blob: a1b4431ca8c43e4484740d625554113c057a042e [file] [log] [blame]
//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides a class for CUDA code generation targeting the NVIDIA CUDA
// runtime library.
//
//===----------------------------------------------------------------------===//
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Cuda.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/Support/Format.h"
using namespace clang;
using namespace CodeGen;
namespace {
constexpr unsigned CudaFatMagic = 0x466243b1;
constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
class CGNVCUDARuntime : public CGCUDARuntime {
private:
llvm::IntegerType *IntTy, *SizeTy;
llvm::Type *VoidTy;
llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
/// Convenience reference to LLVM Context
llvm::LLVMContext &Context;
/// Convenience reference to the current module
llvm::Module &TheModule;
/// Keeps track of kernel launch stubs and handles emitted in this module
struct KernelInfo {
llvm::Function *Kernel; // stub function to help launch kernel
const Decl *D;
};
llvm::SmallVector<KernelInfo, 16> EmittedKernels;
// Map a device stub function to a symbol for identifying kernel in host code.
// For CUDA, the symbol for identifying the kernel is the same as the device
// stub function. For HIP, they are different.
llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles;
// Map a kernel handle to the kernel stub.
llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
struct VarInfo {
llvm::GlobalVariable *Var;
const VarDecl *D;
DeviceVarFlags Flags;
};
llvm::SmallVector<VarInfo, 16> DeviceVars;
/// Keeps track of variable containing handle of GPU binary. Populated by
/// ModuleCtorFunction() and used to create corresponding cleanup calls in
/// ModuleDtorFunction()
llvm::GlobalVariable *GpuBinaryHandle = nullptr;
/// Whether we generate relocatable device code.
bool RelocatableDeviceCode;
/// Mangle context for device.
std::unique_ptr<MangleContext> DeviceMC;
llvm::FunctionCallee getSetupArgumentFn() const;
llvm::FunctionCallee getLaunchFn() const;
llvm::FunctionType *getRegisterGlobalsFnTy() const;
llvm::FunctionType *getCallbackFnTy() const;
llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
std::string addPrefixToName(StringRef FuncName) const;
std::string addUnderscoredPrefixToName(StringRef FuncName) const;
/// Creates a function to register all kernel stubs generated in this module.
llvm::Function *makeRegisterGlobalsFn();
/// Helper function that generates a constant string and returns a pointer to
/// the start of the string. The result of this function can be used anywhere
/// where the C code specifies const char*.
llvm::Constant *makeConstantString(const std::string &Str,
const std::string &Name = "",
const std::string &SectionName = "",
unsigned Alignment = 0) {
llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
llvm::ConstantInt::get(SizeTy, 0)};
auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
llvm::GlobalVariable *GV =
cast<llvm::GlobalVariable>(ConstStr.getPointer());
if (!SectionName.empty()) {
GV->setSection(SectionName);
// Mark the address as used which make sure that this section isn't
// merged and we will really have it in the object file.
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
}
if (Alignment)
GV->setAlignment(llvm::Align(Alignment));
return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
ConstStr.getPointer(), Zeros);
}
/// Helper function that generates an empty dummy function returning void.
llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
assert(FnTy->getReturnType()->isVoidTy() &&
"Can only generate dummy functions returning void!");
llvm::Function *DummyFunc = llvm::Function::Create(
FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
llvm::BasicBlock *DummyBlock =
llvm::BasicBlock::Create(Context, "", DummyFunc);
CGBuilderTy FuncBuilder(CGM, Context);
FuncBuilder.SetInsertPoint(DummyBlock);
FuncBuilder.CreateRetVoid();
return DummyFunc;
}
void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
std::string getDeviceSideName(const NamedDecl *ND) override;
void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
bool Extern, bool Constant) {
DeviceVars.push_back({&Var,
VD,
{DeviceVarFlags::Variable, Extern, Constant,
VD->hasAttr<HIPManagedAttr>(),
/*Normalized*/ false, 0}});
}
void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
bool Extern, int Type) {
DeviceVars.push_back({&Var,
VD,
{DeviceVarFlags::Surface, Extern, /*Constant*/ false,
/*Managed*/ false,
/*Normalized*/ false, Type}});
}
void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
bool Extern, int Type, bool Normalized) {
DeviceVars.push_back({&Var,
VD,
{DeviceVarFlags::Texture, Extern, /*Constant*/ false,
/*Managed*/ false, Normalized, Type}});
}
/// Creates module constructor function
llvm::Function *makeModuleCtorFunction();
/// Creates module destructor function
llvm::Function *makeModuleDtorFunction();
/// Transform managed variables for device compilation.
