |
| llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, |
| const ThunkInfo &TI, |
| bool ForVTable) { |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| |
| // First, get a declaration. Compute the mangled name. Don't worry about |
| // getting the function prototype right, since we may only need this |
| // declaration to fill in a vtable slot. |
| SmallString<256> Name; |
| MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); |
| llvm::raw_svector_ostream Out(Name); |
| if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) |
| MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); |
| else |
| MCtx.mangleThunk(MD, TI, Out); |
| llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); |
| llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); |
| |
| // If we don't need to emit a definition, return this declaration as is. |
| bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( |
| MD->getType()->castAs<FunctionType>()); |
| if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) |
| return Thunk; |
| |
| // Arrange a function prototype appropriate for a function definition. In some |
| // cases in the MS ABI, we may need to build an unprototyped musttail thunk. |
| const CGFunctionInfo &FnInfo = |
| IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) |
| : CGM.getTypes().arrangeGlobalDeclaration(GD); |
| llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); |
| |
| // If the type of the underlying GlobalValue is wrong, we'll have to replace |
| // it. It should be a declaration. |
| llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); |
| if (ThunkFn->getFunctionType() != ThunkFnTy) { |
| llvm::GlobalValue *OldThunkFn = ThunkFn; |
| |
| assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); |
| |
| // Remove the name from the old thunk function and get a new thunk. |
| OldThunkFn->setName(StringRef()); |
| ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, |
| Name.str(), &CGM.getModule()); |
| CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); |
| |
| // If needed, replace the old thunk with a bitcast. |
| if (!OldThunkFn->use_empty()) { |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); |
| OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); |
| } |
| |
| // Remove the old thunk. |
| OldThunkFn->eraseFromParent(); |
| } |
| |
| bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); |
| bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; |
| |
| if (!ThunkFn->isDeclaration()) { |
| if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { |
| // There is already a thunk emitted for this function, do nothing. |
| return ThunkFn; |
| } |
| |
| setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); |
| return ThunkFn; |
| } |
| |
| // If this will be unprototyped, add the "thunk" attribute so that LLVM knows |
| // that the return type is meaningless. These thunks can be used to call |
| // functions with differing return types, and the caller is required to cast |
| // the prototype appropriately to extract the correct value. |
| if (IsUnprototyped) |
| ThunkFn->addFnAttr("thunk"); |
| |
| CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); |
| |
| // Thunks for variadic methods are special because in general variadic |
| // arguments cannot be perfectly forwarded. In the general case, clang |
| // implements such thunks by cloning the original function body. However, for |
| // thunks with no return adjustment on targets that support musttail, we can |
| // use musttail to perfectly forward the variadic arguments. |
| bool ShouldCloneVarArgs = false; |
| if (!IsUnprototyped && ThunkFn->isVarArg()) { |
| ShouldCloneVarArgs = true; |
| if (TI.Return.isEmpty()) { |
| switch (CGM.getTriple().getArch()) { |
| case llvm::Triple::x86_64: |
| case llvm::Triple::x86: |
| case llvm::Triple::aarch64: |
| ShouldCloneVarArgs = false; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| if (ShouldCloneVarArgs) { |
| if (UseAvailableExternallyLinkage) |
| return ThunkFn; |
| ThunkFn = |
| CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); |
| } else { |
| // Normal thunk body generation. |
| CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); |
| } |
| |
| setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); |
| return ThunkFn; |
| } |
| |
| void CodeGenVTables::EmitThunks(GlobalDecl GD) { |
| const CXXMethodDecl *MD = |
| cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); |
| |
| // We don't need to generate thunks for the base destructor. |
