| //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides a generalized class for OpenMP runtime code generation |
| // specialized by GPU targets NVPTX and AMDGCN. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGOpenMPRuntimeGPU.h" |
| #include "CodeGenFunction.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/StmtOpenMP.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/Cuda.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Frontend/OpenMP/OMPGridValues.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace llvm::omp; |
| |
| namespace { |
| /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. |
| class NVPTXActionTy final : public PrePostActionTy { |
| llvm::FunctionCallee EnterCallee = nullptr; |
| ArrayRef<llvm::Value *> EnterArgs; |
| llvm::FunctionCallee ExitCallee = nullptr; |
| ArrayRef<llvm::Value *> ExitArgs; |
| bool Conditional = false; |
| llvm::BasicBlock *ContBlock = nullptr; |
| |
| public: |
| NVPTXActionTy(llvm::FunctionCallee EnterCallee, |
| ArrayRef<llvm::Value *> EnterArgs, |
| llvm::FunctionCallee ExitCallee, |
| ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) |
| : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), |
| ExitArgs(ExitArgs), Conditional(Conditional) {} |
| void Enter(CodeGenFunction &CGF) override { |
| llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); |
| if (Conditional) { |
| llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); |
| auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); |
| ContBlock = CGF.createBasicBlock("omp_if.end"); |
| // Generate the branch (If-stmt) |
| CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); |
| CGF.EmitBlock(ThenBlock); |
| } |
| } |
| void Done(CodeGenFunction &CGF) { |
| // Emit the rest of blocks/branches |
| CGF.EmitBranch(ContBlock); |
| CGF.EmitBlock(ContBlock, true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| CGF.EmitRuntimeCall(ExitCallee, ExitArgs); |
| } |
| }; |
| |
| /// A class to track the execution mode when codegening directives within |
| /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry |
| /// to the target region and used by containing directives such as 'parallel' |
| /// to emit optimized code. |
| class ExecutionRuntimeModesRAII { |
| private: |
| CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = |
| CGOpenMPRuntimeGPU::EM_Unknown; |
| CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; |
| bool SavedRuntimeMode = false; |
| bool *RuntimeMode = nullptr; |
| |
| public: |
| /// Constructor for Non-SPMD mode. |
| ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) |
| : ExecMode(ExecMode) { |
| SavedExecMode = ExecMode; |
| ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; |
| } |
| /// Constructor for SPMD mode. |
| ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, |
| bool &RuntimeMode, bool FullRuntimeMode) |
| : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { |
| SavedExecMode = ExecMode; |
| SavedRuntimeMode = RuntimeMode; |
| ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; |
| RuntimeMode = FullRuntimeMode; |
| } |
| ~ExecutionRuntimeModesRAII() { |
| ExecMode = SavedExecMode; |
| if (RuntimeMode) |
| *RuntimeMode = SavedRuntimeMode; |
| } |
| }; |
| |
| /// GPU Configuration: This information can be derived from cuda registers, |
| /// however, providing compile time constants helps generate more efficient |
| /// code. For all practical purposes this is fine because the configuration |
| /// is the same for all known NVPTX architectures. |
| enum MachineConfiguration : unsigned { |
| /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target |
| /// specific Grid Values like GV_Warp_Size, GV_Slot_Size |
| |
| /// Global memory alignment for performance. |
| GlobalMemoryAlignment = 128, |
| |
| /// Maximal size of the shared memory buffer. |
| SharedMemorySize = 128, |
| }; |
| |
| static const ValueDecl *getPrivateItem(const Expr *RefExpr) { |
| RefExpr = RefExpr->IgnoreParens(); |
| if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { |
| const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| RefExpr = Base; |
| } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { |
| const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) |
| Base = TempOASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| RefExpr = Base; |
| } |
| RefExpr = RefExpr->IgnoreParenImpCasts(); |
| if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) |
| return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); |
| const auto *ME = cast<MemberExpr>(RefExpr); |
| return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); |
| } |
| |
| |
| static RecordDecl *buildRecordForGlobalizedVars( |
| ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, |
| ArrayRef<const ValueDecl *> EscapedDeclsForTeams, |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &MappedDeclsFields, int BufSize) { |
| using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; |
| if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) |
| return nullptr; |
| SmallVector<VarsDataTy, 4> GlobalizedVars; |
| for (const ValueDecl *D : EscapedDecls) |
| GlobalizedVars.emplace_back( |
| CharUnits::fromQuantity(std::max( |
| C.getDeclAlign(D).getQuantity(), |
| static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), |
| D); |
| for (const ValueDecl *D : EscapedDeclsForTeams) |
| GlobalizedVars.emplace_back(C.getDeclAlign(D), D); |
| llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { |
| return L.first > R.first; |
| }); |
| |
| // Build struct _globalized_locals_ty { |
| // /* globalized vars */[WarSize] align (max(decl_align, |
| // GlobalMemoryAlignment)) |
| // /* globalized vars */ for EscapedDeclsForTeams |
| // }; |
| RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); |
| GlobalizedRD->startDefinition(); |
| llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( |
| EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); |
| for (const auto &Pair : GlobalizedVars) { |
| const ValueDecl *VD = Pair.second; |
| QualType Type = VD->getType(); |
| if (Type->isLValueReferenceType()) |
| Type = C.getPointerType(Type.getNonReferenceType()); |
| else |
| Type = Type.getNonReferenceType(); |
| SourceLocation Loc = VD->getLocation(); |
| FieldDecl *Field; |
| if (SingleEscaped.count(VD)) { |
| Field = FieldDecl::Create( |
| C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, |
| C.getTrivialTypeSourceInfo(Type, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| if (VD->hasAttrs()) { |
| for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), |
| E(VD->getAttrs().end()); |
| I != E; ++I) |
| Field->addAttr(*I); |
| } |
| } else { |
| llvm::APInt ArraySize(32, BufSize); |
| Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, |
| 0); |
| Field = FieldDecl::Create( |
| C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, |
| C.getTrivialTypeSourceInfo(Type, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), |
| static_cast<CharUnits::QuantityType>( |
| GlobalMemoryAlignment))); |
| Field->addAttr(AlignedAttr::CreateImplicit( |
| C, /*IsAlignmentExpr=*/true, |
| IntegerLiteral::Create(C, Align, |
| C.getIntTypeForBitwidth(32, /*Signed=*/0), |
| SourceLocation()), |
| {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); |
| } |
| GlobalizedRD->addDecl(Field); |
| MappedDeclsFields.try_emplace(VD, Field); |
| } |
| GlobalizedRD->completeDefinition(); |
| return GlobalizedRD; |
| } |
| |
| /// Get the list of variables that can escape their declaration context. |
| class CheckVarsEscapingDeclContext final |
| : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { |
| CodeGenFunction &CGF; |
| llvm::SetVector<const ValueDecl *> EscapedDecls; |
| llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; |
| llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; |
| RecordDecl *GlobalizedRD = nullptr; |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
| bool AllEscaped = false; |
| bool IsForCombinedParallelRegion = false; |
| |
| void markAsEscaped(const ValueDecl *VD) { |
| // Do not globalize declare target variables. |
| if (!isa<VarDecl>(VD) || |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
| return; |
| VD = cast<ValueDecl>(VD->getCanonicalDecl()); |
| // Use user-specified allocation. |
| if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) |
| return; |
| // Variables captured by value must be globalized. |
| if (auto *CSI = CGF.CapturedStmtInfo) { |
| if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { |
| // Check if need to capture the variable that was already captured by |
| // value in the outer region. |
| if (!IsForCombinedParallelRegion) { |
| if (!FD->hasAttrs()) |
| return; |
| const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); |
| if (!Attr) |
| return; |
| if (((Attr->getCaptureKind() != OMPC_map) && |
| !isOpenMPPrivate(Attr->getCaptureKind())) || |
| ((Attr->getCaptureKind() == OMPC_map) && |
| !FD->getType()->isAnyPointerType())) |
| return; |
| } |
| if (!FD->getType()->isReferenceType()) { |
| assert(!VD->getType()->isVariablyModifiedType() && |
| "Parameter captured by value with variably modified type"); |
| EscapedParameters.insert(VD); |
| } else if (!IsForCombinedParallelRegion) { |
| return; |
| } |
| } |
| } |
| if ((!CGF.CapturedStmtInfo || |
| (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && |
| VD->getType()->isReferenceType()) |
| // Do not globalize variables with reference type. |
| return; |
| if (VD->getType()->isVariablyModifiedType()) |
| EscapedVariableLengthDecls.insert(VD); |
| else |
| EscapedDecls.insert(VD); |
| } |
| |
| void VisitValueDecl(const ValueDecl *VD) { |
| if (VD->getType()->isLValueReferenceType()) |
| markAsEscaped(VD); |
| if (const auto *VarD = dyn_cast<VarDecl>(VD)) { |
| if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = VD->getType()->isLValueReferenceType(); |
| Visit(VarD->getInit()); |