void transformManagedVars();
public:
CGNVCUDARuntime(CodeGenModule &CGM);
llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
auto Loc = KernelStubs.find(Handle);
assert(Loc != KernelStubs.end());
return Loc->second;
}
void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
void handleVarRegistration(const VarDecl *VD,
llvm::GlobalVariable &Var) override;
void
internalizeDeviceSideVar(const VarDecl *D,
llvm::GlobalValue::LinkageTypes &Linkage) override;
llvm::Function *finalizeModule() override;
};
} // end anonymous namespace
std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
if (CGM.getLangOpts().HIP)
return ((Twine("hip") + Twine(FuncName)).str());
return ((Twine("cuda") + Twine(FuncName)).str());
}
std::string
CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
if (CGM.getLangOpts().HIP)
return ((Twine("__hip") + Twine(FuncName)).str());
return ((Twine("__cuda") + Twine(FuncName)).str());
}
static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
// If the host and device have different C++ ABIs, mark it as the device
// mangle context so that the mangling needs to retrieve the additional
// device lambda mangling number instead of the regular host one.
if (CGM.getContext().getAuxTargetInfo() &&
CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
return std::unique_ptr<MangleContext>(
CGM.getContext().createDeviceMangleContext(
*CGM.getContext().getAuxTargetInfo()));
}
return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
CGM.getContext().getAuxTargetInfo()));
}
CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
: CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
TheModule(CGM.getModule()),
RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
DeviceMC(InitDeviceMC(CGM)) {
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
IntTy = CGM.IntTy;
SizeTy = CGM.SizeTy;
VoidTy = CGM.VoidTy;
CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
VoidPtrPtrTy = VoidPtrTy->getPointerTo();
}
llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
// cudaError_t cudaSetupArgument(void *, size_t, size_t)
llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, Params, false),
addPrefixToName("SetupArgument"));
}
llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
if (CGM.getLangOpts().HIP) {
// hipError_t hipLaunchByPtr(char *);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
}
// cudaError_t cudaLaunch(char *);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
}
llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
}
llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
}
llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
auto *CallbackFnTy = getCallbackFnTy();
auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
VoidPtrTy, CallbackFnTy->getPointerTo()};
return llvm::FunctionType::get(VoidTy, Params, false);
}
std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
GlobalDecl GD;
// D could be either a kernel or a variable.
if (auto *FD = dyn_cast<FunctionDecl>(ND))
GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
else
GD = GlobalDecl(ND);
std::string DeviceSideName;
MangleContext *MC;
if (CGM.getLangOpts().CUDAIsDevice)
MC = &CGM.getCXXABI().getMangleContext();
else
MC = DeviceMC.get();
if (MC->shouldMangleDeclName(ND)) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
MC->mangleName(GD, Out);
DeviceSideName = std::string(Out.str());
} else
DeviceSideName = std::string(ND->getIdentifier()->getName());
// Make unique name for device side static file-scope variable for HIP.
if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
CGM.getLangOpts().GPURelocatableDeviceCode &&
!CGM.getLangOpts().CUID.empty()) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << DeviceSideName;
CGM.printPostfixForExternalizedStaticVar(Out);
DeviceSideName = std::string(Out.str());
}
return DeviceSideName;
}
void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
FunctionArgList &Args) {
EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) {
GV->setLinkage(CGF.CurFn->getLinkage());
GV->setInitializer(CGF.CurFn);
}
if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
CudaFeature::CUDA_USES_NEW_LAUNCH) ||
(CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
emitDeviceStubBodyNew(CGF, Args);
else
emitDeviceStubBodyLegacy(CGF, Args);
}
// CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
// array and kernels are launched using cudaLaunchKernel().
void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
FunctionArgList &Args) {
// Build the shadow stack entry at the very start of the function.