| if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) |
| return; |
| |
| const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = |
| VTContext->getThunkInfo(GD); |
| |
| if (!ThunkInfoVector) |
| return; |
| |
| for (const ThunkInfo& Thunk : *ThunkInfoVector) |
| maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); |
| } |
| |
| void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, |
| llvm::Constant *component, |
| unsigned vtableAddressPoint, |
| bool vtableHasLocalLinkage, |
| bool isCompleteDtor) const { |
| // No need to get the offset of a nullptr. |
| if (component->isNullValue()) |
| return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); |
| |
| auto *globalVal = |
| cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); |
| llvm::Module &module = CGM.getModule(); |
| |
| // We don't want to copy the linkage of the vtable exactly because we still |
| // want the stub/proxy to be emitted for properly calculating the offset. |
| // Examples where there would be no symbol emitted are available_externally |
| // and private linkages. |
| auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage |
| : llvm::GlobalValue::ExternalLinkage; |
| |
| llvm::Constant *target; |
| if (auto *func = dyn_cast<llvm::Function>(globalVal)) { |
| target = llvm::DSOLocalEquivalent::get(func); |
| } else { |
| llvm::SmallString<16> rttiProxyName(globalVal->getName()); |
| rttiProxyName.append(".rtti_proxy"); |
| |
| // The RTTI component may not always be emitted in the same linkage unit as |
| // the vtable. As a general case, we can make a dso_local proxy to the RTTI |
| // that points to the actual RTTI struct somewhere. This will result in a |
| // GOTPCREL relocation when taking the relative offset to the proxy. |
| llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); |
| if (!proxy) { |
| proxy = new llvm::GlobalVariable(module, globalVal->getType(), |
| /*isConstant=*/true, stubLinkage, |
| globalVal, rttiProxyName); |
| proxy->setDSOLocal(true); |
| proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| if (!proxy->hasLocalLinkage()) { |
| proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); |
| } |
| } |
| target = proxy; |
| } |
| |
| builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, |
| /*position=*/vtableAddressPoint); |
| } |
| |
| bool CodeGenVTables::useRelativeLayout() const { |
| return CGM.getTarget().getCXXABI().isItaniumFamily() && |
| CGM.getItaniumVTableContext().isRelativeLayout(); |
| } |
| |
| llvm::Type *CodeGenVTables::getVTableComponentType() const { |
| if (useRelativeLayout()) |
| return CGM.Int32Ty; |
| return CGM.Int8PtrTy; |
| } |
| |
| static void AddPointerLayoutOffset(const CodeGenModule &CGM, |
| ConstantArrayBuilder &builder, |
| CharUnits offset) { |
| builder.add(llvm::ConstantExpr::getIntToPtr( |
| llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), |
| CGM.Int8PtrTy)); |
| } |
| |
| static void AddRelativeLayoutOffset(const CodeGenModule &CGM, |
| ConstantArrayBuilder &builder, |
| CharUnits offset) { |
| builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); |
| } |
| |
| void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, |
| const VTableLayout &layout, |
| unsigned componentIndex, |
| llvm::Constant *rtti, |
| unsigned &nextVTableThunkIndex, |
| unsigned vtableAddressPoint, |
| bool vtableHasLocalLinkage) { |
| auto &component = layout.vtable_components()[componentIndex]; |
| |
| auto addOffsetConstant = |
| useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; |
| |
| switch (component.getKind()) { |
| case VTableComponent::CK_VCallOffset: |
| return addOffsetConstant(CGM, builder, component.getVCallOffset()); |
| |
| case VTableComponent::CK_VBaseOffset: |
| return addOffsetConstant(CGM, builder, component.getVBaseOffset()); |
| |
| case VTableComponent::CK_OffsetToTop: |
| return addOffsetConstant(CGM, builder, component.getOffsetToTop()); |
| |
| case VTableComponent::CK_RTTI: |
| if (useRelativeLayout()) |
| return addRelativeComponent(builder, rtti, vtableAddressPoint, |
| vtableHasLocalLinkage, |
| /*isCompleteDtor=*/false); |
| else |
| return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); |
| |
| case VTableComponent::CK_FunctionPointer: |
| case VTableComponent::CK_CompleteDtorPointer: |
| case VTableComponent::CK_DeletingDtorPointer: { |
| GlobalDecl GD = component.getGlobalDecl(); |
| |
| if (CGM.getLangOpts().CUDA) { |
| // Emit NULL for methods we can't codegen on this |