| AllEscaped = SavedAllEscaped; |
| } |
| } |
| } |
| void VisitOpenMPCapturedStmt(const CapturedStmt *S, |
| ArrayRef<OMPClause *> Clauses, |
| bool IsCombinedParallelRegion) { |
| if (!S) |
| return; |
| for (const CapturedStmt::Capture &C : S->captures()) { |
| if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
| const ValueDecl *VD = C.getCapturedVar(); |
| bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; |
| if (IsCombinedParallelRegion) { |
| // Check if the variable is privatized in the combined construct and |
| // those private copies must be shared in the inner parallel |
| // directive. |
| IsForCombinedParallelRegion = false; |
| for (const OMPClause *C : Clauses) { |
| if (!isOpenMPPrivate(C->getClauseKind()) || |
| C->getClauseKind() == OMPC_reduction || |
| C->getClauseKind() == OMPC_linear || |
| C->getClauseKind() == OMPC_private) |
| continue; |
| ArrayRef<const Expr *> Vars; |
| if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) |
| Vars = PC->getVarRefs(); |
| else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) |
| Vars = PC->getVarRefs(); |
| else |
| llvm_unreachable("Unexpected clause."); |
| for (const auto *E : Vars) { |
| const Decl *D = |
| cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); |
| if (D == VD->getCanonicalDecl()) { |
| IsForCombinedParallelRegion = true; |
| break; |
| } |
| } |
| if (IsForCombinedParallelRegion) |
| break; |
| } |
| } |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; |
| } |
| } |
| } |
| |
| void buildRecordForGlobalizedVars(bool IsInTTDRegion) { |
| assert(!GlobalizedRD && |
| "Record for globalized variables is built already."); |
| ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; |
| unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; |
| if (IsInTTDRegion) |
| EscapedDeclsForTeams = EscapedDecls.getArrayRef(); |
| else |
| EscapedDeclsForParallel = EscapedDecls.getArrayRef(); |
| GlobalizedRD = ::buildRecordForGlobalizedVars( |
| CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, |
| MappedDeclsFields, WarpSize); |
| } |
| |
| public: |
| CheckVarsEscapingDeclContext(CodeGenFunction &CGF, |
| ArrayRef<const ValueDecl *> TeamsReductions) |
| : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { |
| } |
| virtual ~CheckVarsEscapingDeclContext() = default; |
| void VisitDeclStmt(const DeclStmt *S) { |
| if (!S) |
| return; |
| for (const Decl *D : S->decls()) |
| if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) |
| VisitValueDecl(VD); |
| } |
| void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { |
| if (!D) |
| return; |
| if (!D->hasAssociatedStmt()) |
| return; |
| if (const auto *S = |
| dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { |
| // Do not analyze directives that do not actually require capturing, |
| // like `omp for` or `omp simd` directives. |
| llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); |
| if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { |
| VisitStmt(S->getCapturedStmt()); |
| return; |
| } |
| VisitOpenMPCapturedStmt( |
| S, D->clauses(), |
| CaptureRegions.back() == OMPD_parallel && |
| isOpenMPDistributeDirective(D->getDirectiveKind())); |
| } |
| } |
| void VisitCapturedStmt(const CapturedStmt *S) { |
| if (!S) |
| return; |
| for (const CapturedStmt::Capture &C : S->captures()) { |
| if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
| const ValueDecl *VD = C.getCapturedVar(); |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| } |
| } |
| } |
| void VisitLambdaExpr(const LambdaExpr *E) { |
| if (!E) |
| return; |
| for (const LambdaCapture &C : E->captures()) { |
| if (C.capturesVariable()) { |
| if (C.getCaptureKind() == LCK_ByRef) { |
| const ValueDecl *VD = C.getCapturedVar(); |
| markAsEscaped(VD); |
| if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| } |
| } |
| } |
| } |
| void VisitBlockExpr(const BlockExpr *E) { |
| if (!E) |
| return; |
| for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { |
| if (C.isByRef()) { |
| const VarDecl *VD = C.getVariable(); |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) |
| VisitValueDecl(VD); |
| } |
| } |
| } |
| void VisitCallExpr(const CallExpr *E) { |
| if (!E) |
| return; |
| for (const Expr *Arg : E->arguments()) { |
| if (!Arg) |
| continue; |
| if (Arg->isLValue()) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = true; |
| Visit(Arg); |
| AllEscaped = SavedAllEscaped; |
| } else { |
| Visit(Arg); |
| } |
| } |
| Visit(E->getCallee()); |
| } |
| void VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (!E) |
| return; |
| const ValueDecl *VD = E->getDecl(); |
| if (AllEscaped) |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| else if (const auto *VarD = dyn_cast<VarDecl>(VD)) |
| if (VarD->isInitCapture()) |
| VisitValueDecl(VD); |
| } |
| void VisitUnaryOperator(const UnaryOperator *E) { |
| if (!E) |
| return; |
| if (E->getOpcode() == UO_AddrOf) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = true; |
| Visit(E->getSubExpr()); |
| AllEscaped = SavedAllEscaped; |
| } else { |
| Visit(E->getSubExpr()); |
| } |
| } |
| void VisitImplicitCastExpr(const ImplicitCastExpr *E) { |
| if (!E) |
| return; |
| if (E->getCastKind() == CK_ArrayToPointerDecay) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = true; |
| Visit(E->getSubExpr()); |
| AllEscaped = SavedAllEscaped; |
| } else { |
| Visit(E->getSubExpr()); |
| } |
| } |
| void VisitExpr(const Expr *E) { |
| if (!E) |
| return; |
| bool SavedAllEscaped = AllEscaped; |
| if (!E->isLValue()) |
| AllEscaped = false; |
| for (const Stmt *Child : E->children()) |
| if (Child) |
| Visit(Child); |
| AllEscaped = SavedAllEscaped; |
| } |
| void VisitStmt(const Stmt *S) { |
| if (!S) |
| return; |
| for (const Stmt *Child : S->children()) |
| if (Child) |
| Visit(Child); |
| } |
| |
| /// Returns the record that handles all the escaped local variables and used |
| /// instead of their original storage. |
| const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { |
| if (!GlobalizedRD) |
| buildRecordForGlobalizedVars(IsInTTDRegion); |
| return GlobalizedRD; |
| } |
| |
| /// Returns the field in the globalized record for the escaped variable. |
| const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { |
| assert(GlobalizedRD && |
| "Record for globalized variables must be generated already."); |
| auto I = MappedDeclsFields.find(VD); |
| if (I == MappedDeclsFields.end()) |
| return nullptr; |
| return I->getSecond(); |
| } |
| |
| /// Returns the list of the escaped local variables/parameters. |
| ArrayRef<const ValueDecl *> getEscapedDecls() const { |
| return EscapedDecls.getArrayRef(); |
| } |
| |
| /// Checks if the escaped local variable is actually a parameter passed by |
| /// value. |
| const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { |
| return EscapedParameters; |
| } |
| |
| /// Returns the list of the escaped variables with the variably modified |
| /// types. |
| ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { |
| return EscapedVariableLengthDecls.getArrayRef(); |
| } |
| }; |
| } // anonymous namespace |
| |
| /// Get the id of the warp in the block. |
| /// We assume that the warp size is 32, which is always the case |
| /// on the NVPTX device, to generate more efficient code. |
| static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| unsigned LaneIDBits = |
| llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); |
| } |
| |
| /// Get the id of the current lane in the Warp. |
| /// We assume that the warp size is 32, which is always the case |
| /// on the NVPTX device, to generate more efficient code. |
| static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| unsigned LaneIDBits = |
| llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); |
| unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), |
| "nvptx_lane_id"); |
| } |
| |
| CGOpenMPRuntimeGPU::ExecutionMode |
| CGOpenMPRuntimeGPU::getExecutionMode() const { |
| return CurrentExecutionMode; |
| } |
| |
| static CGOpenMPRuntimeGPU::DataSharingMode |
| getDataSharingMode(CodeGenModule &CGM) { |
| return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA |
| : CGOpenMPRuntimeGPU::Generic; |
| } |
| |
| /// Check for inner (nested) SPMD construct, if any |
| static bool hasNestedSPMDDirective(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| const auto *CS = D.getInnermostCapturedStmt(); |
| const auto *Body = |
| CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
| const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| |
| if (const auto *NestedDir = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); |
| switch (D.getDirectiveKind()) { |
| case OMPD_target: |
| if (isOpenMPParallelDirective(DKind)) |
| return true; |
| if (DKind == OMPD_teams) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPParallelDirective(DKind)) |
| return true; |
| } |
| } |
| return false; |
| case OMPD_target_teams: |
| return isOpenMPParallelDirective(DKind); |
| case OMPD_target_simd: |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute: |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| llvm_unreachable("Unexpected directive."); |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool supportsSPMDExecutionMode(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
| switch (DirectiveKind) { |
| case OMPD_target: |
| case OMPD_target_teams: |
| return hasNestedSPMDDirective(Ctx, D); |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_target_simd: |
| case OMPD_target_teams_distribute_simd: |
| return true; |
| case OMPD_target_teams_distribute: |
| return false; |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| break; |
| } |
| llvm_unreachable( |
| "Unknown programming model for OpenMP directive on NVPTX target."); |
| } |
| |
| /// Check if the directive is loops based and has schedule clause at all or has |
| /// static scheduling. |