// Calculate amount of space we will need for all arguments. If we have no
// args, allocate a single pointer so we still have a valid pointer to the
// argument array that we can pass to runtime, even if it will be unused.
Address KernelArgs = CGF.CreateTempAlloca(
VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
// Store pointers to the arguments in a locally allocated launch_args.
for (unsigned i = 0; i < Args.size(); ++i) {
llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
CGF.Builder.CreateDefaultAlignedStore(
VoidVarPtr,
CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
}
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
// Lookup cudaLaunchKernel/hipLaunchKernel function.
// cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
// void **args, size_t sharedMem,
// cudaStream_t stream);
// hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
// void **args, size_t sharedMem,
// hipStream_t stream);
TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
auto LaunchKernelName = addPrefixToName("LaunchKernel");
IdentifierInfo &cudaLaunchKernelII =
CGM.getContext().Idents.get(LaunchKernelName);
FunctionDecl *cudaLaunchKernelFD = nullptr;
for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
cudaLaunchKernelFD = FD;
}
if (cudaLaunchKernelFD == nullptr) {
CGM.Error(CGF.CurFuncDecl->getLocation(),
"Can't find declaration for " + LaunchKernelName);
return;
}
// Create temporary dim3 grid_dim, block_dim.
ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
QualType Dim3Ty = GridDimParam->getType();
Address GridDim =
CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
Address BlockDim =
CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
Address ShmemSize =
CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
Address Stream =
CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy,
{/*gridDim=*/GridDim.getType(),
/*blockDim=*/BlockDim.getType(),
/*ShmemSize=*/ShmemSize.getType(),
/*Stream=*/Stream.getType()},
/*isVarArg=*/false),
addUnderscoredPrefixToName("PopCallConfiguration"));
CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
{GridDim.getPointer(), BlockDim.getPointer(),
ShmemSize.getPointer(), Stream.getPointer()});
// Emit the call to cudaLaunch
llvm::Value *Kernel =
CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy);
CallArgList LaunchKernelArgs;
LaunchKernelArgs.add(RValue::get(Kernel),
cudaLaunchKernelFD->getParamDecl(0)->getType());
LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
cudaLaunchKernelFD->getParamDecl(3)->getType());
LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
cudaLaunchKernelFD->getParamDecl(4)->getType());
LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
cudaLaunchKernelFD->getParamDecl(5)->getType());
QualType QT = cudaLaunchKernelFD->getType();
QualType CQT = QT.getCanonicalType();
llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
const CGFunctionInfo &FI =
CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
llvm::FunctionCallee cudaLaunchKernelFn =
CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
LaunchKernelArgs);
CGF.EmitBranch(EndBlock);
CGF.EmitBlock(EndBlock);
}
void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
FunctionArgList &Args) {
// Emit a call to cudaSetupArgument for each arg in Args.
llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
CharUnits Offset = CharUnits::Zero();
for (const VarDecl *A : Args) {
auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
Offset = Offset.alignTo(TInfo.Align);
llvm::Value *Args[] = {
CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
VoidPtrTy),
llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
};
llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
CGF.EmitBlock(NextBlock);
Offset += TInfo.Width;
}
// Emit the call to cudaLaunch
llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
llvm::Value *Arg =
CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy);
CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
CGF.EmitBranch(EndBlock);
CGF.EmitBlock(EndBlock);
}
// Replace the original variable Var with the address loaded from variable
// ManagedVar populated by HIP runtime.
static void replaceManagedVar(llvm::GlobalVariable *Var,
llvm::GlobalVariable *ManagedVar) {
SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
for (auto &&VarUse : Var->uses()) {
WorkList.push_back({VarUse.getUser()});
}
while (!WorkList.empty()) {
auto &&WorkItem = WorkList.pop_back_val();
auto *U = WorkItem.back();
if (isa<llvm::ConstantExpr>(U)) {
for (auto &&UU : U->uses()) {
WorkItem.push_back(UU.getUser());
WorkList.push_back(WorkItem);
WorkItem.pop_back();
}
continue;
}
if (auto *I = dyn_cast<llvm::Instruction>(U)) {
llvm::Value *OldV = Var;
llvm::Instruction *NewV =
new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
llvm::Align(Var->getAlignment()), I);
WorkItem.pop_back();
// Replace constant expressions directly or indirectly using the managed
// variable with instructions.
