blob: 2d85d72e5b8a17a0eb2c236049868fb002ce62e4 [file] [log] [blame]
//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "CXXABI.h"
#include "Interp/Context.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Comment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/MangleNumberingContext.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/NoSanitizeList.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetCXXABI.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/XRayLists.h"
#include "llvm/ADT/APFixedPoint.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Capacity.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
using namespace clang;
enum FloatingRank {
BFloat16Rank,
Float16Rank,
HalfRank,
FloatRank,
DoubleRank,
LongDoubleRank,
Float128Rank,
Ibm128Rank
};
/// \returns location that is relevant when searching for Doc comments related
/// to \p D.
static SourceLocation getDeclLocForCommentSearch(const Decl *D,
SourceManager &SourceMgr) {
assert(D);
// User can not attach documentation to implicit declarations.
if (D->isImplicit())
return {};
// User can not attach documentation to implicit instantiations.
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->isStaticDataMember() &&
VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
if (TSK == TSK_ImplicitInstantiation ||
TSK == TSK_Undeclared)
return {};
}
if (const auto *ED = dyn_cast<EnumDecl>(D)) {
if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *TD = dyn_cast<TagDecl>(D)) {
// When tag declaration (but not definition!) is part of the
// decl-specifier-seq of some other declaration, it doesn't get comment
if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
return {};
}
// TODO: handle comments for function parameters properly.
if (isa<ParmVarDecl>(D))
return {};
// TODO: we could look up template parameter documentation in the template
// documentation.
if (isa<TemplateTypeParmDecl>(D) ||
isa<NonTypeTemplateParmDecl>(D) ||
isa<TemplateTemplateParmDecl>(D))
return {};
// Find declaration location.
// For Objective-C declarations we generally don't expect to have multiple
// declarators, thus use declaration starting location as the "declaration
// location".
// For all other declarations multiple declarators are used quite frequently,
// so we use the location of the identifier as the "declaration location".
if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
isa<ObjCPropertyDecl>(D) ||
isa<RedeclarableTemplateDecl>(D) ||
isa<ClassTemplateSpecializationDecl>(D) ||
// Allow association with Y across {} in `typedef struct X {} Y`.
isa<TypedefDecl>(D))
return D->getBeginLoc();
const SourceLocation DeclLoc = D->getLocation();
if (DeclLoc.isMacroID()) {
if (isa<TypedefDecl>(D)) {
// If location of the typedef name is in a macro, it is because being
// declared via a macro. Try using declaration's starting location as
// the "declaration location".
return D->getBeginLoc();
}
if (const auto *TD = dyn_cast<TagDecl>(D)) {
// If location of the tag decl is inside a macro, but the spelling of
// the tag name comes from a macro argument, it looks like a special
// macro like NS_ENUM is being used to define the tag decl. In that
// case, adjust the source location to the expansion loc so that we can
// attach the comment to the tag decl.
if (SourceMgr.isMacroArgExpansion(DeclLoc) && TD->isCompleteDefinition())
return SourceMgr.getExpansionLoc(DeclLoc);
}
}
return DeclLoc;
}
RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
const Decl *D, const SourceLocation RepresentativeLocForDecl,
const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
// If the declaration doesn't map directly to a location in a file, we
// can't find the comment.
if (RepresentativeLocForDecl.isInvalid() ||
!RepresentativeLocForDecl.isFileID())
return nullptr;
// If there are no comments anywhere, we won't find anything.
if (CommentsInTheFile.empty())
return nullptr;
// Decompose the location for the declaration and find the beginning of the
// file buffer.
const std::pair<FileID, unsigned> DeclLocDecomp =
SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
// Slow path.
auto OffsetCommentBehindDecl =
CommentsInTheFile.lower_bound(DeclLocDecomp.second);
// First check whether we have a trailing comment.
if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
if ((CommentBehindDecl->isDocumentation() ||
LangOpts.CommentOpts.ParseAllComments) &&
CommentBehindDecl->isTrailingComment() &&
(isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
// Check that Doxygen trailing comment comes after the declaration, starts
// on the same line and in the same file as the declaration.
if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
OffsetCommentBehindDecl->first)) {
return CommentBehindDecl;
}
}
}
// The comment just after the declaration was not a trailing comment.
// Let's look at the previous comment.
if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
return nullptr;
auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
// Check that we actually have a non-member Doxygen comment.
if (!(CommentBeforeDecl->isDocumentation() ||
LangOpts.CommentOpts.ParseAllComments) ||
CommentBeforeDecl->isTrailingComment())
return nullptr;
// Decompose the end of the comment.
const unsigned CommentEndOffset =
Comments.getCommentEndOffset(CommentBeforeDecl);
// Get the corresponding buffer.
bool Invalid = false;
const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
&Invalid).data();
if (Invalid)
return nullptr;
// Extract text between the comment and declaration.
StringRef Text(Buffer + CommentEndOffset,
DeclLocDecomp.second - CommentEndOffset);
// There should be no other declarations or preprocessor directives between
// comment and declaration.
if (Text.find_first_of(";{}#@") != StringRef::npos)
return nullptr;
return CommentBeforeDecl;
}
RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
// If the declaration doesn't map directly to a location in a file, we
// can't find the comment.
if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
return nullptr;
if (ExternalSource && !CommentsLoaded) {
ExternalSource->ReadComments();
CommentsLoaded = true;
}
if (Comments.empty())
return nullptr;
const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
const auto CommentsInThisFile = Comments.getCommentsInFile(File);
if (!CommentsInThisFile || CommentsInThisFile->empty())
return nullptr;
return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
}
void ASTContext::addComment(const RawComment &RC) {
assert(LangOpts.RetainCommentsFromSystemHeaders ||
!SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
}
/// If we have a 'templated' declaration for a template, adjust 'D' to
/// refer to the actual template.
/// If we have an implicit instantiation, adjust 'D' to refer to template.
static const Decl &adjustDeclToTemplate(const Decl &D) {
if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
// Is this function declaration part of a function template?
if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
return *FTD;
// Nothing to do if function is not an implicit instantiation.
if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
return D;
// Function is an implicit instantiation of a function template?
if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
return *FTD;
// Function is instantiated from a member definition of a class template?
if (const FunctionDecl *MemberDecl =
FD->getInstantiatedFromMemberFunction())
return *MemberDecl;
return D;
}
if (const auto *VD = dyn_cast<VarDecl>(&D)) {
// Static data member is instantiated from a member definition of a class
// template?
if (VD->isStaticDataMember())
if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
return *MemberDecl;
return D;
}
if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
// Is this class declaration part of a class template?
if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
return *CTD;
// Class is an implicit instantiation of a class template or partial
// specialization?
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
return D;
llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>
PU = CTSD->getSpecializedTemplateOrPartial();
return PU.is<ClassTemplateDecl *>()
? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
: *static_cast<const Decl *>(
PU.get<ClassTemplatePartialSpecializationDecl *>());
}
// Class is instantiated from a member definition of a class template?
if (const MemberSpecializationInfo *Info =
CRD->getMemberSpecializationInfo())
return *Info->getInstantiatedFrom();
return D;
}
if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
// Enum is instantiated from a member definition of a class template?
if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
return *MemberDecl;
return D;
}
// FIXME: Adjust alias templates?
return D;
}
const RawComment *ASTContext::getRawCommentForAnyRedecl(
const Decl *D,
const Decl **OriginalDecl) const {
if (!D) {
if (OriginalDecl)
OriginalDecl = nullptr;
return nullptr;
}
D = &adjustDeclToTemplate(*D);
// Any comment directly attached to D?
{
auto DeclComment = DeclRawComments.find(D);
if (DeclComment != DeclRawComments.end()) {
if (OriginalDecl)
*OriginalDecl = D;
return DeclComment->second;
}
}
// Any comment attached to any redeclaration of D?
const Decl *CanonicalD = D->getCanonicalDecl();
if (!CanonicalD)
return nullptr;
{
auto RedeclComment = RedeclChainComments.find(CanonicalD);
if (RedeclComment != RedeclChainComments.end()) {
if (OriginalDecl)
*OriginalDecl = RedeclComment->second;
auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
assert(CommentAtRedecl != DeclRawComments.end() &&
"This decl is supposed to have comment attached.");
return CommentAtRedecl->second;
}
}
// Any redeclarations of D that we haven't checked for comments yet?