| static bool hasStaticScheduling(const OMPExecutableDirective &D) { |
| assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && |
| isOpenMPLoopDirective(D.getDirectiveKind()) && |
| "Expected loop-based directive."); |
| return !D.hasClausesOfKind<OMPOrderedClause>() && |
| (!D.hasClausesOfKind<OMPScheduleClause>() || |
| llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), |
| [](const OMPScheduleClause *C) { |
| return C->getScheduleKind() == OMPC_SCHEDULE_static; |
| })); |
| } |
| |
| /// Check for inner (nested) lightweight runtime construct, if any |
| static bool hasNestedLightweightDirective(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); |
| const auto *CS = D.getInnermostCapturedStmt(); |
| const auto *Body = |
| CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
| const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| |
| if (const auto *NestedDir = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); |
| switch (D.getDirectiveKind()) { |
| case OMPD_target: |
| if (isOpenMPParallelDirective(DKind) && |
| isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && |
| hasStaticScheduling(*NestedDir)) |
| return true; |
| if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) |
| return true; |
| if (DKind == OMPD_parallel) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| } |
| } else if (DKind == OMPD_teams) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPParallelDirective(DKind) && |
| isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| if (DKind == OMPD_parallel) { |
| Body = NND->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| case OMPD_target_teams: |
| if (isOpenMPParallelDirective(DKind) && |
| isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && |
| hasStaticScheduling(*NestedDir)) |
| return true; |
| if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) |
| return true; |
| if (DKind == OMPD_parallel) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| } |
| } |
| return false; |
| case OMPD_target_parallel: |
| if (DKind == OMPD_simd) |
| return true; |
| return isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); |
| case OMPD_target_teams_distribute: |
| case OMPD_target_simd: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| llvm_unreachable("Unexpected directive."); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Checks if the construct supports lightweight runtime. It must be SPMD |
| /// construct + inner loop-based construct with static scheduling. |
| static bool supportsLightweightRuntime(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| if (!supportsSPMDExecutionMode(Ctx, D)) |
| return false; |
| OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
| switch (DirectiveKind) { |
| case OMPD_target: |
| case OMPD_target_teams: |
| case OMPD_target_parallel: |
| return hasNestedLightweightDirective(Ctx, D); |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| // (Last|First)-privates must be shared in parallel region. |
| return hasStaticScheduling(D); |
| case OMPD_target_simd: |
| case OMPD_target_teams_distribute_simd: |
| return true; |
| case OMPD_target_teams_distribute: |
| return false; |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| break; |
| } |
| llvm_unreachable( |
| "Unknown programming model for OpenMP directive on NVPTX target."); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, |
| StringRef ParentName, |
| llvm::Function *&OutlinedFn, |
| llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, |
| const RegionCodeGenTy &CodeGen) { |
| ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); |
| EntryFunctionState EST; |
| WrapperFunctionsMap.clear(); |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
| |
| public: |
| NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) |
| : EST(EST) {} |
| void Enter(CodeGenFunction &CGF) override { |
| auto &RT = |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); |
| // Skip target region initialization. |
| RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| auto &RT = |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| RT.clearLocThreadIdInsertPt(CGF); |
| RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); |
| } |
| } Action(EST); |
| CodeGen.setAction(Action); |
| IsInTTDRegion = true; |
| emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
| IsOffloadEntry, CodeGen); |
| IsInTTDRegion = false; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, |
| EntryFunctionState &EST, bool IsSPMD) { |
| CGBuilderTy &Bld = CGF.Builder; |
| Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); |
| IsInTargetMasterThreadRegion = IsSPMD; |
| if (!IsSPMD) |
| emitGenericVarsProlog(CGF, EST.Loc); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, |
| EntryFunctionState &EST, |
| bool IsSPMD) { |
| if (!IsSPMD) |
| emitGenericVarsEpilog(CGF); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, |
| StringRef ParentName, |
| llvm::Function *&OutlinedFn, |
| llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, |
| const RegionCodeGenTy &CodeGen) { |
| ExecutionRuntimeModesRAII ModeRAII( |
| CurrentExecutionMode, RequiresFullRuntime, |
| CGM.getLangOpts().OpenMPCUDAForceFullRuntime || |
| !supportsLightweightRuntime(CGM.getContext(), D)); |
| EntryFunctionState EST; |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| CGOpenMPRuntimeGPU &RT; |
| CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
| |
| public: |
| NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, |
| CGOpenMPRuntimeGPU::EntryFunctionState &EST) |
| : RT(RT), EST(EST) {} |
| void Enter(CodeGenFunction &CGF) override { |
| RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); |
| // Skip target region initialization. |
| RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| RT.clearLocThreadIdInsertPt(CGF); |
| RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); |
| } |
| } Action(*this, EST); |
| CodeGen.setAction(Action); |
| IsInTTDRegion = true; |
| emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
| IsOffloadEntry, CodeGen); |
| IsInTTDRegion = false; |
| } |
| |
| // Create a unique global variable to indicate the execution mode of this target |
| // region. The execution mode is either 'generic', or 'spmd' depending on the |
| // target directive. This variable is picked up by the offload library to setup |
| // the device appropriately before kernel launch. If the execution mode is |
| // 'generic', the runtime reserves one warp for the master, otherwise, all |
| // warps participate in parallel work. |
| static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, |
| bool Mode) { |
| auto *GVMode = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, |
| llvm::GlobalValue::WeakAnyLinkage, |
| llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD |
| : OMP_TGT_EXEC_MODE_GENERIC), |
| Twine(Name, "_exec_mode")); |
| CGM.addCompilerUsedGlobal(GVMode); |
| } |
| |
| void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, |
| llvm::Constant *Addr, |
| uint64_t Size, int32_t, |
| llvm::GlobalValue::LinkageTypes) { |
| // TODO: Add support for global variables on the device after declare target |
| // support. |
| if (!isa<llvm::Function>(Addr)) |
| return; |
| llvm::Module &M = CGM.getModule(); |
| llvm::LLVMContext &Ctx = CGM.getLLVMContext(); |
| |
| // Get "nvvm.annotations" metadata node |
| llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); |
| |
| llvm::Metadata *MDVals[] = { |
| llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), |
| llvm::ConstantAsMetadata::get( |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; |
| // Append metadata to nvvm.annotations |
| MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( |
| const OMPExecutableDirective &D, StringRef ParentName, |
| llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
| if (!IsOffloadEntry) // Nothing to do. |
| return; |
| |
| assert(!ParentName.empty() && "Invalid target region parent name!"); |
| |
| bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); |
| if (Mode) |
| emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
| CodeGen); |
| else |
| emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
| CodeGen); |
| |
| setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); |
| } |
| |
| namespace { |
| LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); |
| /// Enum for accesseing the reserved_2 field of the ident_t struct. |
| enum ModeFlagsTy : unsigned { |
| /// Bit set to 1 when in SPMD mode. |
| KMP_IDENT_SPMD_MODE = 0x01, |
| /// Bit set to 1 when a simplified runtime is used. |
| KMP_IDENT_SIMPLE_RT_MODE = 0x02, |
| LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) |
| }; |
| |
| /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. |
| static const ModeFlagsTy UndefinedMode = |
| (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; |
| } // anonymous namespace |
| |
| unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { |
| switch (getExecutionMode()) { |
| case EM_SPMD: |
| if (requiresFullRuntime()) |
| return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); |
| return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; |
| case EM_NonSPMD: |
| assert(requiresFullRuntime() && "Expected full runtime."); |
| return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); |
| case EM_Unknown: |
| return UndefinedMode; |
| } |
| llvm_unreachable("Unknown flags are requested."); |
| } |
| |
| CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) |
| : CGOpenMPRuntime(CGM, "_", "$") { |
| if (!CGM.getLangOpts().OpenMPIsDevice) |
| llvm_unreachable("OpenMP can only handle device code."); |
| |
| llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); |
| if (CGM.getLangOpts().OpenMPTargetNewRuntime) { |
| OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, |
| "__omp_rtl_debug_kind"); |
| OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, |