| // side. Otherwise we'd end up with vtable with unresolved |
| // references. |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| // OK on device side: functions w/ __device__ attribute |
| // OK on host side: anything except __device__-only functions. |
| bool CanEmitMethod = |
| CGM.getLangOpts().CUDAIsDevice |
| ? MD->hasAttr<CUDADeviceAttr>() |
| : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); |
| if (!CanEmitMethod) |
| return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy)); |
| // Method is acceptable, continue processing as usual. |
| } |
| |
| auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { |
| // FIXME(PR43094): When merging comdat groups, lld can select a local |
| // symbol as the signature symbol even though it cannot be accessed |
| // outside that symbol's TU. The relative vtables ABI would make |
| // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and |
| // depending on link order, the comdat groups could resolve to the one |
| // with the local symbol. As a temporary solution, fill these components |
| // with zero. We shouldn't be calling these in the first place anyway. |
| if (useRelativeLayout()) |
| return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); |
| |
| // For NVPTX devices in OpenMP emit special functon as null pointers, |
| // otherwise linking ends up with unresolved references. |
| if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice && |
| CGM.getTriple().isNVPTX()) |
| return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); |
| llvm::FunctionType *fnTy = |
| llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); |
| llvm::Constant *fn = cast<llvm::Constant>( |
| CGM.CreateRuntimeFunction(fnTy, name).getCallee()); |
| if (auto f = dyn_cast<llvm::Function>(fn)) |
| f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); |
| }; |
| |
| llvm::Constant *fnPtr; |
| |
| // Pure virtual member functions. |
| if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { |
| if (!PureVirtualFn) |
| PureVirtualFn = |
| getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); |
| fnPtr = PureVirtualFn; |
| |
| // Deleted virtual member functions. |
| } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { |
| if (!DeletedVirtualFn) |
| DeletedVirtualFn = |
| getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); |
| fnPtr = DeletedVirtualFn; |
| |
| // Thunks. |
| } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && |
| layout.vtable_thunks()[nextVTableThunkIndex].first == |
| componentIndex) { |
| auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; |
| |
| nextVTableThunkIndex++; |
| fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); |
| |
| // Otherwise we can use the method definition directly. |
| } else { |
| llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); |
| fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); |
| } |
| |
| if (useRelativeLayout()) { |
| return addRelativeComponent( |
| builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, |
| component.getKind() == VTableComponent::CK_CompleteDtorPointer); |
| } else |
| return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy)); |
| } |
| |
| case VTableComponent::CK_UnusedFunctionPointer: |
| if (useRelativeLayout()) |
| return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); |
| else |
| return builder.addNullPointer(CGM.Int8PtrTy); |
| } |
| |
| llvm_unreachable("Unexpected vtable component kind"); |
| } |
| |
| llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { |
| SmallVector<llvm::Type *, 4> tys; |
| llvm::Type *componentType = getVTableComponentType(); |
| for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) |
| tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); |
| |
| return llvm::StructType::get(CGM.getLLVMContext(), tys); |
| } |
| |
| void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, |
| const VTableLayout &layout, |
| llvm::Constant *rtti, |
| bool vtableHasLocalLinkage) { |
| llvm::Type *componentType = getVTableComponentType(); |
| |
| const auto &addressPoints = layout.getAddressPointIndices(); |
| unsigned nextVTableThunkIndex = 0; |
| for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); |
| vtableIndex != endIndex; ++vtableIndex) { |
| auto vtableElem = builder.beginArray(componentType); |
| |
| size_t vtableStart = layout.getVTableOffset(vtableIndex); |
| size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); |
| for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; |