// We can't use DenseMap::iterator directly since it'd get invalid.
auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
if (LookupRes != CommentlessRedeclChains.end())
return LookupRes->second;
return nullptr;
}();
for (const auto Redecl : D->redecls()) {
assert(Redecl);
// Skip all redeclarations that have been checked previously.
if (LastCheckedRedecl) {
if (LastCheckedRedecl == Redecl) {
LastCheckedRedecl = nullptr;
}
continue;
}
const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
if (RedeclComment) {
cacheRawCommentForDecl(*Redecl, *RedeclComment);
if (OriginalDecl)
*OriginalDecl = Redecl;
return RedeclComment;
}
CommentlessRedeclChains[CanonicalD] = Redecl;
}
if (OriginalDecl)
*OriginalDecl = nullptr;
return nullptr;
}
void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
const RawComment &Comment) const {
assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
DeclRawComments.try_emplace(&OriginalD, &Comment);
const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
CommentlessRedeclChains.erase(CanonicalDecl);
}
static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
SmallVectorImpl<const NamedDecl *> &Redeclared) {
const DeclContext *DC = ObjCMethod->getDeclContext();
if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
const ObjCInterfaceDecl *ID = IMD->getClassInterface();
if (!ID)
return;
// Add redeclared method here.
for (const auto *Ext : ID->known_extensions()) {
if (ObjCMethodDecl *RedeclaredMethod =
Ext->getMethod(ObjCMethod->getSelector(),
ObjCMethod->isInstanceMethod()))
Redeclared.push_back(RedeclaredMethod);
}
}
}
void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
const Preprocessor *PP) {
if (Comments.empty() || Decls.empty())
return;
FileID File;
for (Decl *D : Decls) {
SourceLocation Loc = D->getLocation();
if (Loc.isValid()) {
// See if there are any new comments that are not attached to a decl.
// The location doesn't have to be precise - we care only about the file.
File = SourceMgr.getDecomposedLoc(Loc).first;
break;
}
}
if (File.isInvalid())
return;
auto CommentsInThisFile = Comments.getCommentsInFile(File);
if (!CommentsInThisFile || CommentsInThisFile->empty() ||
CommentsInThisFile->rbegin()->second->isAttached())
return;
// There is at least one comment not attached to a decl.
// Maybe it should be attached to one of Decls?
//
// Note that this way we pick up not only comments that precede the
// declaration, but also comments that *follow* the declaration -- thanks to
// the lookahead in the lexer: we've consumed the semicolon and looked
// ahead through comments.
for (const Decl *D : Decls) {
assert(D);
if (D->isInvalidDecl())
continue;
D = &adjustDeclToTemplate(*D);
const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
continue;
if (DeclRawComments.count(D) > 0)
continue;
if (RawComment *const DocComment =
getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
cacheRawCommentForDecl(*D, *DocComment);
comments::FullComment *FC = DocComment->parse(*this, PP, D);
ParsedComments[D->getCanonicalDecl()] = FC;
}
}
}
comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
const Decl *D) const {
auto *ThisDeclInfo = new (*this) comments::DeclInfo;
ThisDeclInfo->CommentDecl = D;
ThisDeclInfo->IsFilled = false;
ThisDeclInfo->fill();
ThisDeclInfo->CommentDecl = FC->getDecl();
if (!ThisDeclInfo->TemplateParameters)
ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
comments::FullComment *CFC =
new (*this) comments::FullComment(FC->getBlocks(),
ThisDeclInfo);
return CFC;
}
comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
const RawComment *RC = getRawCommentForDeclNoCache(D);
return RC ? RC->parse(*this, nullptr, D) : nullptr;
}
comments::FullComment *ASTContext::getCommentForDecl(
const Decl *D,
const Preprocessor *PP) const {
if (!D || D->isInvalidDecl())
return nullptr;
D = &adjustDeclToTemplate(*D);
const Decl *Canonical = D->getCanonicalDecl();
llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
ParsedComments.find(Canonical);
if (Pos != ParsedComments.end()) {
if (Canonical != D) {
comments::FullComment *FC = Pos->second;
comments::FullComment *CFC = cloneFullComment(FC, D);
return CFC;
}
return Pos->second;
}
const Decl *OriginalDecl = nullptr;
const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
if (!RC) {
if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
SmallVector<const NamedDecl*, 8> Overridden;
const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
if (OMD && OMD->isPropertyAccessor())
if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
return cloneFullComment(FC, D);
if (OMD)
addRedeclaredMethods(OMD, Overridden);
getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
for (unsigned i = 0, e = Overridden.size(); i < e; i++)
if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
return cloneFullComment(FC, D);
}
else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
// Attach any tag type's documentation to its typedef if latter
// does not have one of its own.
QualType QT = TD->getUnderlyingType();
if (const auto *TT = QT->getAs<TagType>())
if (const Decl *TD = TT->getDecl())
if (comments::FullComment *FC = getCommentForDecl(TD, PP))
return cloneFullComment(FC, D);
}
else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
while (IC->getSuperClass()) {
IC = IC->getSuperClass();
if (comments::FullComment *FC = getCommentForDecl(IC, PP))
return cloneFullComment(FC, D);
}
}
else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
if (comments::FullComment *FC = getCommentForDecl(IC, PP))
return cloneFullComment(FC, D);
}
else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
if (!(RD = RD->getDefinition()))
return nullptr;
// Check non-virtual bases.
for (const auto &I : RD->bases()) {
if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
continue;
QualType Ty = I.getType();
if (Ty.isNull())
continue;
if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
continue;
if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
return cloneFullComment(FC, D);
}
}
// Check virtual bases.
for (const auto &I : RD->vbases()) {
if (I.getAccessSpecifier() != AS_public)
continue;
QualType Ty = I.getType();
if (Ty.isNull())
continue;
if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
if (!(VirtualBase= VirtualBase->getDefinition()))
continue;
if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
return cloneFullComment(FC, D);
}
}
}
return nullptr;
}
// If the RawComment was attached to other redeclaration of this Decl, we
// should parse the comment in context of that other Decl. This is important
// because comments can contain references to parameter names which can be
// different across redeclarations.
if (D != OriginalDecl && OriginalDecl)
return getCommentForDecl(OriginalDecl, PP);
comments::FullComment *FC = RC->parse(*this, PP, D);
ParsedComments[Canonical] = FC;
return FC;
}
void
ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &C,
TemplateTemplateParmDecl *Parm) {
ID.AddInteger(Parm->getDepth());
ID.AddInteger(Parm->getPosition());
ID.AddBoolean(Parm->isParameterPack());
TemplateParameterList *Params = Parm->getTemplateParameters();
ID.AddInteger(Params->size());
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
ID.AddInteger(0);
ID.AddBoolean(TTP->isParameterPack());
const TypeConstraint *TC = TTP->getTypeConstraint();
ID.AddBoolean(TC != nullptr);
if (TC)
TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
/*Canonical=*/true);
if (TTP->isExpandedParameterPack()) {
ID.AddBoolean(true);
ID.AddInteger(TTP->getNumExpansionParameters());
} else
ID.AddBoolean(false);
continue;
}
if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
ID.AddInteger(1);
ID.AddBoolean(NTTP->isParameterPack());
ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
if (NTTP->isExpandedParameterPack()) {
ID.AddBoolean(true);
ID.AddInteger(NTTP->getNumExpansionTypes());
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
QualType T = NTTP->getExpansionType(I);
ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
}
} else
ID.AddBoolean(false);
continue;
}
auto *TTP = cast<TemplateTemplateParmDecl>(*P);
ID.AddInteger(2);
Profile(ID, C, TTP);
}
Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
ID.AddBoolean(RequiresClause != nullptr);
if (RequiresClause)
RequiresClause->Profile(ID, C, /*Canonical=*/true);
}
static Expr *
canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
QualType ConstrainedType) {
// This is a bit ugly - we need to form a new immediately-declared
// constraint that references the new parameter; this would ideally
// require semantic analysis (e.g. template<C T> struct S {}; - the
// converted arguments of C<T> could be an argument pack if C is
// declared as template<typename... T> concept C = ...).
