blob: e2f6b69fc530aad0f35d3acacbf3b7385fbe6a27 [file] [log] [blame]
//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that NVPTX uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "NVPTXISelLowering.h"
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "NVPTX.h"
#include "NVPTXSubtarget.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXUtilities.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#define DEBUG_TYPE "nvptx-lower"
using namespace llvm;
static std::atomic<unsigned> GlobalUniqueCallSite;
static cl::opt<bool> sched4reg(
"nvptx-sched4reg",
cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
static cl::opt<unsigned>
FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
" 1: do it 2: do it aggressively"),
cl::init(2));
static cl::opt<int> UsePrecDivF32(
"nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
" IEEE Compliant F32 div.rnd if available."),
cl::init(2));
static cl::opt<bool> UsePrecSqrtF32(
"nvptx-prec-sqrtf32", cl::Hidden,
cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
cl::init(true));
int NVPTXTargetLowering::getDivF32Level() const {
if (UsePrecDivF32.getNumOccurrences() > 0) {
// If nvptx-prec-div32=N is used on the command-line, always honor it
return UsePrecDivF32;
} else {
// Otherwise, use div.approx if fast math is enabled
if (getTargetMachine().Options.UnsafeFPMath)
return 0;
else
return 2;
}
}
bool NVPTXTargetLowering::usePrecSqrtF32() const {
if (UsePrecSqrtF32.getNumOccurrences() > 0) {
// If nvptx-prec-sqrtf32 is used on the command-line, always honor it
return UsePrecSqrtF32;
} else {
// Otherwise, use sqrt.approx if fast math is enabled
return !getTargetMachine().Options.UnsafeFPMath;
}
}
bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
DenormalMode::PreserveSign;
}
static bool IsPTXVectorType(MVT VT) {
switch (VT.SimpleTy) {
default:
return false;
case MVT::v2i1:
case MVT::v4i1:
case MVT::v2i8:
case MVT::v4i8:
case MVT::v2i16:
case MVT::v4i16:
case MVT::v2i32:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v4f16:
case MVT::v8f16: // <4 x f16x2>
case MVT::v2f32:
case MVT::v4f32:
case MVT::v2f64:
return true;
}
}
/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
/// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
/// into their primitive components.
/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
/// LowerCall, and LowerReturn.
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<uint64_t> *Offsets = nullptr,
uint64_t StartingOffset = 0) {
SmallVector<EVT, 16> TempVTs;
SmallVector<uint64_t, 16> TempOffsets;
// Special case for i128 - decompose to (i64, i64)
if (Ty->isIntegerTy(128)) {
ValueVTs.push_back(EVT(MVT::i64));
ValueVTs.push_back(EVT(MVT::i64));
if (Offsets) {
Offsets->push_back(StartingOffset + 0);
Offsets->push_back(StartingOffset + 8);
}
return;
}
// Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
if (StructType *STy = dyn_cast<StructType>(Ty)) {
auto const *SL = DL.getStructLayout(STy);
auto ElementNum = 0;
for(auto *EI : STy->elements()) {
ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
StartingOffset + SL->getElementOffset(ElementNum));
++ElementNum;
}
return;
}
ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
EVT VT = TempVTs[i];
uint64_t Off = TempOffsets[i];
// Split vectors into individual elements, except for v2f16, which
// we will pass as a single scalar.
if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
// Vectors with an even number of f16 elements will be passed to
// us as an array of v2f16 elements. We must match this so we
// stay in sync with Ins/Outs.
if (EltVT == MVT::f16 && NumElts % 2 == 0) {
EltVT = MVT::v2f16;
NumElts /= 2;
}
for (unsigned j = 0; j != NumElts; ++j) {
ValueVTs.push_back(EltVT);
if (Offsets)
Offsets->push_back(Off + j * EltVT.getStoreSize());
}
} else {
ValueVTs.push_back(VT);
if (Offsets)
Offsets->push_back(Off);
}
}
}
// Check whether we can merge loads/stores of some of the pieces of a
// flattened function parameter or return value into a single vector
// load/store.
//
// The flattened parameter is represented as a list of EVTs and
// offsets, and the whole structure is aligned to ParamAlignment. This
// function determines whether we can load/store pieces of the
// parameter starting at index Idx using a single vectorized op of
// size AccessSize. If so, it returns the number of param pieces
// covered by the vector op. Otherwise, it returns 1.
static unsigned CanMergeParamLoadStoresStartingAt(
unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
// Can't vectorize if param alignment is not sufficient.
if (ParamAlignment < AccessSize)
return 1;
// Can't vectorize if offset is not aligned.
if (Offsets[Idx] & (AccessSize - 1))
return 1;
EVT EltVT = ValueVTs[Idx];
unsigned EltSize = EltVT.getStoreSize();
// Element is too large to vectorize.
if (EltSize >= AccessSize)
return 1;
unsigned NumElts = AccessSize / EltSize;
// Can't vectorize if AccessBytes if not a multiple of EltSize.
if (AccessSize != EltSize * NumElts)
return 1;
// We don't have enough elements to vectorize.
if (Idx + NumElts > ValueVTs.size())
return 1;
// PTX ISA can only deal with 2- and 4-element vector ops.
if (NumElts != 4 && NumElts != 2)
return 1;
for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
// Types do not match.
if (ValueVTs[j] != EltVT)
return 1;
// Elements are not contiguous.
if (Offsets[j] - Offsets[j - 1] != EltSize)
return 1;
}
// OK. We can vectorize ValueVTs[i..i+NumElts)
return NumElts;
}
// Flags for tracking per-element vectorization state of loads/stores
// of a flattened function parameter or return value.
enum ParamVectorizationFlags {
PVF_INNER = 0x0, // Middle elements of a vector.
PVF_FIRST = 0x1, // First element of the vector.
PVF_LAST = 0x2, // Last element of the vector.
// Scalar is effectively a 1-element vector.
PVF_SCALAR = PVF_FIRST | PVF_LAST
};
// Computes whether and how we can vectorize the loads/stores of a
// flattened function parameter or return value.
//
// The flattened parameter is represented as the list of ValueVTs and
// Offsets, and is aligned to ParamAlignment bytes. We return a vector
// of the same size as ValueVTs indicating how each piece should be
// loaded/stored (i.e. as a scalar, or as part of a vector
// load/store).
static SmallVector<ParamVectorizationFlags, 16>
VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
const SmallVectorImpl<uint64_t> &Offsets,
Align ParamAlignment) {
// Set vector size to match ValueVTs and mark all elements as
// scalars by default.
SmallVector<ParamVectorizationFlags, 16> VectorInfo;
VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
// Check what we can vectorize using 128/64/32-bit accesses.
for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
// Skip elements we've already processed.
assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
for (unsigned AccessSize : {16, 8, 4, 2}) {
unsigned NumElts = CanMergeParamLoadStoresStartingAt(
I, AccessSize, ValueVTs, Offsets, ParamAlignment);
// Mark vectorized elements.
switch (NumElts) {
default:
llvm_unreachable("Unexpected return value");
case 1:
// Can't vectorize using this size, try next smaller size.
continue;
case 2:
assert(I + 1 < E && "Not enough elements.");
VectorInfo[I] = PVF_FIRST;
VectorInfo[I + 1] = PVF_LAST;
I += 1;
break;
case 4:
assert(I + 3 < E && "Not enough elements.");
VectorInfo[I] = PVF_FIRST;
VectorInfo[I + 1] = PVF_INNER;
VectorInfo[I + 2] = PVF_INNER;
VectorInfo[I + 3] = PVF_LAST;
I += 3;
break;
}
// Break out of the inner loop because we've already succeeded
// using largest possible AccessSize.
break;
}
}
return VectorInfo;
}
// NVPTXTargetLowering Constructor.
NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
const NVPTXSubtarget &STI)
: TargetLowering(TM), nvTM(&TM), STI(STI) {
// always lower memset, memcpy, and memmove intrinsics to load/store
// instructions, rather
// then generating calls to memset, mempcy or memmove.
MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
setBooleanContents(ZeroOrNegativeOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Jump is Expensive. Don't create extra control flow for 'and', 'or'
// condition branches.
setJumpIsExpensive(true);
// Wide divides are _very_ slow. Try to reduce the width of the divide if
// possible.
addBypassSlowDiv(64, 32);
// By default, use the Source scheduling
if (sched4reg)
setSchedulingPreference(Sched::RegPressure);
else
setSchedulingPreference(Sched::Source);
auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
LegalizeAction NoF16Action) {
setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
};
addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
// Conversion to/from FP16/FP16x2 is always legal.
setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
// Operations not directly supported by NVPTX.
for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
MVT::i16, MVT::i32, MVT::i64}) {
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::BR_CC, VT, Expand);
}
// Some SIGN_EXTEND_INREG can be done using cvt instruction.