for (auto &&Op : WorkItem) {
auto *CE = cast<llvm::ConstantExpr>(Op);
auto *NewInst = CE->getAsInstruction(I);
NewInst->replaceUsesOfWith(OldV, NewV);
OldV = CE;
NewV = NewInst;
}
I->replaceUsesOfWith(OldV, NewV);
} else {
llvm_unreachable("Invalid use of managed variable");
}
}
}
/// Creates a function that sets up state on the host side for CUDA objects that
/// have a presence on both the host and device sides. Specifically, registers
/// the host side of kernel functions and device global variables with the CUDA
/// runtime.
/// \code
/// void __cuda_register_globals(void** GpuBinaryHandle) {
/// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
/// ...
/// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
/// ...
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
// No need to register anything
if (EmittedKernels.empty() && DeviceVars.empty())
return nullptr;
llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
addUnderscoredPrefixToName("_register_globals"), &TheModule);
llvm::BasicBlock *EntryBB =
llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
CGBuilderTy Builder(CGM, Context);
Builder.SetInsertPoint(EntryBB);
// void __cudaRegisterFunction(void **, const char *, char *, const char *,
// int, uint3*, uint3*, dim3*, dim3*, int*)
llvm::Type *RegisterFuncParams[] = {
VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
addUnderscoredPrefixToName("RegisterFunction"));
// Extract GpuBinaryHandle passed as the first argument passed to
// __cuda_register_globals() and generate __cudaRegisterFunction() call for
// each emitted kernel.
llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
for (auto &&I : EmittedKernels) {
llvm::Constant *KernelName =
makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
llvm::Value *Args[] = {
&GpuBinaryHandlePtr,
Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy),
KernelName,
KernelName,
llvm::ConstantInt::get(IntTy, -1),
NullPtr,
NullPtr,
NullPtr,
NullPtr,
llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
Builder.CreateCall(RegisterFunc, Args);
}
llvm::Type *VarSizeTy = IntTy;
// For HIP or CUDA 9.0+, device variable size is type of `size_t`.
if (CGM.getLangOpts().HIP ||
ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
VarSizeTy = SizeTy;
// void __cudaRegisterVar(void **, char *, char *, const char *,
// int, int, int, int)
llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
CharPtrTy, IntTy, VarSizeTy,
IntTy, IntTy};
llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
addUnderscoredPrefixToName("RegisterVar"));
// void __hipRegisterManagedVar(void **, char *, char *, const char *,
// size_t, unsigned)
llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
CharPtrTy, VarSizeTy, IntTy};
llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
addUnderscoredPrefixToName("RegisterManagedVar"));
// void __cudaRegisterSurface(void **, const struct surfaceReference *,
// const void **, const char *, int, int);
llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(
VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
false),
addUnderscoredPrefixToName("RegisterSurface"));
// void __cudaRegisterTexture(void **, const struct textureReference *,
// const void **, const char *, int, int, int)
llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(
VoidTy,
{VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
false),
addUnderscoredPrefixToName("RegisterTexture"));
for (auto &&Info : DeviceVars) {
llvm::GlobalVariable *Var = Info.Var;
assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
"External variables should not show up here, except HIP managed "
"variables");
llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
switch (Info.Flags.getKind()) {
case DeviceVarFlags::Variable: {
uint64_t VarSize =
CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
if (Info.Flags.isManaged()) {
auto *ManagedVar = new llvm::GlobalVariable(
CGM.getModule(), Var->getType(),
/*isConstant=*/false, Var->getLinkage(),
/*Init=*/Var->isDeclaration()
? nullptr
: llvm::ConstantPointerNull::get(Var->getType()),
/*Name=*/"", /*InsertBefore=*/nullptr,
llvm::GlobalVariable::NotThreadLocal);
ManagedVar->setDSOLocal(Var->isDSOLocal());
ManagedVar->setVisibility(Var->getVisibility());
ManagedVar->setExternallyInitialized(true);
ManagedVar->takeName(Var);
Var->setName(Twine(ManagedVar->getName() + ".managed"));