// We don't have semantic analysis here so we dig deep into the
// ready-made constraint expr and change the thing manually.
ConceptSpecializationExpr *CSE;
if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
else
CSE = cast<ConceptSpecializationExpr>(IDC);
ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
SmallVector<TemplateArgument, 3> NewConverted;
NewConverted.reserve(OldConverted.size());
if (OldConverted.front().getKind() == TemplateArgument::Pack) {
// The case:
// template<typename... T> concept C = true;
// template<C<int> T> struct S; -> constraint is C<{T, int}>
NewConverted.push_back(ConstrainedType);
for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
NewConverted.push_back(Arg);
TemplateArgument NewPack(NewConverted);
NewConverted.clear();
NewConverted.push_back(NewPack);
assert(OldConverted.size() == 1 &&
"Template parameter pack should be the last parameter");
} else {
assert(OldConverted.front().getKind() == TemplateArgument::Type &&
"Unexpected first argument kind for immediately-declared "
"constraint");
NewConverted.push_back(ConstrainedType);
for (auto &Arg : OldConverted.drop_front(1))
NewConverted.push_back(Arg);
}
Expr *NewIDC = ConceptSpecializationExpr::Create(
C, CSE->getNamedConcept(), NewConverted, nullptr,
CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
NewIDC = new (C) CXXFoldExpr(
OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
SourceLocation(), /*NumExpansions=*/None);
return NewIDC;
}
TemplateTemplateParmDecl *
ASTContext::getCanonicalTemplateTemplateParmDecl(
TemplateTemplateParmDecl *TTP) const {
// Check if we already have a canonical template template parameter.
llvm::FoldingSetNodeID ID;
CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
void *InsertPos = nullptr;
CanonicalTemplateTemplateParm *Canonical
= CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
if (Canonical)
return Canonical->getParam();
// Build a canonical template parameter list.
TemplateParameterList *Params = TTP->getTemplateParameters();
SmallVector<NamedDecl *, 4> CanonParams;
CanonParams.reserve(Params->size());
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
TTP->getDepth(), TTP->getIndex(), nullptr, false,
TTP->isParameterPack(), TTP->hasTypeConstraint(),
TTP->isExpandedParameterPack() ?
llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
if (const auto *TC = TTP->getTypeConstraint()) {
QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
*this, TC->getImmediatelyDeclaredConstraint(),
ParamAsArgument);
TemplateArgumentListInfo CanonArgsAsWritten;
if (auto *Args = TC->getTemplateArgsAsWritten())
for (const auto &ArgLoc : Args->arguments())
CanonArgsAsWritten.addArgument(
TemplateArgumentLoc(ArgLoc.getArgument(),
TemplateArgumentLocInfo()));
NewTTP->setTypeConstraint(
NestedNameSpecifierLoc(),
DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
SourceLocation()), /*FoundDecl=*/nullptr,
// Actually canonicalizing a TemplateArgumentLoc is difficult so we
// simply omit the ArgsAsWritten
TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
}
CanonParams.push_back(NewTTP);
} else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
QualType T = getCanonicalType(NTTP->getType());
TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
NonTypeTemplateParmDecl *Param;
if (NTTP->isExpandedParameterPack()) {
SmallVector<QualType, 2> ExpandedTypes;
SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
ExpandedTInfos.push_back(
getTrivialTypeSourceInfo(ExpandedTypes.back()));
}
Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(),
SourceLocation(),
NTTP->getDepth(),
NTTP->getPosition(), nullptr,
T,
TInfo,
ExpandedTypes,
ExpandedTInfos);
} else {
Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(),
SourceLocation(),
NTTP->getDepth(),
NTTP->getPosition(), nullptr,
T,
NTTP->isParameterPack(),
TInfo);
}
if (AutoType *AT = T->getContainedAutoType()) {
if (AT->isConstrained()) {
Param->setPlaceholderTypeConstraint(
canonicalizeImmediatelyDeclaredConstraint(
*this, NTTP->getPlaceholderTypeConstraint(), T));
}
}
CanonParams.push_back(Param);
} else
CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
cast<TemplateTemplateParmDecl>(*P)));
}
Expr *CanonRequiresClause = nullptr;
if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
CanonRequiresClause = RequiresClause;
TemplateTemplateParmDecl *CanonTTP
= TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(), TTP->getDepth(),
TTP->getPosition(),
TTP->isParameterPack(),
nullptr,
TemplateParameterList::Create(*this, SourceLocation(),
SourceLocation(),
CanonParams,
SourceLocation(),
CanonRequiresClause));
// Get the new insert position for the node we care about.
Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
assert(!Canonical && "Shouldn't be in the map!");
(void)Canonical;
// Create the canonical template template parameter entry.
Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
return CanonTTP;
}
TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
auto Kind = getTargetInfo().getCXXABI().getKind();
return getLangOpts().CXXABI.getValueOr(Kind);
}
CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
if (!LangOpts.CPlusPlus) return nullptr;
switch (getCXXABIKind()) {
case TargetCXXABI::AppleARM64:
case TargetCXXABI::Fuchsia:
case TargetCXXABI::GenericARM: // Same as Itanium at this level
case TargetCXXABI::iOS:
case TargetCXXABI::WatchOS:
case TargetCXXABI::GenericAArch64:
case TargetCXXABI::GenericMIPS:
case TargetCXXABI::GenericItanium:
case TargetCXXABI::WebAssembly:
case TargetCXXABI::XL:
return CreateItaniumCXXABI(*this);
case TargetCXXABI::Microsoft:
return CreateMicrosoftCXXABI(*this);
}
llvm_unreachable("Invalid CXXABI type!");
}
interp::Context &ASTContext::getInterpContext() {
if (!InterpContext) {
InterpContext.reset(new interp::Context(*this));
}
return *InterpContext.get();
}
ParentMapContext &ASTContext::getParentMapContext() {
if (!ParentMapCtx)
ParentMapCtx.reset(new ParentMapContext(*this));
return *ParentMapCtx.get();
}
static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
const LangOptions &LOpts) {
if (LOpts.FakeAddressSpaceMap) {
// The fake address space map must have a distinct entry for each
// language-specific address space.
static const unsigned FakeAddrSpaceMap[] = {
0, // Default
1, // opencl_global
3, // opencl_local
2, // opencl_constant
0, // opencl_private
4, // opencl_generic
5, // opencl_global_device
6, // opencl_global_host
7, // cuda_device
8, // cuda_constant
9, // cuda_shared
1, // sycl_global
5, // sycl_global_device
6, // sycl_global_host
3, // sycl_local
0, // sycl_private
10, // ptr32_sptr
11, // ptr32_uptr
12 // ptr64
};
return &FakeAddrSpaceMap;
} else {
return &T.getAddressSpaceMap();
}
}
static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
const LangOptions &LangOpts) {
switch (LangOpts.getAddressSpaceMapMangling()) {
case LangOptions::ASMM_Target:
return TI.useAddressSpaceMapMangling();
case LangOptions::ASMM_On:
return true;
case LangOptions::ASMM_Off:
return false;
}
llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
}
ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
IdentifierTable &idents, SelectorTable &sels,
Builtin::Context &builtins, TranslationUnitKind TUKind)
: ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
TemplateSpecializationTypes(this_()),
DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
SubstTemplateTemplateParmPacks(this_()),
CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
LangOpts.XRayNeverInstrumentFiles,
LangOpts.XRayAttrListFiles, SM)),
ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
CompCategories(this_()), LastSDM(nullptr, 0) {
addTranslationUnitDecl();
}
void ASTContext::cleanup() {
// Release the DenseMaps associated with DeclContext objects.
// FIXME: Is this the ideal solution?