// For others we will expand to a SHL/SRA pair.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
// TODO: we may consider expanding ROTL/ROTR on older GPUs. Currently on GPUs
// that don't have h/w rotation we lower them to multi-instruction assembly.
// See ROT*_sw in NVPTXIntrInfo.td
setOperationAction(ISD::ROTL, MVT::i64, Legal);
setOperationAction(ISD::ROTR, MVT::i64, Legal);
setOperationAction(ISD::ROTL, MVT::i32, Legal);
setOperationAction(ISD::ROTR, MVT::i32, Legal);
setOperationAction(ISD::ROTL, MVT::i16, Expand);
setOperationAction(ISD::ROTR, MVT::i16, Expand);
setOperationAction(ISD::ROTL, MVT::i8, Expand);
setOperationAction(ISD::ROTR, MVT::i8, Expand);
setOperationAction(ISD::BSWAP, MVT::i16, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
// Indirect branch is not supported.
// This also disables Jump Table creation.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
// We want to legalize constant related memmove and memcopy
// intrinsics.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
// Turn FP extload into load/fpextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
// Turn FP truncstore into trunc + store.
// FIXME: vector types should also be expanded
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// PTX does not support load / store predicate registers
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setTruncStoreAction(VT, MVT::i1, Expand);
}
// This is legal in NVPTX
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
// TRAP can be lowered to PTX trap
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// Register custom handling for vector loads/stores
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
if (IsPTXVectorType(VT)) {
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
}
}
// Custom handling for i8 intrinsics
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
setOperationAction(ISD::ABS, Ty, Legal);
setOperationAction(ISD::SMIN, Ty, Legal);
setOperationAction(ISD::SMAX, Ty, Legal);
setOperationAction(ISD::UMIN, Ty, Legal);
setOperationAction(ISD::UMAX, Ty, Legal);
setOperationAction(ISD::CTPOP, Ty, Legal);
setOperationAction(ISD::CTLZ, Ty, Legal);
}
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
// PTX does not directly support SELP of i1, so promote to i32 first
setOperationAction(ISD::SELECT, MVT::i1, Custom);
// PTX cannot multiply two i64s in a single instruction.
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
// We have some custom DAG combine patterns for these nodes
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SREM);
setTargetDAGCombine(ISD::UREM);
// setcc for f16x2 needs special handling to prevent legalizer's
// attempt to scalarize it due to v2i1 not being legal.
if (STI.allowFP16Math())
setTargetDAGCombine(ISD::SETCC);
// Promote fp16 arithmetic if fp16 hardware isn't available or the
// user passed --nvptx-no-fp16-math. The flag is useful because,
// although sm_53+ GPUs have some sort of FP16 support in
// hardware, only sm_53 and sm_60 have full implementation. Others
// only have token amount of hardware and are likely to run faster
// by using fp32 units instead.
for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
setFP16OperationAction(Op, MVT::f16, Legal, Promote);
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
}
// There's no neg.f16 instruction. Expand to (0-x).
setOperationAction(ISD::FNEG, MVT::f16, Expand);
setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
// (would be) Library functions.
// These map to conversion instructions for scalar FP types.
for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
ISD::FTRUNC}) {
setOperationAction(Op, MVT::f16, Legal);
setOperationAction(Op, MVT::f32, Legal);
setOperationAction(Op, MVT::f64, Legal);
setOperationAction(Op, MVT::v2f16, Expand);
}
setOperationAction(ISD::FROUND, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
setOperationAction(ISD::FROUND, MVT::f32, Custom);
setOperationAction(ISD::FROUND, MVT::f64, Custom);
// 'Expand' implements FCOPYSIGN without calling an external library.
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
// These map to corresponding instructions for f32/f64. f16 must be
// promoted to f32. v2f16 is expanded to f16, which is then promoted
// to f32.
for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
setOperationAction(Op, MVT::f16, Promote);
setOperationAction(Op, MVT::f32, Legal);
setOperationAction(Op, MVT::f64, Legal);
setOperationAction(Op, MVT::v2f16, Expand);
}
setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
// No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate.
// No FPOW or FREM in PTX.
// Now deduce the information based on the above mentioned
// actions
computeRegisterProperties(STI.getRegisterInfo());
}
const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((NVPTXISD::NodeType)Opcode) {
case NVPTXISD::FIRST_NUMBER:
break;
case NVPTXISD::CALL:
return "NVPTXISD::CALL";
case NVPTXISD::RET_FLAG:
return "NVPTXISD::RET_FLAG";
case NVPTXISD::LOAD_PARAM:
return "NVPTXISD::LOAD_PARAM";
case NVPTXISD::Wrapper:
return "NVPTXISD::Wrapper";
case NVPTXISD::DeclareParam:
return "NVPTXISD::DeclareParam";
case NVPTXISD::DeclareScalarParam:
return "NVPTXISD::DeclareScalarParam";
case NVPTXISD::DeclareRet:
return "NVPTXISD::DeclareRet";
case NVPTXISD::DeclareScalarRet:
return "NVPTXISD::DeclareScalarRet";
case NVPTXISD::DeclareRetParam:
return "NVPTXISD::DeclareRetParam";
case NVPTXISD::PrintCall:
return "NVPTXISD::PrintCall";
case NVPTXISD::PrintConvergentCall:
return "NVPTXISD::PrintConvergentCall";
case NVPTXISD::PrintCallUni:
return "NVPTXISD::PrintCallUni";
case NVPTXISD::PrintConvergentCallUni:
return "NVPTXISD::PrintConvergentCallUni";
case NVPTXISD::LoadParam:
return "NVPTXISD::LoadParam";
case NVPTXISD::LoadParamV2:
return "NVPTXISD::LoadParamV2";
case NVPTXISD::LoadParamV4:
return "NVPTXISD::LoadParamV4";
case NVPTXISD::StoreParam:
return "NVPTXISD::StoreParam";
case NVPTXISD::StoreParamV2:
return "NVPTXISD::StoreParamV2";
case NVPTXISD::StoreParamV4:
return "NVPTXISD::StoreParamV4";
case NVPTXISD::StoreParamS32:
return "NVPTXISD::StoreParamS32";
case NVPTXISD::StoreParamU32:
return "NVPTXISD::StoreParamU32";
case NVPTXISD::CallArgBegin:
return "NVPTXISD::CallArgBegin";
case NVPTXISD::CallArg:
return "NVPTXISD::CallArg";
case NVPTXISD::LastCallArg:
return "NVPTXISD::LastCallArg";
case NVPTXISD::CallArgEnd:
return "NVPTXISD::CallArgEnd";
case NVPTXISD::CallVoid:
return "NVPTXISD::CallVoid";
case NVPTXISD::CallVal:
return "NVPTXISD::CallVal";
case NVPTXISD::CallSymbol:
return "NVPTXISD::CallSymbol";
case NVPTXISD::Prototype:
return "NVPTXISD::Prototype";
case NVPTXISD::MoveParam:
return "NVPTXISD::MoveParam";
case NVPTXISD::StoreRetval:
return "NVPTXISD::StoreRetval";
case NVPTXISD::StoreRetvalV2:
return "NVPTXISD::StoreRetvalV2";
case NVPTXISD::StoreRetvalV4:
return "NVPTXISD::StoreRetvalV4";
case NVPTXISD::PseudoUseParam:
return "NVPTXISD::PseudoUseParam";
case NVPTXISD::RETURN:
return "NVPTXISD::RETURN";
case NVPTXISD::CallSeqBegin:
return "NVPTXISD::CallSeqBegin";
case NVPTXISD::CallSeqEnd:
return "NVPTXISD::CallSeqEnd";
case NVPTXISD::CallPrototype:
return "NVPTXISD::CallPrototype";
case NVPTXISD::ProxyReg:
return "NVPTXISD::ProxyReg";
case NVPTXISD::LoadV2:
return "NVPTXISD::LoadV2";
case NVPTXISD::LoadV4:
return "NVPTXISD::LoadV4";
case NVPTXISD::LDGV2:
return "NVPTXISD::LDGV2";
case NVPTXISD::LDGV4:
return "NVPTXISD::LDGV4";
case NVPTXISD::LDUV2:
return "NVPTXISD::LDUV2";
case NVPTXISD::LDUV4:
return "NVPTXISD::LDUV4";
case NVPTXISD::StoreV2:
return "NVPTXISD::StoreV2";
case NVPTXISD::StoreV4:
return "NVPTXISD::StoreV4";
case NVPTXISD::FUN_SHFL_CLAMP:
return "NVPTXISD::FUN_SHFL_CLAMP";
case NVPTXISD::FUN_SHFR_CLAMP:
return "NVPTXISD::FUN_SHFR_CLAMP";
case NVPTXISD::IMAD:
return "NVPTXISD::IMAD";
case NVPTXISD::SETP_F16X2:
return "NVPTXISD::SETP_F16X2";
case NVPTXISD::Dummy:
return "NVPTXISD::Dummy";
case NVPTXISD::MUL_WIDE_SIGNED:
return "NVPTXISD::MUL_WIDE_SIGNED";
case NVPTXISD::MUL_WIDE_UNSIGNED:
return "NVPTXISD::MUL_WIDE_UNSIGNED";
case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32";
case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat";
case NVPTXISD::Tex1DFloatFloatLevel:
return "NVPTXISD::Tex1DFloatFloatLevel";
case NVPTXISD::Tex1DFloatFloatGrad:
return "NVPTXISD::Tex1DFloatFloatGrad";
case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32";
case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float";
case NVPTXISD::Tex1DS32FloatLevel:
return "NVPTXISD::Tex1DS32FloatLevel";
case NVPTXISD::Tex1DS32FloatGrad:
return "NVPTXISD::Tex1DS32FloatGrad";
case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32";
case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float";
case NVPTXISD::Tex1DU32FloatLevel:
return "NVPTXISD::Tex1DU32FloatLevel";
case NVPTXISD::Tex1DU32FloatGrad:
return "NVPTXISD::Tex1DU32FloatGrad";
case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32";
case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
case NVPTXISD::Tex1DArrayFloatFloatLevel:
return "NVPTXISD::Tex1DArrayFloatFloatLevel";
case NVPTXISD::Tex1DArrayFloatFloatGrad:
return "NVPTXISD::Tex1DArrayFloatFloatGrad";
case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32";
case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float";
case NVPTXISD::Tex1DArrayS32FloatLevel:
return "NVPTXISD::Tex1DArrayS32FloatLevel";
case NVPTXISD::Tex1DArrayS32FloatGrad:
return "NVPTXISD::Tex1DArrayS32FloatGrad";
case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32";
case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float";
case NVPTXISD::Tex1DArrayU32FloatLevel:
return "NVPTXISD::Tex1DArrayU32FloatLevel";
case NVPTXISD::Tex1DArrayU32FloatGrad:
return "NVPTXISD::Tex1DArrayU32FloatGrad";
case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32";
case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat";
case NVPTXISD::Tex2DFloatFloatLevel:
return "NVPTXISD::Tex2DFloatFloatLevel";
case NVPTXISD::Tex2DFloatFloatGrad:
return "NVPTXISD::Tex2DFloatFloatGrad";
case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32";
case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float";
case NVPTXISD::Tex2DS32FloatLevel:
return "NVPTXISD::Tex2DS32FloatLevel";
case NVPTXISD::Tex2DS32FloatGrad:
return "NVPTXISD::Tex2DS32FloatGrad";
case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32";
case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float";