replaceManagedVar(Var, ManagedVar);
llvm::Value *Args[] = {
&GpuBinaryHandlePtr,
Builder.CreateBitCast(ManagedVar, VoidPtrTy),
Builder.CreateBitCast(Var, VoidPtrTy),
VarName,
llvm::ConstantInt::get(VarSizeTy, VarSize),
llvm::ConstantInt::get(IntTy, Var->getAlignment())};
if (!Var->isDeclaration())
Builder.CreateCall(RegisterManagedVar, Args);
} else {
llvm::Value *Args[] = {
&GpuBinaryHandlePtr,
Builder.CreateBitCast(Var, VoidPtrTy),
VarName,
VarName,
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
llvm::ConstantInt::get(VarSizeTy, VarSize),
llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
llvm::ConstantInt::get(IntTy, 0)};
Builder.CreateCall(RegisterVar, Args);
}
break;
}
case DeviceVarFlags::Surface:
Builder.CreateCall(
RegisterSurf,
{&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
break;
case DeviceVarFlags::Texture:
Builder.CreateCall(
RegisterTex,
{&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
break;
}
}
Builder.CreateRetVoid();
return RegisterKernelsFunc;
}
/// Creates a global constructor function for the module:
///
/// For CUDA:
/// \code
/// void __cuda_module_ctor(void*) {
/// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
/// __cuda_register_globals(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_ctor(void*) {
/// if (__hip_gpubin_handle == 0) {
/// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
/// __hip_register_globals(__hip_gpubin_handle);
/// }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
bool IsHIP = CGM.getLangOpts().HIP;
bool IsCUDA = CGM.getLangOpts().CUDA;
// No need to generate ctors/dtors if there is no GPU binary.
StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
if (CudaGpuBinaryFileName.empty() && !IsHIP)
return nullptr;
if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
DeviceVars.empty())
return nullptr;
// void __{cuda|hip}_register_globals(void* handle);
llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
// We always need a function to pass in as callback. Create a dummy
// implementation if we don't need to register anything.
if (RelocatableDeviceCode && !RegisterGlobalsFunc)
RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
// void ** __{cuda|hip}RegisterFatBinary(void *);
llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
addUnderscoredPrefixToName("RegisterFatBinary"));
// struct { int magic, int version, void * gpu_binary, void * dont_care };
llvm::StructType *FatbinWrapperTy =
llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
// Register GPU binary with the CUDA runtime, store returned handle in a
// global variable and save a reference in GpuBinaryHandle to be cleaned up
// in destructor on exit. Then associate all known kernels with the GPU binary
// handle so CUDA runtime can figure out what to call on the GPU side.
std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
if (!CudaGpuBinaryFileName.empty()) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
CGM.getDiags().Report(diag::err_cannot_open_file)
<< CudaGpuBinaryFileName << EC.message();
return nullptr;
}
CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
}
llvm::Function *ModuleCtorFunc = llvm::Function::Create(
llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
llvm::GlobalValue::InternalLinkage,
addUnderscoredPrefixToName("_module_ctor"), &TheModule);
llvm::BasicBlock *CtorEntryBB =
llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
CGBuilderTy CtorBuilder(CGM, Context);
CtorBuilder.SetInsertPoint(CtorEntryBB);
const char *FatbinConstantName;
const char *FatbinSectionName;
const char *ModuleIDSectionName;
StringRef ModuleIDPrefix;
llvm::Constant *FatBinStr;
unsigned FatMagic;
if (IsHIP) {
FatbinConstantName = ".hip_fatbin";
FatbinSectionName = ".hipFatBinSegment";
ModuleIDSectionName = "__hip_module_id";
ModuleIDPrefix = "__hip_";
if (CudaGpuBinary) {
// If fatbin is available from early finalization, create a string
// literal containing the fat binary loaded from the given file.
const unsigned HIPCodeObjectAlign = 4096;
FatBinStr =
makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
FatbinConstantName, HIPCodeObjectAlign);
} else {
// If fatbin is not available, create an external symbol
// __hip_fatbin in section .hip_fatbin. The external symbol is supposed
// to contain the fat binary but will be populated somewhere else,
// e.g. by lld through link script.