ReleaseDeclContextMaps();
// Call all of the deallocation functions on all of their targets.
for (auto &Pair : Deallocations)
(Pair.first)(Pair.second);
Deallocations.clear();
// ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
// because they can contain DenseMaps.
for (llvm::DenseMap<const ObjCContainerDecl*,
const ASTRecordLayout*>::iterator
I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
// Increment in loop to prevent using deallocated memory.
if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
R->Destroy(*this);
ObjCLayouts.clear();
for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
// Increment in loop to prevent using deallocated memory.
if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
R->Destroy(*this);
}
ASTRecordLayouts.clear();
for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
AEnd = DeclAttrs.end();
A != AEnd; ++A)
A->second->~AttrVec();
DeclAttrs.clear();
for (const auto &Value : ModuleInitializers)
Value.second->~PerModuleInitializers();
ModuleInitializers.clear();
}
ASTContext::~ASTContext() { cleanup(); }
void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
TraversalScope = TopLevelDecls;
getParentMapContext().clear();
}
void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
Deallocations.push_back({Callback, Data});
}
void
ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
ExternalSource = std::move(Source);
}
void ASTContext::PrintStats() const {
llvm::errs() << "\n*** AST Context Stats:\n";
llvm::errs() << " " << Types.size() << " types total.\n";
unsigned counts[] = {
#define TYPE(Name, Parent) 0,
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.inc"
0 // Extra
};
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
counts[(unsigned)T->getTypeClass()]++;
}
unsigned Idx = 0;
unsigned TotalBytes = 0;
#define TYPE(Name, Parent) \
if (counts[Idx]) \
llvm::errs() << " " << counts[Idx] << " " << #Name \
<< " types, " << sizeof(Name##Type) << " each " \
<< "(" << counts[Idx] * sizeof(Name##Type) \
<< " bytes)\n"; \
TotalBytes += counts[Idx] * sizeof(Name##Type); \
++Idx;
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.inc"
llvm::errs() << "Total bytes = " << TotalBytes << "\n";
// Implicit special member functions.
llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
<< NumImplicitDefaultConstructors
<< " implicit default constructors created\n";
llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
<< NumImplicitCopyConstructors
<< " implicit copy constructors created\n";
if (getLangOpts().CPlusPlus)
llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
<< NumImplicitMoveConstructors
<< " implicit move constructors created\n";
llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
<< NumImplicitCopyAssignmentOperators
<< " implicit copy assignment operators created\n";
if (getLangOpts().CPlusPlus)
llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
<< NumImplicitMoveAssignmentOperators
<< " implicit move assignment operators created\n";
llvm::errs() << NumImplicitDestructorsDeclared << "/"
<< NumImplicitDestructors
<< " implicit destructors created\n";
if (ExternalSource) {
llvm::errs() << "\n";
ExternalSource->PrintStats();
}
BumpAlloc.PrintStats();
}
void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
bool NotifyListeners) {
if (NotifyListeners)
if (auto *Listener = getASTMutationListener())
Listener->RedefinedHiddenDefinition(ND, M);
MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
}
void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
if (It == MergedDefModules.end())
return;
auto &Merged = It->second;
llvm::DenseSet<Module*> Found;
for (Module *&M : Merged)
if (!Found.insert(M).second)
M = nullptr;
llvm::erase_value(Merged, nullptr);
}
ArrayRef<Module *>
ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
auto MergedIt =
MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
if (MergedIt == MergedDefModules.end())
return None;
return MergedIt->second;
}
void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
if (LazyInitializers.empty())
return;
auto *Source = Ctx.getExternalSource();
assert(Source && "lazy initializers but no external source");
auto LazyInits = std::move(LazyInitializers);
LazyInitializers.clear();
for (auto ID : LazyInits)
Initializers.push_back(Source->GetExternalDecl(ID));
assert(LazyInitializers.empty() &&
"GetExternalDecl for lazy module initializer added more inits");
}
void ASTContext::addModuleInitializer(Module *M, Decl *D) {
// One special case: if we add a module initializer that imports another
// module, and that module's only initializer is an ImportDecl, simplify.
if (const auto *ID = dyn_cast<ImportDecl>(D)) {
auto It = ModuleInitializers.find(ID->getImportedModule());
// Maybe the ImportDecl does nothing at all. (Common case.)
if (It == ModuleInitializers.end())
return;
// Maybe the ImportDecl only imports another ImportDecl.
auto &Imported = *It->second;
if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
Imported.resolve(*this);
auto *OnlyDecl = Imported.Initializers.front();
if (isa<ImportDecl>(OnlyDecl))
D = OnlyDecl;
}
}
auto *&Inits = ModuleInitializers[M];
if (!Inits)
Inits = new (*this) PerModuleInitializers;
Inits->Initializers.push_back(D);
}
void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
auto *&Inits = ModuleInitializers[M];
if (!Inits)
Inits = new (*this) PerModuleInitializers;
Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
IDs.begin(), IDs.end());
}
ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
auto It = ModuleInitializers.find(M);
if (It == ModuleInitializers.end())
return None;
auto *Inits = It->second;
Inits->resolve(*this);
return Inits->Initializers;
}
ExternCContextDecl *ASTContext::getExternCContextDecl() const {
if (!ExternCContext)
ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
return ExternCContext;
}
BuiltinTemplateDecl *
ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
const IdentifierInfo *II) const {
auto *BuiltinTemplate =
BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
BuiltinTemplate->setImplicit();
getTranslationUnitDecl()->addDecl(BuiltinTemplate);
return BuiltinTemplate;
}
BuiltinTemplateDecl *
ASTContext::getMakeIntegerSeqDecl() const {
if (!MakeIntegerSeqDecl)
MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
getMakeIntegerSeqName());
return MakeIntegerSeqDecl;
}
BuiltinTemplateDecl *
ASTContext::getTypePackElementDecl() const {
if (!TypePackElementDecl)
TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
getTypePackElementName());
return TypePackElementDecl;
}
RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
RecordDecl::TagKind TK) const {
SourceLocation Loc;
RecordDecl *NewDecl;
if (getLangOpts().CPlusPlus)
NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
Loc, &Idents.get(Name));
else
NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
&Idents.get(Name));
NewDecl->setImplicit();
NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
return NewDecl;
}
TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
StringRef Name) const {
TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
TypedefDecl *NewDecl = TypedefDecl::Create(
const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
NewDecl->setImplicit();
return NewDecl;
}
TypedefDecl *ASTContext::getInt128Decl() const {
if (!Int128Decl)
Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
return Int128Decl;
}
TypedefDecl *ASTContext::getUInt128Decl() const {
if (!UInt128Decl)
UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
return UInt128Decl;
}
void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
R = CanQualType::CreateUnsafe(QualType(Ty, 0));
Types.push_back(Ty);
}
void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
const TargetInfo *AuxTarget) {
assert((!this->Target || this->Target == &Target) &&
"Incorrect target reinitialization");
assert(VoidTy.isNull() && "Context reinitialized?");
this->Target = &Target;
this->AuxTarget = AuxTarget;
ABI.reset(createCXXABI(Target));
AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (LangOpts.CharIsSigned)
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// GNU extension, __float128 for IEEE quadruple precision
InitBuiltinType(Float128Ty, BuiltinType::Float128);
// __ibm128 for IBM extended precision
InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
// C11 extension ISO/IEC TS 18661-3
InitBuiltinType(Float16Ty, BuiltinType::Float16);
// ISO/IEC JTC1 SC22 WG14 N1169 Extension
InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
InitBuiltinType(AccumTy, BuiltinType::Accum);
InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
InitBuiltinType(FractTy, BuiltinType::Fract);
InitBuiltinType(LongFractTy, BuiltinType::LongFract);
InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
InitBuiltinType(SatFractTy, BuiltinType::SatFract);
InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
// GNU extension, 128-bit integers.
InitBuiltinType(Int128Ty, BuiltinType::Int128);
InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
// C++ 3.9.1p5
if (TargetInfo::isTypeSigned(Target.getWCharType()))
InitBuiltinType(WCharTy, BuiltinType::WChar_S);
else // -fshort-wchar makes wchar_t be unsigned.
InitBuiltinType(WCharTy, BuiltinType::WChar_U);
if (LangOpts.CPlusPlus && LangOpts.WChar)
WideCharTy = WCharTy;
else {
// C99 (or C++ using -fno-wchar).
WideCharTy = getFromTargetType(Target.getWCharType());
}
WIntTy = getFromTargetType(Target.getWIntType());
// C++20 (proposed)
InitBuiltinType(Char8Ty, BuiltinType::Char8);
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
InitBuiltinType(Char16Ty, BuiltinType::Char16);
else // C99
Char16Ty = getFromTargetType(Target.getChar16Type());
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
InitBuiltinType(Char32Ty, BuiltinType::Char32);
else // C99
Char32Ty = getFromTargetType(Target.getChar32Type());
// Placeholder type for type-dependent expressions whose type is
// completely unknown. No code should ever check a type against
// DependentTy and users should never see it; however, it is here to
// help diagnose failures to properly check for type-dependent
// expressions.