case NVPTXISD::Tex2DU32FloatLevel:
return "NVPTXISD::Tex2DU32FloatLevel";
case NVPTXISD::Tex2DU32FloatGrad:
return "NVPTXISD::Tex2DU32FloatGrad";
case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32";
case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
case NVPTXISD::Tex2DArrayFloatFloatLevel:
return "NVPTXISD::Tex2DArrayFloatFloatLevel";
case NVPTXISD::Tex2DArrayFloatFloatGrad:
return "NVPTXISD::Tex2DArrayFloatFloatGrad";
case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32";
case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float";
case NVPTXISD::Tex2DArrayS32FloatLevel:
return "NVPTXISD::Tex2DArrayS32FloatLevel";
case NVPTXISD::Tex2DArrayS32FloatGrad:
return "NVPTXISD::Tex2DArrayS32FloatGrad";
case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32";
case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float";
case NVPTXISD::Tex2DArrayU32FloatLevel:
return "NVPTXISD::Tex2DArrayU32FloatLevel";
case NVPTXISD::Tex2DArrayU32FloatGrad:
return "NVPTXISD::Tex2DArrayU32FloatGrad";
case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32";
case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat";
case NVPTXISD::Tex3DFloatFloatLevel:
return "NVPTXISD::Tex3DFloatFloatLevel";
case NVPTXISD::Tex3DFloatFloatGrad:
return "NVPTXISD::Tex3DFloatFloatGrad";
case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32";
case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float";
case NVPTXISD::Tex3DS32FloatLevel:
return "NVPTXISD::Tex3DS32FloatLevel";
case NVPTXISD::Tex3DS32FloatGrad:
return "NVPTXISD::Tex3DS32FloatGrad";
case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32";
case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float";
case NVPTXISD::Tex3DU32FloatLevel:
return "NVPTXISD::Tex3DU32FloatLevel";
case NVPTXISD::Tex3DU32FloatGrad:
return "NVPTXISD::Tex3DU32FloatGrad";
case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat";
case NVPTXISD::TexCubeFloatFloatLevel:
return "NVPTXISD::TexCubeFloatFloatLevel";
case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float";
case NVPTXISD::TexCubeS32FloatLevel:
return "NVPTXISD::TexCubeS32FloatLevel";
case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float";
case NVPTXISD::TexCubeU32FloatLevel:
return "NVPTXISD::TexCubeU32FloatLevel";
case NVPTXISD::TexCubeArrayFloatFloat:
return "NVPTXISD::TexCubeArrayFloatFloat";
case NVPTXISD::TexCubeArrayFloatFloatLevel:
return "NVPTXISD::TexCubeArrayFloatFloatLevel";
case NVPTXISD::TexCubeArrayS32Float:
return "NVPTXISD::TexCubeArrayS32Float";
case NVPTXISD::TexCubeArrayS32FloatLevel:
return "NVPTXISD::TexCubeArrayS32FloatLevel";
case NVPTXISD::TexCubeArrayU32Float:
return "NVPTXISD::TexCubeArrayU32Float";
case NVPTXISD::TexCubeArrayU32FloatLevel:
return "NVPTXISD::TexCubeArrayU32FloatLevel";
case NVPTXISD::Tld4R2DFloatFloat:
return "NVPTXISD::Tld4R2DFloatFloat";
case NVPTXISD::Tld4G2DFloatFloat:
return "NVPTXISD::Tld4G2DFloatFloat";
case NVPTXISD::Tld4B2DFloatFloat:
return "NVPTXISD::Tld4B2DFloatFloat";
case NVPTXISD::Tld4A2DFloatFloat:
return "NVPTXISD::Tld4A2DFloatFloat";
case NVPTXISD::Tld4R2DS64Float:
return "NVPTXISD::Tld4R2DS64Float";
case NVPTXISD::Tld4G2DS64Float:
return "NVPTXISD::Tld4G2DS64Float";
case NVPTXISD::Tld4B2DS64Float:
return "NVPTXISD::Tld4B2DS64Float";
case NVPTXISD::Tld4A2DS64Float:
return "NVPTXISD::Tld4A2DS64Float";
case NVPTXISD::Tld4R2DU64Float:
return "NVPTXISD::Tld4R2DU64Float";
case NVPTXISD::Tld4G2DU64Float:
return "NVPTXISD::Tld4G2DU64Float";
case NVPTXISD::Tld4B2DU64Float:
return "NVPTXISD::Tld4B2DU64Float";
case NVPTXISD::Tld4A2DU64Float:
return "NVPTXISD::Tld4A2DU64Float";
case NVPTXISD::TexUnified1DFloatS32:
return "NVPTXISD::TexUnified1DFloatS32";
case NVPTXISD::TexUnified1DFloatFloat:
return "NVPTXISD::TexUnified1DFloatFloat";
case NVPTXISD::TexUnified1DFloatFloatLevel:
return "NVPTXISD::TexUnified1DFloatFloatLevel";
case NVPTXISD::TexUnified1DFloatFloatGrad:
return "NVPTXISD::TexUnified1DFloatFloatGrad";
case NVPTXISD::TexUnified1DS32S32:
return "NVPTXISD::TexUnified1DS32S32";
case NVPTXISD::TexUnified1DS32Float:
return "NVPTXISD::TexUnified1DS32Float";
case NVPTXISD::TexUnified1DS32FloatLevel:
return "NVPTXISD::TexUnified1DS32FloatLevel";
case NVPTXISD::TexUnified1DS32FloatGrad:
return "NVPTXISD::TexUnified1DS32FloatGrad";
case NVPTXISD::TexUnified1DU32S32:
return "NVPTXISD::TexUnified1DU32S32";
case NVPTXISD::TexUnified1DU32Float:
return "NVPTXISD::TexUnified1DU32Float";
case NVPTXISD::TexUnified1DU32FloatLevel:
return "NVPTXISD::TexUnified1DU32FloatLevel";
case NVPTXISD::TexUnified1DU32FloatGrad:
return "NVPTXISD::TexUnified1DU32FloatGrad";
case NVPTXISD::TexUnified1DArrayFloatS32:
return "NVPTXISD::TexUnified1DArrayFloatS32";
case NVPTXISD::TexUnified1DArrayFloatFloat:
return "NVPTXISD::TexUnified1DArrayFloatFloat";
case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
case NVPTXISD::TexUnified1DArrayS32S32:
return "NVPTXISD::TexUnified1DArrayS32S32";
case NVPTXISD::TexUnified1DArrayS32Float:
return "NVPTXISD::TexUnified1DArrayS32Float";
case NVPTXISD::TexUnified1DArrayS32FloatLevel:
return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
case NVPTXISD::TexUnified1DArrayS32FloatGrad:
return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
case NVPTXISD::TexUnified1DArrayU32S32:
return "NVPTXISD::TexUnified1DArrayU32S32";
case NVPTXISD::TexUnified1DArrayU32Float:
return "NVPTXISD::TexUnified1DArrayU32Float";
case NVPTXISD::TexUnified1DArrayU32FloatLevel:
return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
case NVPTXISD::TexUnified1DArrayU32FloatGrad:
return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
case NVPTXISD::TexUnified2DFloatS32:
return "NVPTXISD::TexUnified2DFloatS32";
case NVPTXISD::TexUnified2DFloatFloat:
return "NVPTXISD::TexUnified2DFloatFloat";
case NVPTXISD::TexUnified2DFloatFloatLevel:
return "NVPTXISD::TexUnified2DFloatFloatLevel";
case NVPTXISD::TexUnified2DFloatFloatGrad:
return "NVPTXISD::TexUnified2DFloatFloatGrad";
case NVPTXISD::TexUnified2DS32S32:
return "NVPTXISD::TexUnified2DS32S32";
case NVPTXISD::TexUnified2DS32Float:
return "NVPTXISD::TexUnified2DS32Float";
case NVPTXISD::TexUnified2DS32FloatLevel:
return "NVPTXISD::TexUnified2DS32FloatLevel";
case NVPTXISD::TexUnified2DS32FloatGrad:
return "NVPTXISD::TexUnified2DS32FloatGrad";
case NVPTXISD::TexUnified2DU32S32:
return "NVPTXISD::TexUnified2DU32S32";
case NVPTXISD::TexUnified2DU32Float:
return "NVPTXISD::TexUnified2DU32Float";
case NVPTXISD::TexUnified2DU32FloatLevel:
return "NVPTXISD::TexUnified2DU32FloatLevel";
case NVPTXISD::TexUnified2DU32FloatGrad:
return "NVPTXISD::TexUnified2DU32FloatGrad";
case NVPTXISD::TexUnified2DArrayFloatS32:
return "NVPTXISD::TexUnified2DArrayFloatS32";
case NVPTXISD::TexUnified2DArrayFloatFloat:
return "NVPTXISD::TexUnified2DArrayFloatFloat";
case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
case NVPTXISD::TexUnified2DArrayS32S32:
return "NVPTXISD::TexUnified2DArrayS32S32";
case NVPTXISD::TexUnified2DArrayS32Float:
return "NVPTXISD::TexUnified2DArrayS32Float";
case NVPTXISD::TexUnified2DArrayS32FloatLevel:
return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
case NVPTXISD::TexUnified2DArrayS32FloatGrad:
return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
case NVPTXISD::TexUnified2DArrayU32S32:
return "NVPTXISD::TexUnified2DArrayU32S32";
case NVPTXISD::TexUnified2DArrayU32Float:
return "NVPTXISD::TexUnified2DArrayU32Float";
case NVPTXISD::TexUnified2DArrayU32FloatLevel:
return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
case NVPTXISD::TexUnified2DArrayU32FloatGrad:
return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
case NVPTXISD::TexUnified3DFloatS32:
return "NVPTXISD::TexUnified3DFloatS32";
case NVPTXISD::TexUnified3DFloatFloat:
return "NVPTXISD::TexUnified3DFloatFloat";
case NVPTXISD::TexUnified3DFloatFloatLevel:
return "NVPTXISD::TexUnified3DFloatFloatLevel";
case NVPTXISD::TexUnified3DFloatFloatGrad:
return "NVPTXISD::TexUnified3DFloatFloatGrad";
case NVPTXISD::TexUnified3DS32S32:
return "NVPTXISD::TexUnified3DS32S32";
case NVPTXISD::TexUnified3DS32Float:
return "NVPTXISD::TexUnified3DS32Float";
case NVPTXISD::TexUnified3DS32FloatLevel:
return "NVPTXISD::TexUnified3DS32FloatLevel";
case NVPTXISD::TexUnified3DS32FloatGrad:
return "NVPTXISD::TexUnified3DS32FloatGrad";
case NVPTXISD::TexUnified3DU32S32:
return "NVPTXISD::TexUnified3DU32S32";
case NVPTXISD::TexUnified3DU32Float:
return "NVPTXISD::TexUnified3DU32Float";
case NVPTXISD::TexUnified3DU32FloatLevel:
return "NVPTXISD::TexUnified3DU32FloatLevel";
case NVPTXISD::TexUnified3DU32FloatGrad:
return "NVPTXISD::TexUnified3DU32FloatGrad";
case NVPTXISD::TexUnifiedCubeFloatFloat:
return "NVPTXISD::TexUnifiedCubeFloatFloat";
case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
case NVPTXISD::TexUnifiedCubeS32Float:
return "NVPTXISD::TexUnifiedCubeS32Float";
case NVPTXISD::TexUnifiedCubeS32FloatLevel:
return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
case NVPTXISD::TexUnifiedCubeU32Float:
return "NVPTXISD::TexUnifiedCubeU32Float";
case NVPTXISD::TexUnifiedCubeU32FloatLevel:
return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
case NVPTXISD::TexUnifiedCubeArrayS32Float:
return "NVPTXISD::TexUnifiedCubeArrayS32Float";
case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
case NVPTXISD::TexUnifiedCubeArrayU32Float:
return "NVPTXISD::TexUnifiedCubeArrayU32Float";
case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
case NVPTXISD::Tld4UnifiedR2DFloatFloat:
return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
case NVPTXISD::Tld4UnifiedG2DFloatFloat:
return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
case NVPTXISD::Tld4UnifiedB2DFloatFloat:
return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
case NVPTXISD::Tld4UnifiedA2DFloatFloat:
return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
case NVPTXISD::Tld4UnifiedR2DS64Float:
return "NVPTXISD::Tld4UnifiedR2DS64Float";
case NVPTXISD::Tld4UnifiedG2DS64Float:
return "NVPTXISD::Tld4UnifiedG2DS64Float";
case NVPTXISD::Tld4UnifiedB2DS64Float:
return "NVPTXISD::Tld4UnifiedB2DS64Float";
case NVPTXISD::Tld4UnifiedA2DS64Float:
return "NVPTXISD::Tld4UnifiedA2DS64Float";
case NVPTXISD::Tld4UnifiedR2DU64Float:
return "NVPTXISD::Tld4UnifiedR2DU64Float";
case NVPTXISD::Tld4UnifiedG2DU64Float:
return "NVPTXISD::Tld4UnifiedG2DU64Float";
case NVPTXISD::Tld4UnifiedB2DU64Float:
return "NVPTXISD::Tld4UnifiedB2DU64Float";