| ++componentIndex) { |
| addVTableComponent(vtableElem, layout, componentIndex, rtti, |
| nextVTableThunkIndex, addressPoints[vtableIndex], |
| vtableHasLocalLinkage); |
| } |
| vtableElem.finishAndAddTo(builder); |
| } |
| } |
| |
| llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( |
| const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, |
| llvm::GlobalVariable::LinkageTypes Linkage, |
| VTableAddressPointsMapTy &AddressPoints) { |
| if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) |
| DI->completeClassData(Base.getBase()); |
| |
| std::unique_ptr<VTableLayout> VTLayout( |
| getItaniumVTableContext().createConstructionVTableLayout( |
| Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); |
| |
| // Add the address points. |
| AddressPoints = VTLayout->getAddressPoints(); |
| |
| // Get the mangled construction vtable name. |
| SmallString<256> OutName; |
| llvm::raw_svector_ostream Out(OutName); |
| cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) |
| .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), |
| Base.getBase(), Out); |
| SmallString<256> Name(OutName); |
| |
| bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); |
| bool VTableAliasExists = |
| UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); |
| if (VTableAliasExists) { |
| // We previously made the vtable hidden and changed its name. |
| Name.append(".local"); |
| } |
| |
| llvm::Type *VTType = getVTableType(*VTLayout); |
| |
| // Construction vtable symbols are not part of the Itanium ABI, so we cannot |
| // guarantee that they actually will be available externally. Instead, when |
| // emitting an available_externally VTT, we provide references to an internal |
| // linkage construction vtable. The ABI only requires complete-object vtables |
| // to be the same for all instances of a type, not construction vtables. |
| if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) |
| Linkage = llvm::GlobalVariable::InternalLinkage; |
| |
| unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); |
| |
| // Create the variable that will hold the construction vtable. |
| llvm::GlobalVariable *VTable = |
| CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); |
| |
| // V-tables are always unnamed_addr. |
| VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| |
| llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( |
| CGM.getContext().getTagDeclType(Base.getBase())); |
| |
| // Create and set the initializer. |
| ConstantInitBuilder builder(CGM); |
| auto components = builder.beginStruct(); |
| createVTableInitializer(components, *VTLayout, RTTI, |
| VTable->hasLocalLinkage()); |
| components.finishAndSetAsInitializer(VTable); |
| |
| // Set properties only after the initializer has been set to ensure that the |
| // GV is treated as definition and not declaration. |
| assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); |
| CGM.setGVProperties(VTable, RD); |
| |
| CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); |
| |
| if (UsingRelativeLayout && !VTable->isDSOLocal()) |
| GenerateRelativeVTableAlias(VTable, OutName); |
| |
| return VTable; |
| } |
| |
| // If the VTable is not dso_local, then we will not be able to indicate that |
| // the VTable does not need a relocation and move into rodata. A frequent |
| // time this can occur is for classes that should be made public from a DSO |
| // (like in libc++). For cases like these, we can make the vtable hidden or |
| // private and create a public alias with the same visibility and linkage as |
| // the original vtable type. |
| void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, |
| llvm::StringRef AliasNameRef) { |
| assert(getItaniumVTableContext().isRelativeLayout() && |
| "Can only use this if the relative vtable ABI is used"); |
| assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " |
| "not guaranteed to be dso_local"); |
| |
| // If the vtable is available_externally, we shouldn't (or need to) generate |
| // an alias for it in the first place since the vtable won't actually by |
| // emitted in this compilation unit. |
| if (VTable->hasAvailableExternallyLinkage()) |
| return; |
| |
| // Create a new string in the event the alias is already the name of the |
| // vtable. Using the reference directly could lead to use of an inititialized |
| // value in the module's StringMap. |
| llvm::SmallString<256> AliasName(AliasNameRef); |
| VTable->setName(AliasName + ".local"); |
| |