InitBuiltinType(DependentTy, BuiltinType::Dependent);
// Placeholder type for functions.
InitBuiltinType(OverloadTy, BuiltinType::Overload);
// Placeholder type for bound members.
InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
// Placeholder type for pseudo-objects.
InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
// "any" type; useful for debugger-like clients.
InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
// Placeholder type for unbridged ARC casts.
InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
// Placeholder type for builtin functions.
InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
// Placeholder type for OMP array sections.
if (LangOpts.OpenMP) {
InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
}
if (LangOpts.MatrixTypes)
InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
// Builtin types for 'id', 'Class', and 'SEL'.
InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
if (LangOpts.OpenCL) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
InitBuiltinType(SingletonId, BuiltinType::Id);
#include "clang/Basic/OpenCLImageTypes.def"
InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
InitBuiltinType(Id##Ty, BuiltinType::Id);
#include "clang/Basic/OpenCLExtensionTypes.def"
}
if (Target.hasAArch64SVETypes()) {
#define SVE_TYPE(Name, Id, SingletonId) \
InitBuiltinType(SingletonId, BuiltinType::Id);
#include "clang/Basic/AArch64SVEACLETypes.def"
}
if (Target.getTriple().isPPC64()) {
#define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
InitBuiltinType(Id##Ty, BuiltinType::Id);
#include "clang/Basic/PPCTypes.def"
#define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
InitBuiltinType(Id##Ty, BuiltinType::Id);
#include "clang/Basic/PPCTypes.def"
}
if (Target.hasRISCVVTypes()) {
#define RVV_TYPE(Name, Id, SingletonId) \
InitBuiltinType(SingletonId, BuiltinType::Id);
#include "clang/Basic/RISCVVTypes.def"
}
// Builtin type for __objc_yes and __objc_no
ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
SignedCharTy : BoolTy);
ObjCConstantStringType = QualType();
ObjCSuperType = QualType();
// void * type
if (LangOpts.OpenCLGenericAddressSpace) {
auto Q = VoidTy.getQualifiers();
Q.setAddressSpace(LangAS::opencl_generic);
VoidPtrTy = getPointerType(getCanonicalType(
getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
} else {
VoidPtrTy = getPointerType(VoidTy);
}
// nullptr type (C++0x 2.14.7)
InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
// half type (OpenCL 6.1.1.1) / ARM NEON __fp16
InitBuiltinType(HalfTy, BuiltinType::Half);
InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
// Builtin type used to help define __builtin_va_list.
VaListTagDecl = nullptr;
// MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
if (LangOpts.MicrosoftExt || LangOpts.Borland) {
MSGuidTagDecl = buildImplicitRecord("_GUID");
getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
}
}
DiagnosticsEngine &ASTContext::getDiagnostics() const {
return SourceMgr.getDiagnostics();
}
AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
AttrVec *&Result = DeclAttrs[D];
if (!Result) {
void *Mem = Allocate(sizeof(AttrVec));
Result = new (Mem) AttrVec;
}
return *Result;
}
/// Erase the attributes corresponding to the given declaration.
void ASTContext::eraseDeclAttrs(const Decl *D) {
llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
if (Pos != DeclAttrs.end()) {
Pos->second->~AttrVec();
DeclAttrs.erase(Pos);
}
}
// FIXME: Remove ?
MemberSpecializationInfo *
ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
assert(Var->isStaticDataMember() && "Not a static data member");
return getTemplateOrSpecializationInfo(Var)
.dyn_cast<MemberSpecializationInfo *>();
}
ASTContext::TemplateOrSpecializationInfo
ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
TemplateOrInstantiation.find(Var);
if (Pos == TemplateOrInstantiation.end())
return {};
return Pos->second;
}
void
ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
assert(Inst->isStaticDataMember() && "Not a static data member");
assert(Tmpl->isStaticDataMember() && "Not a static data member");
setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
Tmpl, TSK, PointOfInstantiation));
}
void
ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
TemplateOrSpecializationInfo TSI) {
assert(!TemplateOrInstantiation[Inst] &&
"Already noted what the variable was instantiated from");
TemplateOrInstantiation[Inst] = TSI;
}
NamedDecl *
ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
auto Pos = InstantiatedFromUsingDecl.find(UUD);
if (Pos == InstantiatedFromUsingDecl.end())
return nullptr;
return Pos->second;
}
void
ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
assert((isa<UsingDecl>(Pattern) ||
isa<UnresolvedUsingValueDecl>(Pattern) ||
isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
"pattern decl is not a using decl");
assert((isa<UsingDecl>(Inst) ||
isa<UnresolvedUsingValueDecl>(Inst) ||
isa<UnresolvedUsingTypenameDecl>(Inst)) &&
"instantiation did not produce a using decl");
assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
InstantiatedFromUsingDecl[Inst] = Pattern;
}
UsingEnumDecl *
ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
if (Pos == InstantiatedFromUsingEnumDecl.end())
return nullptr;
return Pos->second;
}
void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
UsingEnumDecl *Pattern) {
assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
InstantiatedFromUsingEnumDecl[Inst] = Pattern;
}
UsingShadowDecl *
ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
= InstantiatedFromUsingShadowDecl.find(Inst);
if (Pos == InstantiatedFromUsingShadowDecl.end())
return nullptr;
return Pos->second;
}
void
ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
UsingShadowDecl *Pattern) {
assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
InstantiatedFromUsingShadowDecl[Inst] = Pattern;
}
FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
= InstantiatedFromUnnamedFieldDecl.find(Field);
if (Pos == InstantiatedFromUnnamedFieldDecl.end())
return nullptr;
return Pos->second;
}
void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
FieldDecl *Tmpl) {
assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
"Already noted what unnamed field was instantiated from");
InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
}
ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
return overridden_methods(Method).begin();
}
ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
return overridden_methods(Method).end();
}
unsigned
ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
auto Range = overridden_methods(Method);
return Range.end() - Range.begin();
}
ASTContext::overridden_method_range
ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
OverriddenMethods.find(Method->getCanonicalDecl());
if (Pos == OverriddenMethods.end())
return overridden_method_range(nullptr, nullptr);
return overridden_method_range(Pos->second.begin(), Pos->second.end());
}
void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
const CXXMethodDecl *Overridden) {
assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
OverriddenMethods[Method].push_back(Overridden);
}
void ASTContext::getOverriddenMethods(
const NamedDecl *D,
SmallVectorImpl<const NamedDecl *> &Overridden) const {
assert(D);
if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
Overridden.append(overridden_methods_begin(CXXMethod),
overridden_methods_end(CXXMethod));
return;
}
const auto *Method = dyn_cast<ObjCMethodDecl>(D);
if (!Method)
return;
SmallVector<const ObjCMethodDecl *, 8> OverDecls;
Method->getOverriddenMethods(OverDecls);
Overridden.append(OverDecls.begin(), OverDecls.end());
}
void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
assert(!Import->getNextLocalImport() &&
"Import declaration already in the chain");
assert(!Import->isFromASTFile() && "Non-local import declaration");
if (!FirstLocalImport) {
FirstLocalImport = Import;
LastLocalImport = Import;
return;
}
LastLocalImport->setNextLocalImport(Import);
LastLocalImport = Import;
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
switch (T->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("Not a floating point type!");
case BuiltinType::BFloat16:
return Target->getBFloat16Format();
case BuiltinType::Float16:
case BuiltinType::Half:
return Target->getHalfFormat();
case BuiltinType::Float: return Target->getFloatFormat();
case BuiltinType::Double: return Target->getDoubleFormat();
case BuiltinType::Ibm128:
return Target->getIbm128Format();
case BuiltinType::LongDouble:
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
return AuxTarget->getLongDoubleFormat();
return Target->getLongDoubleFormat();
case BuiltinType::Float128:
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
return AuxTarget->getFloat128Format();
return Target->getFloat128Format();
}
}
CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
unsigned Align = Target->getCharWidth();
bool UseAlignAttrOnly = false;
if (unsigned AlignFromAttr = D->getMaxAlignment()) {
Align = AlignFromAttr;
// __attribute__((aligned)) can increase or decrease alignment
// *except* on a struct or struct member, where it only increases
// alignment unless 'packed' is also specified.