case NVPTXISD::Tld4UnifiedA2DU64Float:
return "NVPTXISD::Tld4UnifiedA2DU64Float";
case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp";
case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp";
case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp";
case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp";
case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp";
case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp";
case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp";
case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp";
case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp";
case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp";
case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp";
case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp";
case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp";
case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp";
case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp";
case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp";
case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp";
case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp";
case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp";
case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp";
case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp";
case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp";
case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp";
case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp";
case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp";
case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp";
case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp";
case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp";
case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp";
case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp";
case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp";
case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp";
case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp";
case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp";
case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp";
case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp";
case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp";
case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp";
case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp";
case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp";
case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp";
case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap";
case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap";
case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap";
case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap";
case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap";
case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap";
case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap";
case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap";
case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap";
case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap";
case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap";
case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap";
case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap";
case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap";
case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap";
case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap";
case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap";
case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap";
case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap";
case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap";
case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap";
case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap";
case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap";
case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap";
case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap";
case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap";
case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap";
case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap";
case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap";
case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap";
case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap";
case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap";
case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap";
case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap";
case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap";
case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap";
case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap";
case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap";
case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap";
case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap";
case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap";
case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap";
case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap";
case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap";
case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap";
case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap";
case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap";
case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap";
case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap";
case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap";
case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap";
case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap";
case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap";
case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap";
case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap";
case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero";
case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero";
case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero";
case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero";
case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero";
case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero";
case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero";
case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero";
case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero";
case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero";
case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero";
case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero";
case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero";
case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero";
case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero";
case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero";
case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero";
case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero";
case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero";
case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero";
case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero";
case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero";
case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero";
case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero";
case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero";
case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero";
case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero";
case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero";
case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero";
case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero";
case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero";
case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero";
case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero";
case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero";
case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero";
case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero";
case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero";
case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero";
case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero";
case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero";
case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero";
case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero";
case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero";
case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero";
case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero";
case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero";
case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero";
case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero";
case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero";
case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero";
case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero";
case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero";
case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero";
case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero";
case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero";
}
return nullptr;
}
TargetLoweringBase::LegalizeTypeAction
NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
VT.getScalarType() == MVT::i1)
return TypeSplitVector;
if (VT == MVT::v2f16)
return TypeLegal;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled, int &ExtraSteps,
bool &UseOneConst,
bool Reciprocal) const {
if (!(Enabled == ReciprocalEstimate::Enabled ||
(Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
return SDValue();
if (ExtraSteps == ReciprocalEstimate::Unspecified)
ExtraSteps = 0;
SDLoc DL(Operand);
EVT VT = Operand.getValueType();
bool Ftz = useF32FTZ(DAG.getMachineFunction());
auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(IID, DL, MVT::i32), Operand);
};
// The sqrt and rsqrt refinement processes assume we always start out with an
// approximation of the rsqrt. Therefore, if we're going to do any refinement
// (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
// any refinement, we must return a regular sqrt.