| auto Linkage = VTable->getLinkage(); |
| assert(llvm::GlobalAlias::isValidLinkage(Linkage) && |
| "Invalid vtable alias linkage"); |
| |
| llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); |
| if (!VTableAlias) { |
| VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(), |
| VTable->getAddressSpace(), Linkage, |
| AliasName, &CGM.getModule()); |
| } else { |
| assert(VTableAlias->getValueType() == VTable->getValueType()); |
| assert(VTableAlias->getLinkage() == Linkage); |
| } |
| VTableAlias->setVisibility(VTable->getVisibility()); |
| VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); |
| |
| // Both of these imply dso_local for the vtable. |
| if (!VTable->hasComdat()) { |
| // If this is in a comdat, then we shouldn't make the linkage private due to |
| // an issue in lld where private symbols can be used as the key symbol when |
| // choosing the prevelant group. This leads to "relocation refers to a |
| // symbol in a discarded section". |
| VTable->setLinkage(llvm::GlobalValue::PrivateLinkage); |
| } else { |
| // We should at least make this hidden since we don't want to expose it. |
| VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| } |
| |
| VTableAlias->setAliasee(VTable); |
| } |
| |
| static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, |
| const CXXRecordDecl *RD) { |
| return CGM.getCodeGenOpts().OptimizationLevel > 0 && |
| CGM.getCXXABI().canSpeculativelyEmitVTable(RD); |
| } |
| |
| /// Compute the required linkage of the vtable for the given class. |
| /// |
| /// Note that we only call this at the end of the translation unit. |
| llvm::GlobalVariable::LinkageTypes |
| CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { |
| if (!RD->isExternallyVisible()) |
| return llvm::GlobalVariable::InternalLinkage; |
| |
| // We're at the end of the translation unit, so the current key |
| // function is fully correct. |
| const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); |
| if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { |
| // If this class has a key function, use that to determine the |
| // linkage of the vtable. |
| const FunctionDecl *def = nullptr; |
| if (keyFunction->hasBody(def)) |
| keyFunction = cast<CXXMethodDecl>(def); |
| |
| switch (keyFunction->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| assert((def || CodeGenOpts.OptimizationLevel > 0 || |
| CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && |
| "Shouldn't query vtable linkage without key function, " |
| "optimizations, or debug info"); |
| if (!def && CodeGenOpts.OptimizationLevel > 0) |
| return llvm::GlobalVariable::AvailableExternallyLinkage; |
| |
| if (keyFunction->isInlined()) |
| return !Context.getLangOpts().AppleKext ? |
| llvm::GlobalVariable::LinkOnceODRLinkage : |
| llvm::Function::InternalLinkage; |
| |
| return llvm::GlobalVariable::ExternalLinkage; |
| |
| case TSK_ImplicitInstantiation: |
| return !Context.getLangOpts().AppleKext ? |
| llvm::GlobalVariable::LinkOnceODRLinkage : |
| llvm::Function::InternalLinkage; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return !Context.getLangOpts().AppleKext ? |
| llvm::GlobalVariable::WeakODRLinkage : |
| llvm::Function::InternalLinkage; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| llvm_unreachable("Should not have been asked to emit this"); |
| } |
| } |
| |
| // -fapple-kext mode does not support weak linkage, so we must use |
| // internal linkage. |
| if (Context.getLangOpts().AppleKext) |
| return llvm::Function::InternalLinkage; |
| |
| llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = |
| llvm::GlobalValue::LinkOnceODRLinkage; |
| llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = |
| llvm::GlobalValue::WeakODRLinkage; |
| if (RD->hasAttr<DLLExportAttr>()) { |
| // Cannot discard exported vtables. |
| DiscardableODRLinkage = NonDiscardableODRLinkage; |
| } else if (RD->hasAttr<DLLImportAttr>()) { |
| // Imported vtables are available externally. |
| DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; |
| NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; |
| } |
| |
| switch (RD->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| case TSK_ImplicitInstantiation: |
| return DiscardableODRLinkage; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| // Explicit instantiations in MSVC do not provide vtables, so we must emit |
| // our own. |
| if (getTarget().getCXXABI().isMicrosoft()) |
| return DiscardableODRLinkage; |
| return shouldEmitAvailableExternallyVTable(*this, RD) |