//
// It is an error for alignas to decrease alignment, so we can
// ignore that possibility; Sema should diagnose it.
if (isa<FieldDecl>(D)) {
UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
} else {
UseAlignAttrOnly = true;
}
}
else if (isa<FieldDecl>(D))
UseAlignAttrOnly =
D->hasAttr<PackedAttr>() ||
cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
// If we're using the align attribute only, just ignore everything
// else about the declaration and its type.
if (UseAlignAttrOnly) {
// do nothing
} else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
QualType T = VD->getType();
if (const auto *RT = T->getAs<ReferenceType>()) {
if (ForAlignof)
T = RT->getPointeeType();
else
T = getPointerType(RT->getPointeeType());
}
QualType BaseT = getBaseElementType(T);
if (T->isFunctionType())
Align = getTypeInfoImpl(T.getTypePtr()).Align;
else if (!BaseT->isIncompleteType()) {
// Adjust alignments of declarations with array type by the
// large-array alignment on the target.
if (const ArrayType *arrayType = getAsArrayType(T)) {
unsigned MinWidth = Target->getLargeArrayMinWidth();
if (!ForAlignof && MinWidth) {
if (isa<VariableArrayType>(arrayType))
Align = std::max(Align, Target->getLargeArrayAlign());
else if (isa<ConstantArrayType>(arrayType) &&
MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
Align = std::max(Align, Target->getLargeArrayAlign());
}
}
Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
if (BaseT.getQualifiers().hasUnaligned())
Align = Target->getCharWidth();
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasGlobalStorage() && !ForAlignof) {
uint64_t TypeSize = getTypeSize(T.getTypePtr());
Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
}
}
}
// Fields can be subject to extra alignment constraints, like if
// the field is packed, the struct is packed, or the struct has a
// a max-field-alignment constraint (#pragma pack). So calculate
// the actual alignment of the field within the struct, and then
// (as we're expected to) constrain that by the alignment of the type.
if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
const RecordDecl *Parent = Field->getParent();
// We can only produce a sensible answer if the record is valid.
if (!Parent->isInvalidDecl()) {
const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
// Start with the record's overall alignment.
unsigned FieldAlign = toBits(Layout.getAlignment());
// Use the GCD of that and the offset within the record.
uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
if (Offset > 0) {
// Alignment is always a power of 2, so the GCD will be a power of 2,
// which means we get to do this crazy thing instead of Euclid's.
uint64_t LowBitOfOffset = Offset & (~Offset + 1);
if (LowBitOfOffset < FieldAlign)
FieldAlign = static_cast<unsigned>(LowBitOfOffset);
}
Align = std::min(Align, FieldAlign);
}
}
}
// Some targets have hard limitation on the maximum requestable alignment in
// aligned attribute for static variables.
const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
const auto *VD = dyn_cast<VarDecl>(D);
if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
Align = std::min(Align, MaxAlignedAttr);
return toCharUnitsFromBits(Align);
}
CharUnits ASTContext::getExnObjectAlignment() const {
return toCharUnitsFromBits(Target->getExnObjectAlignment());
}
// getTypeInfoDataSizeInChars - Return the size of a type, in
// chars. If the type is a record, its data size is returned. This is
// the size of the memcpy that's performed when assigning this type
// using a trivial copy/move assignment operator.
TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
TypeInfoChars Info = getTypeInfoInChars(T);
// In C++, objects can sometimes be allocated into the tail padding
// of a base-class subobject. We decide whether that's possible
// during class layout, so here we can just trust the layout results.
if (getLangOpts().CPlusPlus) {
if (const auto *RT = T->getAs<RecordType>()) {
const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
Info.Width = layout.getDataSize();
}
}
return Info;
}
/// getConstantArrayInfoInChars - Performing the computation in CharUnits
/// instead of in bits prevents overflowing the uint64_t for some large arrays.
TypeInfoChars
static getConstantArrayInfoInChars(const ASTContext &Context,
const ConstantArrayType *CAT) {
TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
uint64_t Size = CAT->getSize().getZExtValue();
assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
(uint64_t)(-1)/Size) &&
"Overflow in array type char size evaluation");
uint64_t Width = EltInfo.Width.getQuantity() * Size;
unsigned Align = EltInfo.Align.getQuantity();
if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
Context.getTargetInfo().getPointerWidth(0) == 64)
Width = llvm::alignTo(Width, Align);
return TypeInfoChars(CharUnits::fromQuantity(Width),
CharUnits::fromQuantity(Align),
EltInfo.AlignRequirement);
}
TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
return getConstantArrayInfoInChars(*this, CAT);
TypeInfo Info = getTypeInfo(T);
return TypeInfoChars(toCharUnitsFromBits(Info.Width),
toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
}
TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
return getTypeInfoInChars(T.getTypePtr());
}
bool ASTContext::isAlignmentRequired(const Type *T) const {
return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
}
bool ASTContext::isAlignmentRequired(QualType T) const {
return isAlignmentRequired(T.getTypePtr());
}
unsigned ASTContext::getTypeAlignIfKnown(QualType T,
bool NeedsPreferredAlignment) const {
// An alignment on a typedef overrides anything else.
if (const auto *TT = T->getAs<TypedefType>())
if (unsigned Align = TT->getDecl()->getMaxAlignment())
return Align;
// If we have an (array of) complete type, we're done.
T = getBaseElementType(T);
if (!T->isIncompleteType())
return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
// If we had an array type, its element type might be a typedef
// type with an alignment attribute.
if (const auto *TT = T->getAs<TypedefType>())
if (unsigned Align = TT->getDecl()->getMaxAlignment())
return Align;
// Otherwise, see if the declaration of the type had an attribute.
if (const auto *TT = T->getAs<TagType>())
return TT->getDecl()->getMaxAlignment();
return 0;
}
TypeInfo ASTContext::getTypeInfo(const Type *T) const {
TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
if (I != MemoizedTypeInfo.end())
return I->second;
// This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
TypeInfo TI = getTypeInfoImpl(T);
MemoizedTypeInfo[T] = TI;
return TI;
}
/// getTypeInfoImpl - Return the size of the specified type, in bits. This
/// method does not work on incomplete types.
///
/// FIXME: Pointers into different addr spaces could have different sizes and
/// alignment requirements: getPointerInfo should take an AddrSpace, this
/// should take a QualType, &c.
TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
uint64_t Width = 0;
unsigned Align = 8;
AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
unsigned AS = 0;
switch (T->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
case Type::Class: \
assert(!T->isDependentType() && "should not see dependent types here"); \
return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("Should not see dependent types");
case Type::FunctionNoProto:
case Type::FunctionProto:
// GCC extension: alignof(function) = 32 bits
Width = 0;
Align = 32;
break;
case Type::IncompleteArray:
case Type::VariableArray:
case Type::ConstantArray: {
// Model non-constant sized arrays as size zero, but track the alignment.
uint64_t Size = 0;
if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
Size = CAT->getSize().getZExtValue();
TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
"Overflow in array type bit size evaluation");
Width = EltInfo.Width * Size;
Align = EltInfo.Align;
AlignRequirement = EltInfo.AlignRequirement;
if (!getTargetInfo().getCXXABI().isMicrosoft() ||
getTargetInfo().getPointerWidth(0) == 64)
Width = llvm::alignTo(Width, Align);
break;
}
case Type::ExtVector:
case Type::Vector: {
const auto *VT = cast<VectorType>(T);
TypeInfo EltInfo = getTypeInfo(VT->getElementType());
Width = EltInfo.Width * VT->getNumElements();
Align = Width;
// If the alignment is not a power of 2, round up to the next power of 2.
// This happens for non-power-of-2 length vectors.
if (Align & (Align-1)) {
Align = llvm::NextPowerOf2(Align);
Width = llvm::alignTo(Width, Align);
}
// Adjust the alignment based on the target max.
uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
if (TargetVectorAlign && TargetVectorAlign < Align)
Align = TargetVectorAlign;
if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
// Adjust the alignment for fixed-length SVE vectors. This is important
// for non-power-of-2 vector lengths.