if (Reciprocal || ExtraSteps > 0) {
if (VT == MVT::f32)
return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
: Intrinsic::nvvm_rsqrt_approx_f);
else if (VT == MVT::f64)
return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
else
return SDValue();
} else {
if (VT == MVT::f32)
return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
: Intrinsic::nvvm_sqrt_approx_f);
else {
// There's no sqrt.approx.f64 instruction, so we emit
// reciprocal(rsqrt(x)). This is faster than
// select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
// x * rsqrt(x).)
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
}
}
}
SDValue
NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
}
std::string NVPTXTargetLowering::getPrototype(
const DataLayout &DL, Type *retTy, const ArgListTy &Args,
const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
const CallBase &CB, unsigned UniqueCallSite) const {
auto PtrVT = getPointerTy(DL);
bool isABI = (STI.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return "";
std::stringstream O;
O << "prototype_" << UniqueCallSite << " : .callprototype ";
if (retTy->getTypeID() == Type::VoidTyID) {
O << "()";
} else {
O << "(";
if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
unsigned size = 0;
if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
size = ITy->getBitWidth();
} else {
assert(retTy->isFloatingPointTy() &&
"Floating point type expected here");
size = retTy->getPrimitiveSizeInBits();
}
// PTX ABI requires all scalar return values to be at least 32
// bits in size. fp16 normally uses .b16 as its storage type in
// PTX, so its size must be adjusted here, too.
if (size < 32)
size = 32;
O << ".param .b" << size << " _";
} else if (isa<PointerType>(retTy)) {
O << ".param .b" << PtrVT.getSizeInBits() << " _";
} else if (retTy->isAggregateType() || retTy->isVectorTy() ||
retTy->isIntegerTy(128)) {
O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
<< " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
} else {
llvm_unreachable("Unknown return type");
}
O << ") ";
}
O << "_ (";
bool first = true;
unsigned OIdx = 0;
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
Type *Ty = Args[i].Ty;
if (!first) {
O << ", ";
}
first = false;
if (!Outs[OIdx].Flags.isByVal()) {
if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
unsigned align = 0;
const CallInst *CallI = cast<CallInst>(&CB);
// +1 because index 0 is reserved for return type alignment
if (!getAlign(*CallI, i + 1, align))
align = DL.getABITypeAlignment(Ty);
unsigned sz = DL.getTypeAllocSize(Ty);
O << ".param .align " << align << " .b8 ";
O << "_";
O << "[" << sz << "]";
// update the index for Outs
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, DL, Ty, vtparts);
if (unsigned len = vtparts.size())
OIdx += len - 1;
continue;
}
// i8 types in IR will be i16 types in SDAG
assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
(getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
"type mismatch between callee prototype and arguments");
// scalar type
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
if (sz < 32)
sz = 32;
} else if (isa<PointerType>(Ty)) {
sz = PtrVT.getSizeInBits();
} else if (Ty->isHalfTy())
// PTX ABI requires all scalar parameters to be at least 32
// bits in size. fp16 normally uses .b16 as its storage type
// in PTX, so its size must be adjusted here, too.
sz = 32;
else
sz = Ty->getPrimitiveSizeInBits();
O << ".param .b" << sz << " ";
O << "_";
continue;
}
auto *PTy = dyn_cast<PointerType>(Ty);
assert(PTy && "Param with byval attribute should be a pointer type");
Type *ETy = PTy->getElementType();
Align align = Outs[OIdx].Flags.getNonZeroByValAlign();
unsigned sz = DL.getTypeAllocSize(ETy);
O << ".param .align " << align.value() << " .b8 ";
O << "_";
O << "[" << sz << "]";
}
O << ");";
return O.str();
}
Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
const CallBase *CB, Type *Ty,
unsigned Idx,
const DataLayout &DL) const {
if (!CB) {
// CallSite is zero, fallback to ABI type alignment
return DL.getABITypeAlign(Ty);
}
unsigned Alignment = 0;
const Function *DirectCallee = CB->getCalledFunction();
if (!DirectCallee) {
// We don't have a direct function symbol, but that may be because of
// constant cast instructions in the call.
// With bitcast'd call targets, the instruction will be the call
if (const auto *CI = dyn_cast<CallInst>(CB)) {
// Check if we have call alignment metadata
if (getAlign(*CI, Idx, Alignment))
return Align(Alignment);
const Value *CalleeV = CI->getCalledOperand();
// Ignore any bitcast instructions
while (isa<ConstantExpr>(CalleeV)) {
const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
if (!CE->isCast())
break;
// Look through the bitcast
CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
}
// We have now looked past all of the bitcasts. Do we finally have a
// Function?
if (const auto *CalleeF = dyn_cast<Function>(CalleeV))
DirectCallee = CalleeF;
}
}
// Check for function alignment information if we found that the
// ultimate target is a Function
if (DirectCallee)
if (getAlign(*DirectCallee, Idx, Alignment))
return Align(Alignment);
// Call is indirect or alignment information is not available, fall back to
// the ABI type alignment
return DL.getABITypeAlign(Ty);
}
SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
ArgListTy &Args = CLI.getArgs();
Type *RetTy = CLI.RetTy;
const CallBase *CB = CLI.CB;
const DataLayout &DL = DAG.getDataLayout();
bool isABI = (STI.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return Chain;
unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1);
SDValue tempChain = Chain;
Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
SDValue InFlag = Chain.getValue(1);
unsigned paramCount = 0;
// Args.size() and Outs.size() need not match.
// Outs.size() will be larger
// * if there is an aggregate argument with multiple fields (each field
// showing up separately in Outs)
// * if there is a vector argument with more than typical vector-length
// elements (generally if more than 4) where each vector element is
// individually present in Outs.
// So a different index should be used for indexing into Outs/OutVals.