| "__omp_rtl_assume_teams_oversubscription"); |
| OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, |
| "__omp_rtl_assume_threads_oversubscription"); |
| } |
| } |
| |
| void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, |
| ProcBindKind ProcBind, |
| SourceLocation Loc) { |
| // Do nothing in case of SPMD mode and L0 parallel. |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, |
| llvm::Value *NumThreads, |
| SourceLocation Loc) { |
| // Do nothing in case of SPMD mode and L0 parallel. |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, |
| const Expr *NumTeams, |
| const Expr *ThreadLimit, |
| SourceLocation Loc) {} |
| |
| llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| bool &IsInParallelRegion; |
| bool PrevIsInParallelRegion; |
| |
| public: |
| NVPTXPrePostActionTy(bool &IsInParallelRegion) |
| : IsInParallelRegion(IsInParallelRegion) {} |
| void Enter(CodeGenFunction &CGF) override { |
| PrevIsInParallelRegion = IsInParallelRegion; |
| IsInParallelRegion = true; |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| IsInParallelRegion = PrevIsInParallelRegion; |
| } |
| } Action(IsInParallelRegion); |
| CodeGen.setAction(Action); |
| bool PrevIsInTTDRegion = IsInTTDRegion; |
| IsInTTDRegion = false; |
| bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; |
| IsInTargetMasterThreadRegion = false; |
| auto *OutlinedFun = |
| cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( |
| D, ThreadIDVar, InnermostKind, CodeGen)); |
| IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; |
| IsInTTDRegion = PrevIsInTTDRegion; |
| if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && |
| !IsInParallelRegion) { |
| llvm::Function *WrapperFun = |
| createParallelDataSharingWrapper(OutlinedFun, D); |
| WrapperFunctionsMap[OutlinedFun] = WrapperFun; |
| } |
| |
| return OutlinedFun; |
| } |
| |
| /// Get list of lastprivate variables from the teams distribute ... or |
| /// teams {distribute ...} directives. |
| static void |
| getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
| llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
| assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
| "expected teams directive."); |
| const OMPExecutableDirective *Dir = &D; |
| if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { |
| if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( |
| Ctx, |
| D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true))) { |
| Dir = dyn_cast_or_null<OMPExecutableDirective>(S); |
| if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) |
| Dir = nullptr; |
| } |
| } |
| if (!Dir) |
| return; |
| for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { |
| for (const Expr *E : C->getVarRefs()) |
| Vars.push_back(getPrivateItem(E)); |
| } |
| } |
| |
| /// Get list of reduction variables from the teams ... directives. |
| static void |
| getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
| llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
| assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
| "expected teams directive."); |
| for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { |
| for (const Expr *E : C->privates()) |
| Vars.push_back(getPrivateItem(E)); |
| } |
| } |
| |
| llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| SourceLocation Loc = D.getBeginLoc(); |
| |
| const RecordDecl *GlobalizedRD = nullptr; |
| llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
| unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; |
| // Globalize team reductions variable unconditionally in all modes. |
| if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
| getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { |
| getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); |
| if (!LastPrivatesReductions.empty()) { |
| GlobalizedRD = ::buildRecordForGlobalizedVars( |
| CGM.getContext(), llvm::None, LastPrivatesReductions, |
| MappedDeclsFields, WarpSize); |
| } |
| } else if (!LastPrivatesReductions.empty()) { |
| assert(!TeamAndReductions.first && |
| "Previous team declaration is not expected."); |
| TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); |
| std::swap(TeamAndReductions.second, LastPrivatesReductions); |
| } |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| SourceLocation &Loc; |
| const RecordDecl *GlobalizedRD; |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &MappedDeclsFields; |
| |
| public: |
| NVPTXPrePostActionTy( |
| SourceLocation &Loc, const RecordDecl *GlobalizedRD, |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &MappedDeclsFields) |
| : Loc(Loc), GlobalizedRD(GlobalizedRD), |
| MappedDeclsFields(MappedDeclsFields) {} |
| void Enter(CodeGenFunction &CGF) override { |
| auto &Rt = |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| if (GlobalizedRD) { |
| auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; |
| I->getSecond().MappedParams = |
| std::make_unique<CodeGenFunction::OMPMapVars>(); |
| DeclToAddrMapTy &Data = I->getSecond().LocalVarData; |
| for (const auto &Pair : MappedDeclsFields) { |
| assert(Pair.getFirst()->isCanonicalDecl() && |
| "Expected canonical declaration"); |
| Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); |
| } |
| } |
| Rt.emitGenericVarsProlog(CGF, Loc); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) |
| .emitGenericVarsEpilog(CGF); |
| } |
| } Action(Loc, GlobalizedRD, MappedDeclsFields); |
| CodeGen.setAction(Action); |
| llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( |
| D, ThreadIDVar, InnermostKind, CodeGen); |
| |
| return OutlinedFun; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| bool WithSPMDCheck) { |
| if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && |
| getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); |
| if (I == FunctionGlobalizedDecls.end()) |
| return; |
| |
| for (auto &Rec : I->getSecond().LocalVarData) { |
| const auto *VD = cast<VarDecl>(Rec.first); |
| bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); |
| QualType VarTy = VD->getType(); |
| |
| // Get the local allocation of a firstprivate variable before sharing |
| llvm::Value *ParValue; |
| if (EscapedParam) { |
| LValue ParLVal = |
| CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); |
| ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); |
| } |
| |
| // Allocate space for the variable to be globalized |
| llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; |
| llvm::Instruction *VoidPtr = |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_alloc_shared), |
| AllocArgs, VD->getName()); |
| |
| // Cast the void pointer and get the address of the globalized variable. |
| llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); |
| llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); |
| LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); |
| Rec.second.PrivateAddr = VarAddr.getAddress(CGF); |
| Rec.second.GlobalizedVal = VoidPtr; |
| |
| // Assign the local allocation to the newly globalized location. |
| if (EscapedParam) { |
| CGF.EmitStoreOfScalar(ParValue, VarAddr); |
| I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); |
| } |
| if (auto *DI = CGF.getDebugInfo()) |
| VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); |
| } |
| for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { |
| // Use actual memory size of the VLA object including the padding |
| // for alignment purposes. |
| llvm::Value *Size = CGF.getTypeSize(VD->getType()); |
| CharUnits Align = CGM.getContext().getDeclAlign(VD); |
| Size = Bld.CreateNUWAdd( |
| Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); |
| llvm::Value *AlignVal = |
| llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); |
| |
| Size = Bld.CreateUDiv(Size, AlignVal); |
| Size = Bld.CreateNUWMul(Size, AlignVal); |
| |
| // Allocate space for this VLA object to be globalized. |
| llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; |
| llvm::Instruction *VoidPtr = |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_alloc_shared), |
| AllocArgs, VD->getName()); |
| |
| I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( |
| std::pair<llvm::Value *, llvm::Value *>( |
| {VoidPtr, CGF.getTypeSize(VD->getType())})); |
| LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), |
| CGM.getContext().getDeclAlign(VD), |
| AlignmentSource::Decl); |
| I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), |
| Base.getAddress(CGF)); |
| } |
| I->getSecond().MappedParams->apply(CGF); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, |
| bool WithSPMDCheck) { |
| if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && |
| getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); |
| if (I != FunctionGlobalizedDecls.end()) { |
| // Deallocate the memory for each globalized VLA object |
| for (auto AddrSizePair : |
| llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_free_shared), |
| {AddrSizePair.first, AddrSizePair.second}); |
| } |
| // Deallocate the memory for each globalized value |
| for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { |
| const auto *VD = cast<VarDecl>(Rec.first); |
| I->getSecond().MappedParams->restore(CGF); |
| |
| llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, |
| CGF.getTypeSize(VD->getType())}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_free_shared), |
| FreeArgs); |
| } |
| } |
| } |
| |
| void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D, |
| SourceLocation Loc, |
| llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".zero.addr"); |
| CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); |
| OutlinedFnArgs.push_back(ZeroAddr.getPointer()); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, |
| const Expr *IfCond) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, |
| IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; |
| llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); |