Align = 128;
else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
// Adjust the alignment for fixed-length SVE predicates.
Align = 16;
break;
}
case Type::ConstantMatrix: {
const auto *MT = cast<ConstantMatrixType>(T);
TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
// The internal layout of a matrix value is implementation defined.
// Initially be ABI compatible with arrays with respect to alignment and
// size.
Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
Align = ElementInfo.Align;
break;
}
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
default: llvm_unreachable("Unknown builtin type!");
case BuiltinType::Void:
// GCC extension: alignof(void) = 8 bits.
Width = 0;
Align = 8;
break;
case BuiltinType::Bool:
Width = Target->getBoolWidth();
Align = Target->getBoolAlign();
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar:
case BuiltinType::Char8:
Width = Target->getCharWidth();
Align = Target->getCharAlign();
break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
Width = Target->getWCharWidth();
Align = Target->getWCharAlign();
break;
case BuiltinType::Char16:
Width = Target->getChar16Width();
Align = Target->getChar16Align();
break;
case BuiltinType::Char32:
Width = Target->getChar32Width();
Align = Target->getChar32Align();
break;
case BuiltinType::UShort:
case BuiltinType::Short:
Width = Target->getShortWidth();
Align = Target->getShortAlign();
break;
case BuiltinType::UInt:
case BuiltinType::Int:
Width = Target->getIntWidth();
Align = Target->getIntAlign();
break;
case BuiltinType::ULong:
case BuiltinType::Long:
Width = Target->getLongWidth();
Align = Target->getLongAlign();
break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
Width = Target->getLongLongWidth();
Align = Target->getLongLongAlign();
break;
case BuiltinType::Int128:
case BuiltinType::UInt128:
Width = 128;
Align = 128; // int128_t is 128-bit aligned on all targets.
break;
case BuiltinType::ShortAccum:
case BuiltinType::UShortAccum:
case BuiltinType::SatShortAccum:
case BuiltinType::SatUShortAccum:
Width = Target->getShortAccumWidth();
Align = Target->getShortAccumAlign();
break;
case BuiltinType::Accum:
case BuiltinType::UAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatUAccum:
Width = Target->getAccumWidth();
Align = Target->getAccumAlign();
break;
case BuiltinType::LongAccum:
case BuiltinType::ULongAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatULongAccum:
Width = Target->getLongAccumWidth();
Align = Target->getLongAccumAlign();
break;
case BuiltinType::ShortFract:
case BuiltinType::UShortFract:
case BuiltinType::SatShortFract:
case BuiltinType::SatUShortFract:
Width = Target->getShortFractWidth();
Align = Target->getShortFractAlign();
break;
case BuiltinType::Fract:
case BuiltinType::UFract:
case BuiltinType::SatFract:
case BuiltinType::SatUFract:
Width = Target->getFractWidth();
Align = Target->getFractAlign();
break;
case BuiltinType::LongFract:
case BuiltinType::ULongFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatULongFract:
Width = Target->getLongFractWidth();
Align = Target->getLongFractAlign();
break;
case BuiltinType::BFloat16:
Width = Target->getBFloat16Width();
Align = Target->getBFloat16Align();
break;
case BuiltinType::Float16:
case BuiltinType::Half:
if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
!getLangOpts().OpenMPIsDevice) {
Width = Target->getHalfWidth();
Align = Target->getHalfAlign();
} else {
assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
"Expected OpenMP device compilation.");
Width = AuxTarget->getHalfWidth();
Align = AuxTarget->getHalfAlign();
}
break;
case BuiltinType::Float:
Width = Target->getFloatWidth();
Align = Target->getFloatAlign();
break;
case BuiltinType::Double:
Width = Target->getDoubleWidth();
Align = Target->getDoubleAlign();
break;
case BuiltinType::Ibm128:
Width = Target->getIbm128Width();
Align = Target->getIbm128Align();
break;
case BuiltinType::LongDouble:
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
(Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
Width = AuxTarget->getLongDoubleWidth();
Align = AuxTarget->getLongDoubleAlign();
} else {
Width = Target->getLongDoubleWidth();
Align = Target->getLongDoubleAlign();
}
break;
case BuiltinType::Float128:
if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
!getLangOpts().OpenMPIsDevice) {
Width = Target->getFloat128Width();
Align = Target->getFloat128Align();
} else {
assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
"Expected OpenMP device compilation.");
Width = AuxTarget->getFloat128Width();
Align = AuxTarget->getFloat128Align();
}
break;
case BuiltinType::NullPtr:
Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
Align = Target->getPointerAlign(0); // == sizeof(void*)
break;
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
Width = Target->getPointerWidth(0);
Align = Target->getPointerAlign(0);
break;
case BuiltinType::OCLSampler:
case BuiltinType::OCLEvent:
case BuiltinType::OCLClkEvent:
case BuiltinType::OCLQueue:
case BuiltinType::OCLReserveID:
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
AS = getTargetAddressSpace(
Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
// The SVE types are effectively target-specific. The length of an
// SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
// of 128 bits. There is one predicate bit for each vector byte, so the
// length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
//
// Because the length is only known at runtime, we use a dummy value
// of 0 for the static length. The alignment values are those defined
// by the Procedure Call Standard for the Arm Architecture.
#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \
IsSigned, IsFP, IsBF) \
case BuiltinType::Id: \
Width = 0; \
Align = 128; \
break;
#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \
case BuiltinType::Id: \
Width = 0; \
Align = 16; \
break;
#include "clang/Basic/AArch64SVEACLETypes.def"
#define PPC_VECTOR_TYPE(Name, Id, Size) \
case BuiltinType::Id: \
Width = Size; \
Align = Size; \
break;
#include "clang/Basic/PPCTypes.def"
#define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \
IsFP) \
case BuiltinType::Id: \
Width = 0; \
Align = ElBits; \
break;
#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \
case BuiltinType::Id: \
Width = 0; \
Align = 8; \
break;
#include "clang/Basic/RISCVVTypes.def"
}
break;
case Type::ObjCObjectPointer:
Width = Target->getPointerWidth(0);
Align = Target->getPointerAlign(0);
break;
case Type::BlockPointer:
AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
case Type::LValueReference:
case Type::RValueReference:
// alignof and sizeof should never enter this code path here, so we go
// the pointer route.
AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
case Type::Pointer:
AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
case Type::MemberPointer: {
const auto *MPT = cast<MemberPointerType>(T);
CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
Width = MPI.Width;
Align = MPI.Align;
break;
}
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
Width = EltInfo.Width * 2;
Align = EltInfo.Align;
break;
}
case Type::ObjCObject:
return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
case Type::Adjusted:
case Type::Decayed:
return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
case Type::ObjCInterface: {
const auto *ObjCI = cast<ObjCInterfaceType>(T);
if (ObjCI->getDecl()->isInvalidDecl()) {
Width = 8;
Align = 8;
break;
}
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
Width = toBits(Layout.getSize());
Align = toBits(Layout.getAlignment());
break;
}
case Type::ExtInt: {
const auto *EIT = cast<ExtIntType>(T);
Align =
std::min(static_cast<unsigned>(std::max(
getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
Target->getLongLongAlign());
Width = llvm::alignTo(EIT->getNumBits(), Align);
break;
}
case Type::Record:
case Type::Enum: {
const auto *TT = cast<TagType>(T);
if (TT->getDecl()->isInvalidDecl()) {
Width = 8;
Align = 8;
break;
}
if (const auto *ET = dyn_cast<EnumType>(TT)) {
const EnumDecl *ED = ET->getDecl();
TypeInfo Info =
getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
if (unsigned AttrAlign = ED->getMaxAlignment()) {
Info.Align = AttrAlign;
Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
}
return Info;
}
const auto *RT = cast<RecordType>(TT);
const RecordDecl *RD = RT->getDecl();
const ASTRecordLayout &Layout = getASTRecordLayout(RD);
Width = toBits(Layout.getSize());
Align = toBits(Layout.getAlignment());
AlignRequirement = RD->hasAttr<AlignedAttr>()
? AlignRequirementKind::RequiredByRecord
: AlignRequirementKind::None;
break;
}
case Type::SubstTemplateTypeParm:
return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
getReplacementType().getTypePtr());
case Type::Auto:
case Type::DeducedTemplateSpecialization: {
const auto *A = cast<DeducedType>(T);
assert(!A->getDeducedType().isNull() &&
"cannot request the size of an undeduced or dependent auto type");
return getTypeInfo(A->getDeducedType().getTypePtr());
}
case Type::Paren:
return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
case Type::MacroQualified:
return getTypeInfo(
cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
case Type::ObjCTypeParam:
return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
case Type::Typedef: {
const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
// If the typedef has an aligned attribute on it, it overrides any computed
// alignment we have. This violates the GCC documentation (which says that
// attribute(aligned) can only round up) but matches its implementation.
if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
Align = AttrAlign;
AlignRequirement = AlignRequirementKind::RequiredByTypedef;
} else {
Align = Info.Align;
AlignRequirement = Info.AlignRequirement;
}
Width = Info.Width;
break;
}
case Type::Elaborated:
return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
case Type::Attributed:
return getTypeInfo(
cast<AttributedType>(T)->getEquivalentType().getTypePtr());
case Type::Atomic: {
// Start with the base type information.
TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
Width = Info.Width;
Align = Info.Align;
if (!Width) {
// An otherwise zero-sized type should still generate an
// atomic operation.
Width = Target->getCharWidth();
assert(Align);
} else if (Width <= Target->getMaxAtomicPromoteWidth()) {
// If the size of the type doesn't exceed the platform's max
// atomic promotion width, make the size and alignment more
// favorable to atomic operations:
// Round the size up to a power of 2.
if (!llvm::isPowerOf2_64(Width))
Width = llvm::NextPowerOf2(Width);
// Set the alignment equal to the size.
Align = static_cast<unsigned>(Width);
}
}
break;
case Type::Pipe:
Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
break;
}
assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
return TypeInfo(Width, Align, AlignRequirement);
}
unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
if (I != MemoizedUnadjustedAlign.end())
return I->second;
unsigned UnadjustedAlign;
if (const auto *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
const ASTRecordLayout &Layout = getASTRecordLayout(RD);
UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
} else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
} else {
UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
}
MemoizedUnadjustedAlign[T] = UnadjustedAlign;
return UnadjustedAlign;
}
unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
return SimdAlign;
}
/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
return CharUnits::fromQuantity(BitSize / getCharWidth());
}
/// toBits - Convert a size in characters to a size in characters.
int64_t ASTContext::toBits(CharUnits CharSize) const {
return CharSize.getQuantity() * getCharWidth();
}
/// getTypeSizeInChars - Return the size of the specified type, in characters.
/// This method does not work on incomplete types.
CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
return getTypeInfoInChars(T).Width;
}
CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
return getTypeInfoInChars(T).Width;
}
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
/// characters. This method does not work on incomplete types.
CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
return toCharUnitsFromBits(getTypeAlign(T));
}
CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
return toCharUnitsFromBits(getTypeAlign(T));
}
/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
/// type, in characters, before alignment adustments. This method does
/// not work on incomplete types.
CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
}
CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
}
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits. This can be different than the ABI
/// alignment in cases where it is beneficial for performance or backwards
/// compatibility preserving to overalign a data type. (Note: despite the name,
/// the preferred alignment is ABI-impacting, and not an optimization.)
unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
TypeInfo TI = getTypeInfo(T);
unsigned ABIAlign = TI.Align;
T = T->getBaseElementTypeUnsafe();
// The preferred alignment of member pointers is that of a pointer.
if (T->isMemberPointerType())
return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
if (!Target->allowsLargerPreferedTypeAlignment())
return ABIAlign;
if (const auto *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
// When used as part of a typedef, or together with a 'packed' attribute,
// the 'aligned' attribute can be used to decrease alignment. Note that the
// 'packed' case is already taken into consideration when computing the
// alignment, we only need to handle the typedef case here.
if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
RD->isInvalidDecl())
return ABIAlign;
unsigned PreferredAlign = static_cast<unsigned>(
toBits(getASTRecordLayout(RD).PreferredAlignment));
assert(PreferredAlign >= ABIAlign &&
"PreferredAlign should be at least as large as ABIAlign.");
return PreferredAlign;
}
// Double (and, for targets supporting AIX `power` alignment, long double) and
// long long should be naturally aligned (despite requiring less alignment) if
// possible.
if (const auto *CT = T->getAs<ComplexType>())
T = CT->getElementType().getTypePtr();
if (const auto *ET = T->getAs<EnumType>())
T = ET->getDecl()->getIntegerType().getTypePtr();
if (T->isSpecificBuiltinType(BuiltinType::Double) ||
T->isSpecificBuiltinType(BuiltinType::LongLong) ||
T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
(T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
Target->defaultsToAIXPowerAlignment()))
// Don't increase the alignment if an alignment attribute was specified on a
// typedef declaration.
if (!TI.isAlignRequired())
return std::max(ABIAlign, (unsigned)getTypeSize(T));
return ABIAlign;
}
/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
/// for __attribute__((aligned)) on this target, to be used if no alignment
/// value is specified.
unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
return getTargetInfo().getDefaultAlignForAttributeAligned();
}
/// getAlignOfGlobalVar - Return the alignment in bits that should be given
/// to a global variable of the specified type.
unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
uint64_t TypeSize = getTypeSize(T.getTypePtr());
return std::max(getPreferredTypeAlign(T),
getTargetInfo().getMinGlobalAlign(TypeSize));
}
/// getAlignOfGlobalVarInChars - Return the alignment in characters that
/// should be given to a global variable of the specified type.
CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
return toCharUnitsFromBits(getAlignOfGlobalVar(T));
}
CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
CharUnits Offset = CharUnits::Zero();
const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
Offset += Layout->getBaseClassOffset(Base);
Layout = &getASTRecordLayout(Base);
}
return Offset;
}
CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
const ValueDecl *MPD = MP.getMemberPointerDecl();
CharUnits ThisAdjustment = CharUnits::Zero();
ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
bool DerivedMember = MP.isMemberPointerToDerivedMember();
const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
for (unsigned I = 0, N = Path.size(); I != N; ++I) {
const CXXRecordDecl *Base = RD;
const CXXRecordDecl *Derived = Path[I];
if (DerivedMember)
std::swap(Base, Derived);
ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
RD = Path[I];
}
if (DerivedMember)
ThisAdjustment = -ThisAdjustment;
return ThisAdjustment;
}
/// DeepCollectObjCIvars -
/// This routine first collects all declared, but not synthesized, ivars in
/// super class and then collects all ivars, including those synthesized for
/// current class. This routine is used for implementation of current class
/// when all ivars, declared and synthesized are known.
void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
bool leafClass,
SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
DeepCollectObjCIvars(SuperClass, false, Ivars);
if (!leafClass) {
for (const auto *I : OI->ivars())
Ivars.push_back(I);
} else {
auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
Iv= Iv->getNextIvar())
Ivars.push_back(Iv);
}
}
/// CollectInheritedProtocols - Collect all protocols in current class and
/// those inherited by it.
void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
// We can use protocol_iterator here instead of
// all_referenced_protocol_iterator since we are walking all categories.
for (auto *Proto : OI->all_referenced_protocols()) {
CollectInheritedProtocols(Proto, Protocols);
}
// Categories of this Interface.
for (const auto *Cat : OI->visible_categories())
CollectInheritedProtocols(Cat, Protocols);
if (ObjCInterfaceDecl *SD = OI->getSuperClass())
while (SD) {
CollectInheritedProtocols(SD, Protocols);
SD = SD->getSuperClass();
}
} else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
for (auto *Proto : OC->protocols()) {
CollectInheritedProtocols(Proto, Protocols);
}
} else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
// Insert the protocol.
if (!Protocols.insert(
const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
return;
for (auto *Proto : OP->protocols())
CollectInheritedProtocols(Proto, Protocols);
}
}
static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
const RecordDecl *RD) {
assert(RD->isUnion() && "Must be union type");
CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
for (const auto *Field : RD->fields()) {
if (!Context.hasUniqueObjectRepresentations(Field->getType()))
return false;
CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
if (FieldSize != UnionSize)
return false;
}
return !RD->field_empty();
}
static int64_t getSubobjectOffset(const FieldDecl *Field,
const ASTContext &Context,