// See similar issue in LowerFormalArguments.
unsigned OIdx = 0;
// Declare the .params or .reg need to pass values
// to the function
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
EVT VT = Outs[OIdx].VT;
Type *Ty = Args[i].Ty;
if (!Outs[OIdx].Flags.isByVal()) {
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL);
unsigned AllocSize = DL.getTypeAllocSize(Ty);
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
bool NeedAlign; // Does argument declaration specify alignment?
if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
// declare .param .align <align> .b8 .param<n>[<size>];
SDValue DeclareParamOps[] = {
Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
DAG.getConstant(paramCount, dl, MVT::i32),
DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
DeclareParamOps);
NeedAlign = true;
} else {
// declare .param .b<size> .param<n>;
if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
// PTX ABI requires integral types to be at least 32 bits in
// size. FP16 is loaded/stored using i16, so it's handled
// here as well.
AllocSize = 4;
}
SDValue DeclareScalarParamOps[] = {
Chain, DAG.getConstant(paramCount, dl, MVT::i32),
DAG.getConstant(AllocSize * 8, dl, MVT::i32),
DAG.getConstant(0, dl, MVT::i32), InFlag};
Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
DeclareScalarParamOps);
NeedAlign = false;
}
InFlag = Chain.getValue(1);
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter
// than 32-bits are sign extended or zero extended, depending on
// whether they are signed or unsigned types. This case applies
// only to scalar parameters and not to aggregate values.
bool ExtendIntegerParam =
Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
SmallVector<SDValue, 6> StoreOperands;
for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
// New store.
if (VectorInfo[j] & PVF_FIRST) {
assert(StoreOperands.empty() && "Unfinished preceding store.");
StoreOperands.push_back(Chain);
StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
}
EVT EltVT = VTs[j];
SDValue StVal = OutVals[OIdx];
if (ExtendIntegerParam) {
assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
// zext/sext to i32
StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND,
dl, MVT::i32, StVal);
} else if (EltVT.getSizeInBits() < 16) {
// Use 16-bit registers for small stores as it's the
// smallest general purpose register size supported by NVPTX.
StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
}
// Record the value to store.
StoreOperands.push_back(StVal);
if (VectorInfo[j] & PVF_LAST) {
unsigned NumElts = StoreOperands.size() - 3;
NVPTXISD::NodeType Op;
switch (NumElts) {
case 1:
Op = NVPTXISD::StoreParam;
break;
case 2:
Op = NVPTXISD::StoreParamV2;
break;
case 4:
Op = NVPTXISD::StoreParamV4;
break;
default:
llvm_unreachable("Invalid vector info.");
}
StoreOperands.push_back(InFlag);
// Adjust type of the store op if we've extended the scalar
// return value.
EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
MaybeAlign EltAlign;
if (NeedAlign)
EltAlign = commonAlignment(ArgAlign, Offsets[j]);
Chain = DAG.getMemIntrinsicNode(
Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
TheStoreType, MachinePointerInfo(), EltAlign,
MachineMemOperand::MOStore);
InFlag = Chain.getValue(1);
// Cleanup.
StoreOperands.clear();
}
++OIdx;
}
assert(StoreOperands.empty() && "Unfinished parameter store.");
if (VTs.size() > 0)
--OIdx;
++paramCount;
continue;
}
// ByVal arguments
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
assert(PTy && "Type of a byval parameter should be pointer");
ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
// declare .param .align <align> .b8 .param<n>[<size>];
unsigned sz = Outs[OIdx].Flags.getByValSize();
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
// The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
// so we don't need to worry about natural alignment or not.
// See TargetLowering::LowerCallTo().
// Enforce minumum alignment of 4 to work around ptxas miscompile
// for sm_50+. See corresponding alignment adjustment in
// emitFunctionParamList() for details.
if (ArgAlign < Align(4))
ArgAlign = Align(4);
SDValue DeclareParamOps[] = {
Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
DAG.getConstant(paramCount, dl, MVT::i32),
DAG.getConstant(sz, dl, MVT::i32), InFlag};
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
DeclareParamOps);
InFlag = Chain.getValue(1);
for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
EVT elemtype = VTs[j];
int curOffset = Offsets[j];
unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset);
auto PtrVT = getPointerTy(DL);
SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
DAG.getConstant(curOffset, dl, PtrVT));
SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
MachinePointerInfo(), PartAlign);
if (elemtype.getSizeInBits() < 16) {
theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
}
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain,
DAG.getConstant(paramCount, dl, MVT::i32),
DAG.getConstant(curOffset, dl, MVT::i32),
theVal, InFlag };
Chain = DAG.getMemIntrinsicNode(
NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype,
MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore);
InFlag = Chain.getValue(1);
}
++paramCount;
}
GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
MaybeAlign retAlignment = None;
// Handle Result
if (Ins.size() > 0) {
SmallVector<EVT, 16> resvtparts;
ComputeValueVTs(*this, DL, RetTy, resvtparts);
// Declare
// .param .align 16 .b8 retval0[<size-in-bytes>], or
// .param .b<size-in-bits> retval0
unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
// Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
// these three types to match the logic in
// NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
// Plus, this behavior is consistent with nvcc's.
if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
(RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
// Scalar needs to be at least 32bit wide
if (resultsz < 32)
resultsz = 32;
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(resultsz, dl, MVT::i32),
DAG.getConstant(0, dl, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
DeclareRetOps);
InFlag = Chain.getValue(1);
} else {
retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
assert(retAlignment && "retAlignment is guaranteed to be set");
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = {
Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
DAG.getConstant(resultsz / 8, dl, MVT::i32),
DAG.getConstant(0, dl, MVT::i32), InFlag};
Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
DeclareRetOps);
InFlag = Chain.getValue(1);
}
}
// Both indirect calls and libcalls have nullptr Func. In order to distinguish
// between them we must rely on the call site value which is valid for
// indirect calls but is always null for libcalls.
bool isIndirectCall = !Func && CB;
if (isa<ExternalSymbolSDNode>(Callee)) {
Function* CalleeFunc = nullptr;
// Try to find the callee in the current module.
Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
assert(CalleeFunc != nullptr && "Libcall callee must be set.");
// Set the "libcall callee" attribute to indicate that the function
// must always have a declaration.
CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
}
if (isIndirectCall) {
// This is indirect function call case : PTX requires a prototype of the
// form
// proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
// to be emitted, and the label has to used as the last arg of call
// instruction.
// The prototype is embedded in a string and put as the operand for a
// CallPrototype SDNode which will print out to the value of the string.
SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
std::string Proto =
getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite);
const char *ProtoStr =
nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
SDValue ProtoOps[] = {
Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
};
Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
InFlag = Chain.getValue(1);
}
// Op to just print "call"
SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrintCallOps[] = {
Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
};
// We model convergent calls as separate opcodes.
unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
if (CLI.IsConvergent)
Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
: NVPTXISD::PrintConvergentCall;
Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
InFlag = Chain.getValue(1);
// Ops to print out the function name
SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallVoidOps[] = { Chain, Callee, InFlag };
Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
InFlag = Chain.getValue(1);
// Ops to print out the param list
SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgBeginOps[] = { Chain, InFlag };
Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
CallArgBeginOps);
InFlag = Chain.getValue(1);
for (unsigned i = 0, e = paramCount; i != e; ++i) {
unsigned opcode;
if (i == (e - 1))
opcode = NVPTXISD::LastCallArg;
else
opcode = NVPTXISD::CallArg;
SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(i, dl, MVT::i32), InFlag };
Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
InFlag = Chain.getValue(1);
}
SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgEndOps[] = { Chain,
DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
InFlag = Chain.getValue(1);
if (isIndirectCall) {
SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrototypeOps[] = {
Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag};
Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
InFlag = Chain.getValue(1);
}
SmallVector<SDValue, 16> ProxyRegOps;
SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
// Generate loads from param memory/moves from registers for result
if (Ins.size() > 0) {
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
assert(VTs.size() == Ins.size() && "Bad value decomposition");
Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
SmallVector<EVT, 6> LoadVTs;
int VecIdx = -1; // Index of the first element of the vector.