FatBinStr = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty,
/*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
"__hip_fatbin", nullptr,
llvm::GlobalVariable::NotThreadLocal);
cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
}
FatMagic = HIPFatMagic;
} else {
if (RelocatableDeviceCode)
FatbinConstantName = CGM.getTriple().isMacOSX()
? "__NV_CUDA,__nv_relfatbin"
: "__nv_relfatbin";
else
FatbinConstantName =
CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
// NVIDIA's cuobjdump looks for fatbins in this section.
FatbinSectionName =
CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
ModuleIDSectionName = CGM.getTriple().isMacOSX()
? "__NV_CUDA,__nv_module_id"
: "__nv_module_id";
ModuleIDPrefix = "__nv_";
// For CUDA, create a string literal containing the fat binary loaded from
// the given file.
FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
FatbinConstantName, 8);
FatMagic = CudaFatMagic;
}
// Create initialized wrapper structure that points to the loaded GPU binary
ConstantInitBuilder Builder(CGM);
auto Values = Builder.beginStruct(FatbinWrapperTy);
// Fatbin wrapper magic.
Values.addInt(IntTy, FatMagic);
// Fatbin version.
Values.addInt(IntTy, 1);
// Data.
Values.add(FatBinStr);
// Unused in fatbin v1.
Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
/*constant*/ true);
FatbinWrapper->setSection(FatbinSectionName);
// There is only one HIP fat binary per linked module, however there are
// multiple constructor functions. Make sure the fat binary is registered
// only once. The constructor functions are executed by the dynamic loader
// before the program gains control. The dynamic loader cannot execute the
// constructor functions concurrently since doing that would not guarantee
// thread safety of the loaded program. Therefore we can assume sequential
// execution of constructor functions here.
if (IsHIP) {
auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
llvm::GlobalValue::LinkOnceAnyLinkage;
llvm::BasicBlock *IfBlock =
llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
llvm::BasicBlock *ExitBlock =
llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
// The name, size, and initialization pattern of this variable is part
// of HIP ABI.
GpuBinaryHandle = new llvm::GlobalVariable(
TheModule, VoidPtrPtrTy, /*isConstant=*/false,
Linkage,
/*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
"__hip_gpubin_handle");
GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
// Prevent the weak symbol in different shared libraries being merged.
if (Linkage != llvm::GlobalValue::InternalLinkage)
GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
Address GpuBinaryAddr(
GpuBinaryHandle,
CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
{
auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
llvm::Constant *Zero =
llvm::Constant::getNullValue(HandleValue->getType());
llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
}
{
CtorBuilder.SetInsertPoint(IfBlock);
// GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
RegisterFatbinFunc,
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
CtorBuilder.CreateBr(ExitBlock);
}
{
CtorBuilder.SetInsertPoint(ExitBlock);
// Call __hip_register_globals(GpuBinaryHandle);
if (RegisterGlobalsFunc) {
auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
}
}
} else if (!RelocatableDeviceCode) {
// Register binary with CUDA runtime. This is substantially different in
// default mode vs. separate compilation!
// GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
RegisterFatbinFunc,
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
GpuBinaryHandle = new llvm::GlobalVariable(
TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
CGM.getPointerAlign());
// Call __cuda_register_globals(GpuBinaryHandle);
if (RegisterGlobalsFunc)
CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
// Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
// void __cudaRegisterFatBinaryEnd(void **);
llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
"__cudaRegisterFatBinaryEnd");
CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
}
} else {
// Generate a unique module ID.