| ? llvm::GlobalVariable::AvailableExternallyLinkage |
| : llvm::GlobalVariable::ExternalLinkage; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return NonDiscardableODRLinkage; |
| } |
| |
| llvm_unreachable("Invalid TemplateSpecializationKind!"); |
| } |
| |
| /// This is a callback from Sema to tell us that a particular vtable is |
| /// required to be emitted in this translation unit. |
| /// |
| /// This is only called for vtables that _must_ be emitted (mainly due to key |
| /// functions). For weak vtables, CodeGen tracks when they are needed and |
| /// emits them as-needed. |
| void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { |
| VTables.GenerateClassData(theClass); |
| } |
| |
| void |
| CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { |
| if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) |
| DI->completeClassData(RD); |
| |
| if (RD->getNumVBases()) |
| CGM.getCXXABI().emitVirtualInheritanceTables(RD); |
| |
| CGM.getCXXABI().emitVTableDefinitions(*this, RD); |
| } |
| |
| /// At this point in the translation unit, does it appear that can we |
| /// rely on the vtable being defined elsewhere in the program? |
| /// |
| /// The response is really only definitive when called at the end of |
| /// the translation unit. |
| /// |
| /// The only semantic restriction here is that the object file should |
| /// not contain a vtable definition when that vtable is defined |
| /// strongly elsewhere. Otherwise, we'd just like to avoid emitting |
| /// vtables when unnecessary. |
| bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { |
| assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); |
| |
| // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't |
| // emit them even if there is an explicit template instantiation. |
| if (CGM.getTarget().getCXXABI().isMicrosoft()) |
| return false; |
| |
| // If we have an explicit instantiation declaration (and not a |
| // definition), the vtable is defined elsewhere. |
| TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); |
| if (TSK == TSK_ExplicitInstantiationDeclaration) |
| return true; |
| |
| // Otherwise, if the class is an instantiated template, the |
| // vtable must be defined here. |
| if (TSK == TSK_ImplicitInstantiation || |
| TSK == TSK_ExplicitInstantiationDefinition) |
| return false; |
| |
| // Otherwise, if the class doesn't have a key function (possibly |
| // anymore), the vtable must be defined here. |
| const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); |
| if (!keyFunction) |
| return false; |
| |
| // Otherwise, if we don't have a definition of the key function, the |
| // vtable must be defined somewhere else. |
| return !keyFunction->hasBody(); |
| } |
| |
| /// Given that we're currently at the end of the translation unit, and |
| /// we've emitted a reference to the vtable for this class, should |
| /// we define that vtable? |
| static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, |
| const CXXRecordDecl *RD) { |
| // If vtable is internal then it has to be done. |
| if (!CGM.getVTables().isVTableExternal(RD)) |
| return true; |
| |
| // If it's external then maybe we will need it as available_externally. |
| return shouldEmitAvailableExternallyVTable(CGM, RD); |
| } |
| |
| /// Given that at some point we emitted a reference to one or more |
| /// vtables, and that we are now at the end of the translation unit, |
| /// decide whether we should emit them. |
| void CodeGenModule::EmitDeferredVTables() { |
| #ifndef NDEBUG |
| // Remember the size of DeferredVTables, because we're going to assume |
| // that this entire operation doesn't modify it. |
| size_t savedSize = DeferredVTables.size(); |
| #endif |
| |
| for (const CXXRecordDecl *RD : DeferredVTables) |
| if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) |
| VTables.GenerateClassData(RD); |
| else if (shouldOpportunisticallyEmitVTables()) |
| OpportunisticVTables.push_back(RD); |
| |
| assert(savedSize == DeferredVTables.size() && |
| "deferred extra vtables during vtable emission?"); |
| DeferredVTables.clear(); |
| } |
| |
| bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) { |
| if (!getCodeGenOpts().LTOVisibilityPublicStd) |
| return false; |
| |
| const DeclContext *DC = RD; |
| while (1) { |
| auto *D = cast<Decl>(DC); |
| DC = DC->getParent(); |
| if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { |
| if (auto *ND = dyn_cast<NamespaceDecl>(D)) |
| if (const IdentifierInfo *II = ND->getIdentifier()) |