| if (WFn) |
| ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); |
| llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); |
| |
| // Create a private scope that will globalize the arguments |
| // passed from the outside of the target region. |
| // TODO: Is that needed? |
| CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); |
| |
| Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( |
| llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), |
| "captured_vars_addrs"); |
| // There's something to share. |
| if (!CapturedVars.empty()) { |
| // Prepare for parallel region. Indicate the outlined function. |
| ASTContext &Ctx = CGF.getContext(); |
| unsigned Idx = 0; |
| for (llvm::Value *V : CapturedVars) { |
| Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); |
| llvm::Value *PtrV; |
| if (V->getType()->isIntegerTy()) |
| PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); |
| else |
| PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); |
| CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, |
| Ctx.getPointerType(Ctx.VoidPtrTy)); |
| ++Idx; |
| } |
| } |
| |
| llvm::Value *IfCondVal = nullptr; |
| if (IfCond) |
| IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, |
| /* isSigned */ false); |
| else |
| IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); |
| |
| assert(IfCondVal && "Expected a value"); |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *Args[] = { |
| RTLoc, |
| getThreadID(CGF, Loc), |
| IfCondVal, |
| llvm::ConstantInt::get(CGF.Int32Ty, -1), |
| llvm::ConstantInt::get(CGF.Int32Ty, -1), |
| FnPtr, |
| ID, |
| Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), |
| CGF.VoidPtrPtrTy), |
| llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_parallel_51), |
| Args); |
| }; |
| |
| RegionCodeGenTy RCG(ParallelGen); |
| RCG(CGF); |
| } |
| |
| void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { |
| // Always emit simple barriers! |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call __kmpc_barrier_simple_spmd(nullptr, 0); |
| // This function does not use parameters, so we can emit just default values. |
| llvm::Value *Args[] = { |
| llvm::ConstantPointerNull::get( |
| cast<llvm::PointerType>(getIdentTyPointerTy())), |
| llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), |
| Args); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| OpenMPDirectiveKind Kind, bool, |
| bool) { |
| // Always emit simple barriers! |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call __kmpc_cancel_barrier(loc, thread_id); |
| unsigned Flags = getDefaultFlagsForBarriers(Kind); |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), |
| getThreadID(CGF, Loc)}; |
| |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_barrier), |
| Args); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitCriticalRegion( |
| CodeGenFunction &CGF, StringRef CriticalName, |
| const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, |
| const Expr *Hint) { |
| llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); |
| llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); |
| llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); |
| llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); |
| |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| |
| // Get the mask of active threads in the warp. |
| llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); |
| // Fetch team-local id of the thread. |
| llvm::Value *ThreadID = RT.getGPUThreadID(CGF); |
| |
| // Get the width of the team. |
| llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); |
| |
| // Initialize the counter variable for the loop. |
| QualType Int32Ty = |
| CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); |
| Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); |
| LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); |
| CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, |
| /*isInit=*/true); |
| |
| // Block checks if loop counter exceeds upper bound. |
| CGF.EmitBlock(LoopBB); |
| llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); |
| llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); |
| CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); |
| |
| // Block tests which single thread should execute region, and which threads |
| // should go straight to synchronisation point. |
| CGF.EmitBlock(TestBB); |
| CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); |
| llvm::Value *CmpThreadToCounter = |
| CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); |
| CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); |
| |
| // Block emits the body of the critical region. |
| CGF.EmitBlock(BodyBB); |
| |
| // Output the critical statement. |
| CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, |
| Hint); |
| |
| // After the body surrounded by the critical region, the single executing |
| // thread will jump to the synchronisation point. |
| // Block waits for all threads in current team to finish then increments the |
| // counter variable and returns to the loop. |
| CGF.EmitBlock(SyncBB); |
| // Reconverge active threads in the warp. |
| (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_syncwarp), |
| Mask); |
| |
| llvm::Value *IncCounterVal = |
| CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); |
| CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); |
| CGF.EmitBranch(LoopBB); |
| |
| // Block that is reached when all threads in the team complete the region. |
| CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
| } |
| |
| /// Cast value to the specified type. |
| static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, |
| QualType ValTy, QualType CastTy, |
| SourceLocation Loc) { |
| assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && |
| "Cast type must sized."); |
| assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && |
| "Val type must sized."); |
| llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); |
| if (ValTy == CastTy) |
| return Val; |
| if (CGF.getContext().getTypeSizeInChars(ValTy) == |
| CGF.getContext().getTypeSizeInChars(CastTy)) |
| return CGF.Builder.CreateBitCast(Val, LLVMCastTy); |
| if (CastTy->isIntegerType() && ValTy->isIntegerType()) |
| return CGF.Builder.CreateIntCast(Val, LLVMCastTy, |
| CastTy->hasSignedIntegerRepresentation()); |
| Address CastItem = CGF.CreateMemTemp(CastTy); |
| Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); |
| CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| } |
| |
| /// This function creates calls to one of two shuffle functions to copy |
| /// variables between lanes in a warp. |
| static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, |
| llvm::Value *Elem, |
| QualType ElemType, |
| llvm::Value *Offset, |
| SourceLocation Loc) { |
| CodeGenModule &CGM = CGF.CGM; |
| CGBuilderTy &Bld = CGF.Builder; |
| CGOpenMPRuntimeGPU &RT = |
| *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); |
| llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); |
| |
| CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); |
| assert(Size.getQuantity() <= 8 && |
| "Unsupported bitwidth in shuffle instruction."); |
| |
| RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 |
| ? OMPRTL___kmpc_shuffle_int32 |
| : OMPRTL___kmpc_shuffle_int64; |
| |
| // Cast all types to 32- or 64-bit values before calling shuffle routines. |
| QualType CastTy = CGF.getContext().getIntTypeForBitwidth( |
| Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); |
| llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); |
| llvm::Value *WarpSize = |
| Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); |
| |
| llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), |
| {ElemCast, Offset, WarpSize}); |
| |
| return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); |
| } |
| |
| static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, |
| Address DestAddr, QualType ElemType, |
| llvm::Value *Offset, SourceLocation Loc) { |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); |
| // Create the loop over the big sized data. |
| // ptr = (void*)Elem; |
| // ptrEnd = (void*) Elem + 1; |
| // Step = 8; |
| // while (ptr + Step < ptrEnd) |
| // shuffle((int64_t)*ptr); |
| // Step = 4; |
| // while (ptr + Step < ptrEnd) |
| // shuffle((int32_t)*ptr); |
| // ... |
| Address ElemPtr = DestAddr; |
| Address Ptr = SrcAddr; |
| Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); |
| for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { |
| if (Size < CharUnits::fromQuantity(IntSize)) |
| continue; |
| QualType IntType = CGF.getContext().getIntTypeForBitwidth( |
| CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), |
| /*Signed=*/1); |
| llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); |
| Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); |
| ElemPtr = |
| Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); |
| if (Size.getQuantity() / IntSize > 1) { |
| llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); |
| llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); |
| CGF.EmitBlock(PreCondBB); |
| llvm::PHINode *PhiSrc = |
| Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); |
| PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); |
| llvm::PHINode *PhiDest = |
| Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); |
| PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); |
| Ptr = Address(PhiSrc, Ptr.getAlignment()); |
| ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); |
| llvm::Value *PtrDiff = Bld.CreatePtrDiff( |
| PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( |
| Ptr.getPointer(), CGF.VoidPtrTy)); |
| Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), |
| ThenBB, ExitBB); |
| CGF.EmitBlock(ThenBB); |
| llvm::Value *Res = createRuntimeShuffleFunction( |
| CGF, |
| CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()), |