SmallString<64> ModuleID;
llvm::raw_svector_ostream OS(ModuleID);
OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
llvm::Constant *ModuleIDConstant = makeConstantString(
std::string(ModuleID.str()), "", ModuleIDSectionName, 32);
// Create an alias for the FatbinWrapper that nvcc will look for.
llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
// void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
// void *, void (*)(void **))
SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
RegisterLinkedBinaryName += ModuleID;
llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
llvm::Value *Args[] = {RegisterGlobalsFunc,
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
ModuleIDConstant,
makeDummyFunction(getCallbackFnTy())};
CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
}
// Create destructor and register it with atexit() the way NVCC does it. Doing
// it during regular destructor phase worked in CUDA before 9.2 but results in
// double-free in 9.2.
if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
// extern "C" int atexit(void (*f)(void));
llvm::FunctionType *AtExitTy =
llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
llvm::FunctionCallee AtExitFunc =
CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
/*Local=*/true);
CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
}
CtorBuilder.CreateRetVoid();
return ModuleCtorFunc;
}
/// Creates a global destructor function that unregisters the GPU code blob
/// registered by constructor.
///
/// For CUDA:
/// \code
/// void __cuda_module_dtor(void*) {
/// __cudaUnregisterFatBinary(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_dtor(void*) {
/// if (__hip_gpubin_handle) {
/// __hipUnregisterFatBinary(__hip_gpubin_handle);
/// __hip_gpubin_handle = 0;
/// }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
// No need for destructor if we don't have a handle to unregister.
if (!GpuBinaryHandle)
return nullptr;
// void __cudaUnregisterFatBinary(void ** handle);
llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
addUnderscoredPrefixToName("UnregisterFatBinary"));
llvm::Function *ModuleDtorFunc = llvm::Function::Create(
llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
llvm::GlobalValue::InternalLinkage,
addUnderscoredPrefixToName("_module_dtor"), &TheModule);
llvm::BasicBlock *DtorEntryBB =
llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
CGBuilderTy DtorBuilder(CGM, Context);
DtorBuilder.SetInsertPoint(DtorEntryBB);
Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity(
GpuBinaryHandle->getAlignment()));
auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
// There is only one HIP fat binary per linked module, however there are
// multiple destructor functions. Make sure the fat binary is unregistered
// only once.
if (CGM.getLangOpts().HIP) {
llvm::BasicBlock *IfBlock =
llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
llvm::BasicBlock *ExitBlock =
llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
DtorBuilder.SetInsertPoint(IfBlock);
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
DtorBuilder.CreateBr(ExitBlock);
DtorBuilder.SetInsertPoint(ExitBlock);
} else {
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
}
DtorBuilder.CreateRetVoid();
return ModuleDtorFunc;
}
CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
return new CGNVCUDARuntime(CGM);
}
void CGNVCUDARuntime::internalizeDeviceSideVar(
const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
// For -fno-gpu-rdc, host-side shadows of external declarations of device-side
// global variables become internal definitions. These have to be internal in
// order to prevent name conflicts with global host variables with the same
// name in a different TUs.
//
// For -fgpu-rdc, the shadow variables should not be internalized because
// they may be accessed by different TU.
if (CGM.getLangOpts().GPURelocatableDeviceCode)
return;
// __shared__ variables are odd. Shadows do get created, but
// they are not registered with the CUDA runtime, so they
// can't really be used to access their device-side
// counterparts. It's not clear yet whether it's nvcc's bug or
// a feature, but we've got to do the same for compatibility.
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
D->hasAttr<CUDASharedAttr>() ||
D->getType()->isCUDADeviceBuiltinSurfaceType() ||
D->getType()->isCUDADeviceBuiltinTextureType()) {
Linkage = llvm::GlobalValue::InternalLinkage;
}
}
void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
llvm::GlobalVariable &GV) {
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
// Shadow variables and their properties must be registered with CUDA
// runtime. Skip Extern global variables, which will be registered in
// the TU where they are defined.
//
// Don't register a C++17 inline variable. The local symbol can be
// discarded and referencing a discarded local symbol from outside the
// comdat (__cuda_register_globals) is disallowed by the ELF spec.
//
// HIP managed variables need to be always recorded in device and host
// compilations for transformation.