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
// 32-bits are sign extended or zero extended, depending on whether
// they are signed or unsigned types.
bool ExtendIntegerRetVal =
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
bool needTruncate = false;
EVT TheLoadType = VTs[i];
EVT EltType = Ins[i].VT;
Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
if (ExtendIntegerRetVal) {
TheLoadType = MVT::i32;
EltType = MVT::i32;
needTruncate = true;
} else if (TheLoadType.getSizeInBits() < 16) {
if (VTs[i].isInteger())
needTruncate = true;
EltType = MVT::i16;
}
// Record index of the very first element of the vector.
if (VectorInfo[i] & PVF_FIRST) {
assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
VecIdx = i;
}
LoadVTs.push_back(EltType);
if (VectorInfo[i] & PVF_LAST) {
unsigned NumElts = LoadVTs.size();
LoadVTs.push_back(MVT::Other);
LoadVTs.push_back(MVT::Glue);
NVPTXISD::NodeType Op;
switch (NumElts) {
case 1:
Op = NVPTXISD::LoadParam;
break;
case 2:
Op = NVPTXISD::LoadParamV2;
break;
case 4:
Op = NVPTXISD::LoadParamV4;
break;
default:
llvm_unreachable("Invalid vector info.");
}
SDValue LoadOperands[] = {
Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
SDValue RetVal = DAG.getMemIntrinsicNode(
Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
MachinePointerInfo(), EltAlign,
MachineMemOperand::MOLoad);
for (unsigned j = 0; j < NumElts; ++j) {
ProxyRegOps.push_back(RetVal.getValue(j));
if (needTruncate)
ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
else
ProxyRegTruncates.push_back(Optional<MVT>());
}
Chain = RetVal.getValue(NumElts);
InFlag = RetVal.getValue(NumElts + 1);
// Cleanup
VecIdx = -1;
LoadVTs.clear();
}
}
}
Chain = DAG.getCALLSEQ_END(
Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true),
DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl);
InFlag = Chain.getValue(1);
// Append ProxyReg instructions to the chain to make sure that `callseq_end`
// will not get lost. Otherwise, during libcalls expansion, the nodes can become
// dangling.
for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
SDValue Ret = DAG.getNode(
NVPTXISD::ProxyReg, dl,
DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
{ Chain, ProxyRegOps[i], InFlag }
);
Chain = Ret.getValue(1);
InFlag = Ret.getValue(2);
if (ProxyRegTruncates[i].hasValue()) {
Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
}
InVals.push_back(Ret);
}
// set isTailCall to false for now, until we figure out how to express
// tail call optimization in PTX
isTailCall = false;
return Chain;
}
// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
// (see LegalizeDAG.cpp). This is slow and uses local memory.
// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
SDValue
NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
SmallVector<SDValue, 8> Ops;
unsigned NumOperands = Node->getNumOperands();
for (unsigned i = 0; i < NumOperands; ++i) {
SDValue SubOp = Node->getOperand(i);
EVT VVT = SubOp.getNode()->getValueType(0);
EVT EltVT = VVT.getVectorElementType();
unsigned NumSubElem = VVT.getVectorNumElements();
for (unsigned j = 0; j < NumSubElem; ++j) {
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
DAG.getIntPtrConstant(j, dl)));
}
}
return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
}
// We can init constant f16x2 with a single .b32 move. Normally it
// would get lowered as two constant loads and vector-packing move.
// mov.b16 %h1, 0x4000;
// mov.b16 %h2, 0x3C00;
// mov.b32 %hh2, {%h2, %h1};
// Instead we want just a constant move:
// mov.b32 %hh2, 0x40003C00
//
// This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
// generates good SASS in both cases.
SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
//return Op;
if (!(Op->getValueType(0) == MVT::v2f16 &&
isa<ConstantFPSDNode>(Op->getOperand(0)) &&
isa<ConstantFPSDNode>(Op->getOperand(1))))
return Op;
APInt E0 =
cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
APInt E1 =
cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
SDValue Const =
DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
}
SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Index = Op->getOperand(1);
// Constant index will be matched by tablegen.
if (isa<ConstantSDNode>(Index.getNode()))
return Op;
// Extract individual elements and select one of them.
SDValue Vector = Op->getOperand(0);
EVT VectorVT = Vector.getValueType();
assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
EVT EltVT = VectorVT.getVectorElementType();
SDLoc dl(Op.getNode());
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
DAG.getIntPtrConstant(0, dl));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
DAG.getIntPtrConstant(1, dl));
return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
ISD::CondCode::SETEQ);
}
/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
/// amount, or
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
/// amount.
SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
if (VTBits == 32 && STI.getSmVersion() >= 35) {
// For 32bit and sm35, we can use the funnel shift 'shf' instruction.
// {dHi, dLo} = {aHi, aLo} >> Amt
// dHi = aHi >> Amt
// dLo = shf.r.clamp aLo, aHi, Amt
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
ShAmt);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
else {
// {dHi, dLo} = {aHi, aLo} >> Amt
// - if (Amt>=size) then
// dLo = aHi >> (Amt-size)
// dHi = aHi >> Amt (this is either all 0 or all 1)
// else
// dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
// dHi = aHi >> Amt
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32),
ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32),
ISD::SETGE);
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
/// amount, or
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
/// amount.
SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
assert(Op.getOpcode() == ISD::SHL_PARTS);
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
if (VTBits == 32 && STI.getSmVersion() >= 35) {
// For 32bit and sm35, we can use the funnel shift 'shf' instruction.
// {dHi, dLo} = {aHi, aLo} << Amt
// dHi = shf.l.clamp aLo, aHi, Amt
// dLo = aLo << Amt
SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
ShAmt);
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
else {
// {dHi, dLo} = {aHi, aLo} << Amt
// - if (Amt>=size) then
// dLo = aLo << Amt (all 0)
// dLo = aLo << (Amt-size)
// else
// dLo = aLo << Amt
// dHi = (aHi << Amt) | (aLo >> (size-Amt))
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32),
ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32),
ISD::SETGE);
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
}
SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFROUND32(Op, DAG);
if (VT == MVT::f64)
return LowerFROUND64(Op, DAG);
llvm_unreachable("unhandled type");
}
// This is the the rounding method used in CUDA libdevice in C like code:
// float roundf(float A)
// {
// float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
// }
SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue A = Op.getOperand(0);
EVT VT = Op.getValueType();
SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
// RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
const int SignBitMask = 0x80000000;
SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
DAG.getConstant(SignBitMask, SL, MVT::i32));
const int PointFiveInBits = 0x3F000000;
SDValue PointFiveWithSignRaw =
DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
DAG.getConstant(PointFiveInBits, SL, MVT::i32));
SDValue PointFiveWithSign =
DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue IsLarge =
DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
ISD::SETOGT);
RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
}
// The implementation of round(double) is similar to that of round(float) in
// that they both separate the value range into three regions and use a method
// specific to the region to round the values. However, round(double) first
// calculates the round of the absolute value and then adds the sign back while
// round(float) directly rounds the value with sign.
SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue A = Op.getOperand(0);
EVT VT = Op.getValueType();
SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
// double RoundedA = (double) (int) (abs(A) + 0.5f);
SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
DAG.getConstantFP(0.5, SL, VT));
SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
// RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
DAG.getConstantFP(0, SL, VT),
RoundedA);
// Add sign to rounded_A
RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
DAG.getNode(ISD::FTRUNC, SL, VT, A);
// RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
SDValue IsLarge =
DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
ISD::SETOGT);
return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
}
SDValue
NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::RETURNADDR:
return SDValue();
case ISD::FRAMEADDR:
return SDValue();
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::INTRINSIC_W_CHAIN:
return Op;
case ISD::BUILD_VECTOR:
return LowerBUILD_VECTOR(Op, DAG);
case ISD::EXTRACT_SUBVECTOR:
return Op;
case ISD::EXTRACT_VECTOR_ELT:
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::CONCAT_VECTORS:
return LowerCONCAT_VECTORS(Op, DAG);
case ISD::STORE:
return LowerSTORE(Op, DAG);
case ISD::LOAD:
return LowerLOAD(Op, DAG);
case ISD::SHL_PARTS:
return LowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
return LowerShiftRightParts(Op, DAG);
case ISD::SELECT:
return LowerSelect(Op, DAG);
case ISD::FROUND:
return LowerFROUND(Op, DAG);
default:
llvm_unreachable("Custom lowering not defined for operation");
}
}
SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
SDValue Op0 = Op->getOperand(0);
SDValue Op1 = Op->getOperand(1);
SDValue Op2 = Op->getOperand(2);
SDLoc DL(Op.getNode());
assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
return Trunc;
}
SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() == MVT::i1)
return LowerLOADi1(Op, DAG);
// v2f16 is legal, so we can't rely on legalizer to handle unaligned
// loads and have to handle it here.
if (Op.getValueType() == MVT::v2f16) {
LoadSDNode *Load = cast<LoadSDNode>(Op);
EVT MemVT = Load->getMemoryVT();
if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
MemVT, *Load->getMemOperand())) {
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
return DAG.getMergeValues(Ops, SDLoc(Op));
}
}
return SDValue();
}
// v = ld i1* addr
// =>
// v1 = ld i8* addr (-> i16)
// v = trunc i16 to i1
SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDLoc dl(Node);
assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
assert(Node->getValueType(0) == MVT::i1 &&
"Custom lowering for i1 load only");
SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
LD->getPointerInfo(), LD->getAlignment(),
LD->getMemOperand()->getFlags());
SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
// The legalizer (the caller) is expecting two values from the legalized
// load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
// in LegalizeDAG.cpp which also uses MergeValues.