| IntType, Offset, Loc); |
| CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); |
| Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); |
| PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); |
| PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); |
| CGF.EmitBranch(PreCondBB); |
| CGF.EmitBlock(ExitBB); |
| } else { |
| llvm::Value *Res = createRuntimeShuffleFunction( |
| CGF, |
| CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()), |
| IntType, Offset, Loc); |
| CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| Ptr = Bld.CreateConstGEP(Ptr, 1); |
| ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); |
| } |
| Size = Size % IntSize; |
| } |
| } |
| |
| namespace { |
| enum CopyAction : unsigned { |
| // RemoteLaneToThread: Copy over a Reduce list from a remote lane in |
| // the warp using shuffle instructions. |
| RemoteLaneToThread, |
| // ThreadCopy: Make a copy of a Reduce list on the thread's stack. |
| ThreadCopy, |
| // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. |
| ThreadToScratchpad, |
| // ScratchpadToThread: Copy from a scratchpad array in global memory |
| // containing team-reduced data to a thread's stack. |
| ScratchpadToThread, |
| }; |
| } // namespace |
| |
| struct CopyOptionsTy { |
| llvm::Value *RemoteLaneOffset; |
| llvm::Value *ScratchpadIndex; |
| llvm::Value *ScratchpadWidth; |
| }; |
| |
| /// Emit instructions to copy a Reduce list, which contains partially |
| /// aggregated values, in the specified direction. |
| static void emitReductionListCopy( |
| CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, |
| ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, |
| CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { |
| |
| CodeGenModule &CGM = CGF.CGM; |
| ASTContext &C = CGM.getContext(); |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; |
| llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; |
| llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; |
| |
| // Iterates, element-by-element, through the source Reduce list and |
| // make a copy. |
| unsigned Idx = 0; |
| unsigned Size = Privates.size(); |
| for (const Expr *Private : Privates) { |
| Address SrcElementAddr = Address::invalid(); |
| Address DestElementAddr = Address::invalid(); |
| Address DestElementPtrAddr = Address::invalid(); |
| // Should we shuffle in an element from a remote lane? |
| bool ShuffleInElement = false; |
| // Set to true to update the pointer in the dest Reduce list to a |
| // newly created element. |
| bool UpdateDestListPtr = false; |
| // Increment the src or dest pointer to the scratchpad, for each |
| // new element. |
| bool IncrScratchpadSrc = false; |
| bool IncrScratchpadDest = false; |
| |
| switch (Action) { |
| case RemoteLaneToThread: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); |
| SrcElementAddr = CGF.EmitLoadOfPointer( |
| SrcElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| |
| // Step 1.2: Create a temporary to store the element in the destination |
| // Reduce list. |
| DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); |
| DestElementAddr = |
| CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); |
| ShuffleInElement = true; |
| UpdateDestListPtr = true; |
| break; |
| } |
| case ThreadCopy: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); |
| SrcElementAddr = CGF.EmitLoadOfPointer( |
| SrcElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| |
| // Step 1.2: Get the address for dest element. The destination |
| // element has already been created on the thread's stack. |
| DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); |
| DestElementAddr = CGF.EmitLoadOfPointer( |
| DestElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| break; |
| } |
| case ThreadToScratchpad: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); |
| SrcElementAddr = CGF.EmitLoadOfPointer( |
| SrcElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| |
| // Step 1.2: Get the address for dest element: |
| // address = base + index * ElementSizeInChars. |
| llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); |
| llvm::Value *CurrentOffset = |
| Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); |
| llvm::Value *ScratchPadElemAbsolutePtrVal = |
| Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); |
| ScratchPadElemAbsolutePtrVal = |
| Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); |
| DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, |
| C.getTypeAlignInChars(Private->getType())); |
| IncrScratchpadDest = true; |
| break; |
| } |
| case ScratchpadToThread: { |
| // Step 1.1: Get the address for the src element in the scratchpad. |
| // address = base + index * ElementSizeInChars. |
| llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); |
| llvm::Value *CurrentOffset = |
| Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); |
| llvm::Value *ScratchPadElemAbsolutePtrVal = |
| Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); |
| ScratchPadElemAbsolutePtrVal = |
| Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); |
| SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, |
| C.getTypeAlignInChars(Private->getType())); |
| IncrScratchpadSrc = true; |
| |
| // Step 1.2: Create a temporary to store the element in the destination |
| // Reduce list. |
| DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); |
| DestElementAddr = |
| CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); |
| UpdateDestListPtr = true; |
| break; |
| } |
| } |
| |
| // Regardless of src and dest of copy, we emit the load of src |
| // element as this is required in all directions |
| SrcElementAddr = Bld.CreateElementBitCast( |
| SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); |
| DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, |
| SrcElementAddr.getElementType()); |
| |
| // Now that all active lanes have read the element in the |
| // Reduce list, shuffle over the value from the remote lane. |
| if (ShuffleInElement) { |
| shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), |
| RemoteLaneOffset, Private->getExprLoc()); |
| } else { |
| switch (CGF.getEvaluationKind(Private->getType())) { |
| case TEK_Scalar: { |
| llvm::Value *Elem = CGF.EmitLoadOfScalar( |
| SrcElementAddr, /*Volatile=*/false, Private->getType(), |
| Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| // Store the source element value to the dest element address. |
| CGF.EmitStoreOfScalar( |
| Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); |
| break; |
| } |
| case TEK_Complex: { |
| CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( |
| CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), |
| Private->getExprLoc()); |
| CGF.EmitStoreOfComplex( |
| Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), |
| /*isInit=*/false); |
| break; |
| } |
| case TEK_Aggregate: |
| CGF.EmitAggregateCopy( |
| CGF.MakeAddrLValue(DestElementAddr, Private->getType()), |
| CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), |
| Private->getType(), AggValueSlot::DoesNotOverlap); |
| break; |
| } |
| } |
| |
| // Step 3.1: Modify reference in dest Reduce list as needed. |
| // Modifying the reference in Reduce list to point to the newly |
| // created element. The element is live in the current function |
| // scope and that of functions it invokes (i.e., reduce_function). |
| // RemoteReduceData[i] = (void*)&RemoteElem |
| if (UpdateDestListPtr) { |
| CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( |
| DestElementAddr.getPointer(), CGF.VoidPtrTy), |
| DestElementPtrAddr, /*Volatile=*/false, |
| C.VoidPtrTy); |
| } |
| |
| // Step 4.1: Increment SrcBase/DestBase so that it points to the starting |
| // address of the next element in scratchpad memory, unless we're currently |
| // processing the last one. Memory alignment is also taken care of here. |
| if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { |
| llvm::Value *ScratchpadBasePtr = |
| IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); |
| llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); |
| ScratchpadBasePtr = Bld.CreateNUWAdd( |
| ScratchpadBasePtr, |
| Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); |
| |
| // Take care of global memory alignment for performance |
| ScratchpadBasePtr = Bld.CreateNUWSub( |
| ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); |
| ScratchpadBasePtr = Bld.CreateUDiv( |
| ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); |
| ScratchpadBasePtr = Bld.CreateNUWAdd( |
| ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); |
| ScratchpadBasePtr = Bld.CreateNUWMul( |
| ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); |
| |
| if (IncrScratchpadDest) |
| DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); |
| else /* IncrScratchpadSrc = true */ |
| SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); |
| } |
| |
| ++Idx; |
| } |
| } |
| |
| /// This function emits a helper that gathers Reduce lists from the first |
| /// lane of every active warp to lanes in the first warp. |
| /// |
| /// void inter_warp_copy_func(void* reduce_data, num_warps) |
| /// shared smem[warp_size]; |
| /// For all data entries D in reduce_data: |
| /// sync |
| /// If (I am the first lane in each warp) |
| /// Copy my local D to smem[warp_id] |
| /// sync |
| /// if (I am the first warp) |
| /// Copy smem[thread_id] to my local D |
| static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, |
| ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, |
| SourceLocation Loc) { |
| ASTContext &C = CGM.getContext(); |
| llvm::Module &M = CGM.getModule(); |
| |
| // ReduceList: thread local Reduce list. |
| // At the stage of the computation when this function is called, partially |
| // aggregated values reside in the first lane of every active warp. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // NumWarps: number of warps active in the parallel region. This could |