//
// HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
// added to llvm.compiler-used, therefore they are safe to be registered.
if ((!D->hasExternalStorage() && !D->isInline()) ||
CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
D->hasAttr<HIPManagedAttr>()) {
registerDeviceVar(D, GV, !D->hasDefinition(),
D->hasAttr<CUDAConstantAttr>());
}
} else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
D->getType()->isCUDADeviceBuiltinTextureType()) {
// Builtin surfaces and textures and their template arguments are
// also registered with CUDA runtime.
const auto *TD = cast<ClassTemplateSpecializationDecl>(
D->getType()->castAs<RecordType>()->getDecl());
const TemplateArgumentList &Args = TD->getTemplateArgs();
if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
assert(Args.size() == 2 &&
"Unexpected number of template arguments of CUDA device "
"builtin surface type.");
auto SurfType = Args[1].getAsIntegral();
if (!D->hasExternalStorage())
registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
} else {
assert(Args.size() == 3 &&
"Unexpected number of template arguments of CUDA device "
"builtin texture type.");
auto TexType = Args[1].getAsIntegral();
auto Normalized = Args[2].getAsIntegral();
if (!D->hasExternalStorage())
registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
Normalized.getZExtValue());
}
}
}
// Transform managed variables to pointers to managed variables in device code.
// Each use of the original managed variable is replaced by a load from the
// transformed managed variable. The transformed managed variable contains
// the address of managed memory which will be allocated by the runtime.
void CGNVCUDARuntime::transformManagedVars() {
for (auto &&Info : DeviceVars) {
llvm::GlobalVariable *Var = Info.Var;
if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
Info.Flags.isManaged()) {
auto *ManagedVar = new llvm::GlobalVariable(
CGM.getModule(), Var->getType(),
/*isConstant=*/false, Var->getLinkage(),
/*Init=*/Var->isDeclaration()
? nullptr
: llvm::ConstantPointerNull::get(Var->getType()),
/*Name=*/"", /*InsertBefore=*/nullptr,
llvm::GlobalVariable::NotThreadLocal,
CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
ManagedVar->setDSOLocal(Var->isDSOLocal());
ManagedVar->setVisibility(Var->getVisibility());
ManagedVar->setExternallyInitialized(true);
replaceManagedVar(Var, ManagedVar);
ManagedVar->takeName(Var);
Var->setName(Twine(ManagedVar->getName()) + ".managed");
// Keep managed variables even if they are not used in device code since
// they need to be allocated by the runtime.
if (!Var->isDeclaration()) {
assert(!ManagedVar->isDeclaration());
CGM.addCompilerUsedGlobal(Var);
CGM.addCompilerUsedGlobal(ManagedVar);
}
}
}
}
// Returns module constructor to be added.
llvm::Function *CGNVCUDARuntime::finalizeModule() {
if (CGM.getLangOpts().CUDAIsDevice) {
transformManagedVars();
// Mark ODR-used device variables as compiler used to prevent it from being
// eliminated by optimization. This is necessary for device variables
// ODR-used by host functions. Sema correctly marks them as ODR-used no
// matter whether they are ODR-used by device or host functions.
//
// We do not need to do this if the variable has used attribute since it
// has already been added.
//
// Static device variables have been externalized at this point, therefore
// variables with LLVM private or internal linkage need not be added.
for (auto &&Info : DeviceVars) {
auto Kind = Info.Flags.getKind();
if (!Info.Var->isDeclaration() &&
!llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
(Kind == DeviceVarFlags::Variable ||
Kind == DeviceVarFlags::Surface ||
Kind == DeviceVarFlags::Texture) &&
Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
CGM.addCompilerUsedGlobal(Info.Var);
}
}
return nullptr;
}
return makeModuleCtorFunction();
}
llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
GlobalDecl GD) {
auto Loc = KernelHandles.find(F);
if (Loc != KernelHandles.end())
return Loc->second;
if (!CGM.getLangOpts().HIP) {
KernelHandles[F] = F;
KernelStubs[F] = F;
return F;
}
auto *Var = new llvm::GlobalVariable(
TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
/*Initializer=*/nullptr,
CGM.getMangledName(
GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
Var->setAlignment(CGM.getPointerAlign().getAsAlign());
Var->setDSOLocal(F->isDSOLocal());
Var->setVisibility(F->getVisibility());
CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var);
KernelHandles[F] = Var;
KernelStubs[Var] = F;
return Var;
}