| if (II->isStr("std") || II->isStr("stdext")) |
| return true; |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { |
| LinkageInfo LV = RD->getLinkageAndVisibility(); |
| if (!isExternallyVisible(LV.getLinkage())) |
| return true; |
| |
| if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) |
| return false; |
| |
| if (getTriple().isOSBinFormatCOFF()) { |
| if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) |
| return false; |
| } else { |
| if (LV.getVisibility() != HiddenVisibility) |
| return false; |
| } |
| |
| return !HasLTOVisibilityPublicStd(RD); |
| } |
| |
| llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( |
| const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { |
| // If we have already visited this RD (which means this is a recursive call |
| // since the initial call should have an empty Visited set), return the max |
| // visibility. The recursive calls below compute the min between the result |
| // of the recursive call and the current TypeVis, so returning the max here |
| // ensures that it will have no effect on the current TypeVis. |
| if (!Visited.insert(RD).second) |
| return llvm::GlobalObject::VCallVisibilityTranslationUnit; |
| |
| LinkageInfo LV = RD->getLinkageAndVisibility(); |
| llvm::GlobalObject::VCallVisibility TypeVis; |
| if (!isExternallyVisible(LV.getLinkage())) |
| TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; |
| else if (HasHiddenLTOVisibility(RD)) |
| TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; |
| else |
| TypeVis = llvm::GlobalObject::VCallVisibilityPublic; |
| |
| for (auto B : RD->bases()) |
| if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) |
| TypeVis = std::min( |
| TypeVis, |
| GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); |
| |
| for (auto B : RD->vbases()) |
| if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) |
| TypeVis = std::min( |
| TypeVis, |
| GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); |
| |
| return TypeVis; |
| } |
| |
| void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, |
| llvm::GlobalVariable *VTable, |
| const VTableLayout &VTLayout) { |
| if (!getCodeGenOpts().LTOUnit) |
| return; |
| |
| CharUnits PointerWidth = |
| Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); |
| |
| typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; |
| std::vector<AddressPoint> AddressPoints; |
| for (auto &&AP : VTLayout.getAddressPoints()) |
| AddressPoints.push_back(std::make_pair( |
| AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + |
| AP.second.AddressPointIndex)); |
| |
| // Sort the address points for determinism. |
| llvm::sort(AddressPoints, [this](const AddressPoint &AP1, |
| const AddressPoint &AP2) { |
| if (&AP1 == &AP2) |
| return false; |
| |
| std::string S1; |
| llvm::raw_string_ostream O1(S1); |
| getCXXABI().getMangleContext().mangleTypeName( |
| QualType(AP1.first->getTypeForDecl(), 0), O1); |
| O1.flush(); |
| |
| std::string S2; |
| llvm::raw_string_ostream O2(S2); |
| getCXXABI().getMangleContext().mangleTypeName( |
| QualType(AP2.first->getTypeForDecl(), 0), O2); |
| O2.flush(); |
| |
| if (S1 < S2) |
| return true; |
| if (S1 != S2) |
| return false; |
| |
| return AP1.second < AP2.second; |
| }); |
| |
| ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); |
| for (auto AP : AddressPoints) { |
| // Create type metadata for the address point. |
| AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); |
| |
| // The class associated with each address point could also potentially be |
| // used for indirect calls via a member function pointer, so we need to |
| // annotate the address of each function pointer with the appropriate member |
| // function pointer type. |
| for (unsigned I = 0; I != Comps.size(); ++I) { |
| if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) |
| continue; |
| llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( |
| Context.getMemberPointerType( |
| Comps[I].getFunctionDecl()->getType(), |
| Context.getRecordType(AP.first).getTypePtr())); |
| VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); |
| } |
| } |
| |
| if (getCodeGenOpts().VirtualFunctionElimination || |
| getCodeGenOpts().WholeProgramVTables) { |
| llvm::DenseSet<const CXXRecordDecl *> Visited; |
| llvm::GlobalObject::VCallVisibility TypeVis = |
| GetVCallVisibilityLevel(RD, Visited); |
| if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) |
| VTable->setVCallVisibilityMetadata(TypeVis); |
| } |
| } |