| // be smaller than 32 (max warps in a CTA) for partial block reduction. |
| ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.getIntTypeForBitwidth(32, /* Signed */ true), |
| ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&NumWarpsArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), |
| llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_inter_warp_copy_func", &M); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| // This array is used as a medium to transfer, one reduce element at a time, |
| // the data from the first lane of every warp to lanes in the first warp |
| // in order to perform the final step of a reduction in a parallel region |
| // (reduction across warps). The array is placed in NVPTX __shared__ memory |
| // for reduced latency, as well as to have a distinct copy for concurrently |
| // executing target regions. The array is declared with common linkage so |
| // as to be shared across compilation units. |
| StringRef TransferMediumName = |
| "__openmp_nvptx_data_transfer_temporary_storage"; |
| llvm::GlobalVariable *TransferMedium = |
| M.getGlobalVariable(TransferMediumName); |
| unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; |
| if (!TransferMedium) { |
| auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); |
| unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); |
| TransferMedium = new llvm::GlobalVariable( |
| M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, |
| llvm::UndefValue::get(Ty), TransferMediumName, |
| /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, |
| SharedAddressSpace); |
| CGM.addCompilerUsedGlobal(TransferMedium); |
| } |
| |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| // Get the CUDA thread id of the current OpenMP thread on the GPU. |
| llvm::Value *ThreadID = RT.getGPUThreadID(CGF); |
| // nvptx_lane_id = nvptx_id % warpsize |
| llvm::Value *LaneID = getNVPTXLaneID(CGF); |
| // nvptx_warp_id = nvptx_id / warpsize |
| llvm::Value *WarpID = getNVPTXWarpID(CGF); |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar( |
| AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| unsigned Idx = 0; |
| for (const Expr *Private : Privates) { |
| // |
| // Warp master copies reduce element to transfer medium in __shared__ |
| // memory. |
| // |
| unsigned RealTySize = |
| C.getTypeSizeInChars(Private->getType()) |
| .alignTo(C.getTypeAlignInChars(Private->getType())) |
| .getQuantity(); |
| for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { |
| unsigned NumIters = RealTySize / TySize; |
| if (NumIters == 0) |
| continue; |
| QualType CType = C.getIntTypeForBitwidth( |
| C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); |
| llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); |
| CharUnits Align = CharUnits::fromQuantity(TySize); |
| llvm::Value *Cnt = nullptr; |
| Address CntAddr = Address::invalid(); |
| llvm::BasicBlock *PrecondBB = nullptr; |
| llvm::BasicBlock *ExitBB = nullptr; |
| if (NumIters > 1) { |
| CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); |
| CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, |
| /*Volatile=*/false, C.IntTy); |
| PrecondBB = CGF.createBasicBlock("precond"); |
| ExitBB = CGF.createBasicBlock("exit"); |
| llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(PrecondBB); |
| Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); |
| llvm::Value *Cmp = |
| Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); |
| Bld.CreateCondBr(Cmp, BodyBB, ExitBB); |
| CGF.EmitBlock(BodyBB); |
| } |
| // kmpc_barrier. |
| CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, |
| /*EmitChecks=*/false, |
| /*ForceSimpleCall=*/true); |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); |
| |
| // if (lane_id == 0) |
| llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); |
| Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); |
| CGF.EmitBlock(ThenBB); |
| |
| // Reduce element = LocalReduceList[i] |
| Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); |
| llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
| ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| // elemptr = ((CopyType*)(elemptrptr)) + I |
| Address ElemPtr = Address(ElemPtrPtr, Align); |
| ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); |
| if (NumIters > 1) { |
| ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), |
| ElemPtr.getPointer(), Cnt), |
| ElemPtr.getAlignment()); |
| } |
| |
| // Get pointer to location in transfer medium. |
| // MediumPtr = &medium[warp_id] |
| llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( |
| TransferMedium->getValueType(), TransferMedium, |
| {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); |
| Address MediumPtr(MediumPtrVal, Align); |
| // Casting to actual data type. |
| // MediumPtr = (CopyType*)MediumPtrAddr; |
| MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); |
| |
| // elem = *elemptr |
| //*MediumPtr = elem |
| llvm::Value *Elem = CGF.EmitLoadOfScalar( |
| ElemPtr, /*Volatile=*/false, CType, Loc, |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); |
| // Store the source element value to the dest element address. |
| CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(ElseBB); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(MergeBB); |
| |
| // kmpc_barrier. |
| CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, |
| /*EmitChecks=*/false, |
| /*ForceSimpleCall=*/true); |
| |
| // |
| // Warp 0 copies reduce element from transfer medium. |
| // |
| llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); |
| |
| Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); |
| llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( |
| AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); |
| |
| // Up to 32 threads in warp 0 are active. |
| llvm::Value *IsActiveThread = |
| Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); |
| Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); |
| |
| CGF.EmitBlock(W0ThenBB); |
| |
| // SrcMediumPtr = &medium[tid] |
| llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( |
| TransferMedium->getValueType(), TransferMedium, |
| {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); |
| Address SrcMediumPtr(SrcMediumPtrVal, Align); |
| // SrcMediumVal = *SrcMediumPtr; |
| SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); |
| |
| // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I |
| Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); |
| llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( |
| TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); |
| Address TargetElemPtr = Address(TargetElemPtrVal, Align); |
| TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); |
| if (NumIters > 1) { |
| TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), |
| TargetElemPtr.getPointer(), Cnt), |
| TargetElemPtr.getAlignment()); |
| } |
| |
| // *TargetElemPtr = SrcMediumVal; |
| llvm::Value *SrcMediumValue = |
| CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); |
| CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, |
| CType); |
| Bld.CreateBr(W0MergeBB); |
| |
| CGF.EmitBlock(W0ElseBB); |
| Bld.CreateBr(W0MergeBB); |
| |
| CGF.EmitBlock(W0MergeBB); |
| |
| if (NumIters > 1) { |
| Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); |
| CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); |
| CGF.EmitBranch(PrecondBB); |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(ExitBB); |
| } |
| RealTySize %= TySize; |
| } |
| ++Idx; |
| } |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// Emit a helper that reduces data across two OpenMP threads (lanes) |
| /// in the same warp. It uses shuffle instructions to copy over data from |
| /// a remote lane's stack. The reduction algorithm performed is specified |
| /// by the fourth parameter. |
| /// |
| /// Algorithm Versions. |
| /// Full Warp Reduce (argument value 0): |
| /// This algorithm assumes that all 32 lanes are active and gathers |
| /// data from these 32 lanes, producing a single resultant value. |
| /// Contiguous Partial Warp Reduce (argument value 1): |
| /// This algorithm assumes that only a *contiguous* subset of lanes |
| /// are active. This happens for the last warp in a parallel region |
| /// when the user specified num_threads is not an integer multiple of |
| /// 32. This contiguous subset always starts with the zeroth lane. |
| /// Partial Warp Reduce (argument value 2): |
| /// This algorithm gathers data from any number of lanes at any position. |
| /// All reduced values are stored in the lowest possible lane. The set |
| /// of problems every algorithm addresses is a super set of those |
| /// addressable by algorithms with a lower version number. Overhead |
| /// increases as algorithm version increases. |
| /// |
| /// Terminology |
| /// Reduce element: |
| /// Reduce element refers to the individual data field with primitive |
| /// data types to be combined and reduced across threads. |
| /// Reduce list: |
| /// Reduce list refers to a collection of local, thread-private |
| /// reduce elements. |
| /// Remote Reduce list: |
| /// Remote Reduce list refers to a collection of remote (relative to |
| /// the current thread) reduce elements. |
| /// |
| /// We distinguish between three states of threads that are important to |
| /// the implementation of this function. |
| /// Alive threads: |
| /// Threads in a warp executing the SIMT instruction, as distinguished from |
| /// threads that are inactive due to divergent control flow. |
| /// Active threads: |
| /// The minimal set of threads that has to be alive upon entry to this |
| /// function. The computation is correct iff active threads are alive. |
| /// Some threads are alive but they are not active because they do not |
| /// contribute to the computation in any useful manner. Turning them off |
| /// may introduce control flow overheads without any tangible benefits. |
| /// Effective threads: |
| /// In order to comply with the argument requirements of the shuffle |
| /// function, we must keep all lanes holding data alive. But at most |
| /// half of them perform value aggregation; we refer to this half of |
| /// threads as effective. The other half is simply handing off their |
| /// data. |
| /// |
| /// Procedure |
| /// Value shuffle: |
| /// In this step active threads transfer data from higher lane positions |
| /// in the warp to lower lane positions, creating Remote Reduce list. |
| /// Value aggregation: |
| /// In this step, effective threads combine their thread local Reduce list |
| /// with Remote Reduce list and store the result in the thread local |
| /// Reduce list. |
| /// Value copy: |
| /// In this step, we deal with the assumption made by algorithm 2 |
| /// (i.e. contiguity assumption). When we have an odd number of lanes |
| /// active, say 2k+1, only k threads will be effective and therefore k |
| /// new values will be produced. However, the Reduce list owned by the |
| /// (2k+1)th thread is ignored in the value aggregation. Therefore |
| /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so |
| /// that the contiguity assumption still holds. |
| static llvm::Function *emitShuffleAndReduceFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { |
| ASTContext &C = CGM.getContext(); |
| |
| // Thread local Reduce list used to host the values of data to be reduced. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Current lane id; could be logical. |
| ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, |
| ImplicitParamDecl::Other); |
| // Offset of the remote source lane relative to the current lane. |
| ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.ShortTy, ImplicitParamDecl::Other); |
| // Algorithm version. This is expected to be known at compile time. |
| ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.ShortTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&LaneIDArg); |
| Args.push_back(&RemoteLaneOffsetArg); |
| Args.push_back(&AlgoVerArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, SourceLocation()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); |
| llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( |
| AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); |
| llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( |
| AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); |
| llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( |
| AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| // Create a local thread-private variable to host the Reduce list |
| // from a remote lane. |
| Address RemoteReduceList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); |
| |
| // This loop iterates through the list of reduce elements and copies, |
| // element by element, from a remote lane in the warp to RemoteReduceList, |
| // hosted on the thread's stack. |
| emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, |
| LocalReduceList, RemoteReduceList, |
| {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, |
| /*ScratchpadIndex=*/nullptr, |
| /*ScratchpadWidth=*/nullptr}); |
| |
| // The actions to be performed on the Remote Reduce list is dependent |
| // on the algorithm version. |
| // |
| // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && |
| // LaneId % 2 == 0 && Offset > 0): |
| // do the reduction value aggregation |
| // |
| // The thread local variable Reduce list is mutated in place to host the |
| // reduced data, which is the aggregated value produced from local and |
| // remote lanes. |
| // |
| // Note that AlgoVer is expected to be a constant integer known at compile |
| // time. |
| // When AlgoVer==0, the first conjunction evaluates to true, making |
| // the entire predicate true during compile time. |
| // When AlgoVer==1, the second conjunction has only the second part to be |
| // evaluated during runtime. Other conjunctions evaluates to false |
| // during compile time. |
| // When AlgoVer==2, the third conjunction has only the second part to be |
| // evaluated during runtime. Other conjunctions evaluates to false |
| // during compile time. |
| llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); |
| |
| llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); |
| llvm::Value *CondAlgo1 = Bld.CreateAnd( |
| Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); |
| |
| llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); |
| llvm::Value *CondAlgo2 = Bld.CreateAnd( |
| Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); |
| CondAlgo2 = Bld.CreateAnd( |
| CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); |
| |
| llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); |
| CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); |
| |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); |
| Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); |
| |
| CGF.EmitBlock(ThenBB); |
| // reduce_function(LocalReduceList, RemoteReduceList) |
| llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| LocalReduceList.getPointer(), CGF.VoidPtrTy); |
| llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| RemoteReduceList.getPointer(), CGF.VoidPtrTy); |
| CGM.getOpenMPRuntime().emitOutlinedFunctionCall( |
| CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(ElseBB); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(MergeBB); |
| |
| // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local |
| // Reduce list. |
| Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); |
| llvm::Value *CondCopy = Bld.CreateAnd( |
| Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); |
| |
| llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); |
| Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); |
| |
| CGF.EmitBlock(CpyThenBB); |
| emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, |
| RemoteReduceList, LocalReduceList); |
| Bld.CreateBr(CpyMergeBB); |
| |
| CGF.EmitBlock(CpyElseBB); |
| Bld.CreateBr(CpyMergeBB); |
| |
| CGF.EmitBlock(CpyMergeBB); |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that copies all the reduction variables from |
| /// the team into the provided global buffer for the reduction variables. |
| /// |
| /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) |
| /// For all data entries D in reduce_data: |
| /// Copy local D to buffer.D[Idx] |
| static llvm::Value *emitListToGlobalCopyFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, SourceLocation Loc, |
| const RecordDecl *TeamReductionRec, |
| const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &VarFieldMap) { |
| ASTContext &C = CGM.getContext(); |
| |
| // Buffer: global reduction buffer. |
| ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Idx: index of the buffer. |
| ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
| ImplicitParamDecl::Other); |
| // ReduceList: thread local Reduce list. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&BufferArg); |
| Args.push_back(&IdxArg); |
| Args.push_back(&ReduceListArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, Loc), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| QualType StaticTy = C.getRecordType(TeamReductionRec); |
| llvm::Type *LLVMReductionsBufferTy = |
| CGM.getTypes().ConvertTypeForMem(StaticTy); |
| llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
| LLVMReductionsBufferTy->getPointerTo()); |
| llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), |
| CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
| /*Volatile=*/false, C.IntTy, |
| Loc)}; |
| unsigned Idx = 0; |
| for (const Expr *Private : Privates) { |
| // Reduce element = LocalReduceList[i] |
| Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); |
| llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
| ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| // elemptr = ((CopyType*)(elemptrptr)) + I |
| ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); |
| Address ElemPtr = |
| Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); |
| const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); |
| // Global = Buffer.VD[Idx]; |
| const FieldDecl *FD = VarFieldMap.lookup(VD); |
| LValue GlobLVal = CGF.EmitLValueForField( |
| CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); |
| Address GlobAddr = GlobLVal.getAddress(CGF); |
| llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( |
| GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); |
| GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); |
| switch (CGF.getEvaluationKind(Private->getType())) { |
| case TEK_Scalar: { |
| llvm::Value *V = CGF.EmitLoadOfScalar( |
| ElemPtr, /*Volatile=*/false, Private->getType(), Loc, |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); |
| CGF.EmitStoreOfScalar(V, GlobLVal); |
| break; |
| } |
| case TEK_Complex: { |
| CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( |
| CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); |
| CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); |
| break; |
| } |
| case TEK_Aggregate: |
| CGF.EmitAggregateCopy(GlobLVal, |
| CGF.MakeAddrLValue(ElemPtr, Private->getType()), |
| Private->getType(), AggValueSlot::DoesNotOverlap); |
| break; |
| } |
| ++Idx; |
| } |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that reduces all the reduction variables from |
| /// the team into the provided global buffer for the reduction variables. |
| /// |
| /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) |
| /// void *GlobPtrs[]; |
| /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; |
| /// ... |
| /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; |
| /// reduce_function(GlobPtrs, reduce_data); |
| static llvm::Value *emitListToGlobalReduceFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, SourceLocation Loc, |
|