SDValue Ops[] = { result, LD->getChain() };
return DAG.getMergeValues(Ops, dl);
}
SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
if (VT == MVT::i1)
return LowerSTOREi1(Op, DAG);
// v2f16 is legal, so we can't rely on legalizer to handle unaligned
// stores and have to handle it here.
if (VT == MVT::v2f16 &&
!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
VT, *Store->getMemOperand()))
return expandUnalignedStore(Store, DAG);
if (VT.isVector())
return LowerSTOREVector(Op, DAG);
return SDValue();
}
SDValue
NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
SDNode *N = Op.getNode();
SDValue Val = N->getOperand(1);
SDLoc DL(N);
EVT ValVT = Val.getValueType();
if (ValVT.isVector()) {
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
// legal. We can (and should) split that into 2 stores of <2 x double> here
// but I'm leaving that as a TODO for now.
if (!ValVT.isSimple())
return SDValue();
switch (ValVT.getSimpleVT().SimpleTy) {
default:
return SDValue();
case MVT::v2i8:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f16:
case MVT::v4f32:
case MVT::v8f16: // <4 x f16x2>
// This is a "native" vector type
break;
}
MemSDNode *MemSD = cast<MemSDNode>(N);
const DataLayout &TD = DAG.getDataLayout();
Align Alignment = MemSD->getAlign();
Align PrefAlign =
TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
if (Alignment < PrefAlign) {
// This store is not sufficiently aligned, so bail out and let this vector
// store be scalarized. Note that we may still be able to emit smaller
// vector stores. For example, if we are storing a <4 x float> with an
// alignment of 8, this check will fail but the legalizer will try again
// with 2 x <2 x float>, which will succeed with an alignment of 8.
return SDValue();
}
unsigned Opcode = 0;
EVT EltVT = ValVT.getVectorElementType();
unsigned NumElts = ValVT.getVectorNumElements();
// Since StoreV2 is a target node, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// stored type to i16 and propagate the "real" type as the memory type.
bool NeedExt = false;
if (EltVT.getSizeInBits() < 16)
NeedExt = true;
bool StoreF16x2 = false;
switch (NumElts) {
default:
return SDValue();
case 2:
Opcode = NVPTXISD::StoreV2;
break;
case 4:
Opcode = NVPTXISD::StoreV4;
break;
case 8:
// v8f16 is a special case. PTX doesn't have st.v8.f16
// instruction. Instead, we split the vector into v2f16 chunks and
// store them with st.v4.b32.
assert(EltVT == MVT::f16 && "Wrong type for the vector.");
Opcode = NVPTXISD::StoreV4;
StoreF16x2 = true;
break;
}
SmallVector<SDValue, 8> Ops;
// First is the chain
Ops.push_back(N->getOperand(0));
if (StoreF16x2) {
// Combine f16,f16 -> v2f16
NumElts /= 2;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
DAG.getIntPtrConstant(i * 2, DL));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
DAG.getIntPtrConstant(i * 2 + 1, DL));
SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
Ops.push_back(V2);
}
} else {
// Then the split values
for (unsigned i = 0; i < NumElts; ++i) {
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
DAG.getIntPtrConstant(i, DL));
if (NeedExt)
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
Ops.push_back(ExtVal);
}
}
// Then any remaining arguments
Ops.append(N->op_begin() + 2, N->op_end());
SDValue NewSt =
DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
MemSD->getMemoryVT(), MemSD->getMemOperand());
// return DCI.CombineTo(N, NewSt, true);
return NewSt;
}
return SDValue();
}
// st i1 v, addr
// =>
// v1 = zxt v to i16
// st.u8 i16, addr
SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
StoreSDNode *ST = cast<StoreSDNode>(Node);
SDValue Tmp1 = ST->getChain();
SDValue Tmp2 = ST->getBasePtr();
SDValue Tmp3 = ST->getValue();
assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
SDValue Result =
DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
ST->getAlignment(), ST->getMemOperand()->getFlags());
return Result;
}
SDValue
NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
std::string ParamSym;
raw_string_ostream ParamStr(ParamSym);
ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
ParamStr.flush();
std::string *SavedStr =
nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
}
// Check to see if the kernel argument is image*_t or sampler_t
static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
static const char *const specialTypes[] = { "struct._image2d_t",
"struct._image3d_t",
"struct._sampler_t" };
Type *Ty = arg->getType();
auto *PTy = dyn_cast<PointerType>(Ty);
if (!PTy)
return false;
if (!context)
return false;
auto *STy = dyn_cast<StructType>(PTy->getElementType());
if (!STy || STy->isLiteral())
return false;
return llvm::is_contained(specialTypes, STy->getName());
}
SDValue NVPTXTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
const DataLayout &DL = DAG.getDataLayout();
auto PtrVT = getPointerTy(DAG.getDataLayout());
const Function *F = &MF.getFunction();
const AttributeList &PAL = F->getAttributes();
const TargetLowering *TLI = STI.getTargetLowering();
SDValue Root = DAG.getRoot();
std::vector<SDValue> OutChains;
bool isABI = (STI.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return Chain;
std::vector<Type *> argTypes;
std::vector<const Argument *> theArgs;
for (const Argument &I : F->args()) {
theArgs.push_back(&I);
argTypes.push_back(I.getType());
}
// argTypes.size() (or theArgs.size()) and Ins.size() need not match.
// Ins.size() will be larger
// * if there is an aggregate argument with multiple fields (each field
// showing up separately in Ins)
// * if there is a vector argument with more than typical vector-length
// elements (generally if more than 4) where each vector element is
// individually present in Ins.
// So a different index should be used for indexing into Ins.
// See similar issue in LowerCall.
unsigned InsIdx = 0;
int idx = 0;
for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
Type *Ty = argTypes[i];
// If the kernel argument is image*_t or sampler_t, convert it to
// a i32 constant holding the parameter position. This can later
// matched in the AsmPrinter to output the correct mangled name.
if (isImageOrSamplerVal(
theArgs[i],
(theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
: nullptr))) {
assert(isKernelFunction(*F) &&
"Only kernels can have image/sampler params");
InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
continue;
}
if (theArgs[i]->use_empty()) {
// argument is dead
if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
SmallVector<EVT, 16> vtparts;
ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
assert(vtparts.size() > 0 && "empty aggregate type not expected");
for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
++parti) {
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
++InsIdx;
}
if (vtparts.size() > 0)
--InsIdx;
continue;
}
if (Ty->isVectorTy()) {
EVT ObjectVT = getValueType(DL, Ty);
unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
for (unsigned parti = 0; parti < NumRegs; ++parti) {
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
++InsIdx;
}
if (NumRegs > 0)
--InsIdx;
continue;
}
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
continue;
}
// In the following cases, assign a node order of "idx+1"
// to newly created nodes. The SDNodes for params have to
// appear in the same order as their order of appearance
// in the original function. "idx+1" holds that order.
if (!PAL.hasParamAttr(i, Attribute::ByVal)) {
bool aggregateIsPacked = false;
if (StructType *STy = dyn_cast<StructType>(Ty))
aggregateIsPacked = STy->isPacked();
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
assert(VTs.size() > 0 && "Unexpected empty type.");
auto VectorInfo =
VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
int VecIdx = -1; // Index of the first element of the current vector.
for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
if (VectorInfo[parti] & PVF_FIRST) {
assert(VecIdx == -1 && "Orphaned vector.");
VecIdx = parti;
}
// That's the last element of this store op.
if (VectorInfo[parti] & PVF_LAST) {
unsigned NumElts = parti - VecIdx + 1;
EVT EltVT = VTs[parti];
// i1 is loaded/stored as i8.
EVT LoadVT = EltVT;
if (EltVT == MVT::i1)
LoadVT = MVT::i8;
else if (EltVT == MVT::v2f16)
// getLoad needs a vector type, but it can't handle
// vectors which contain v2f16 elements. So we must load
// using i32 here and then bitcast back.
LoadVT = MVT::i32;
EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
SDValue VecAddr =
DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
Value *srcValue = Constant::getNullValue(PointerType::get(
EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
SDValue P =
DAG.getLoad(VecVT, dl, Root, VecAddr,
MachinePointerInfo(srcValue), aggregateIsPacked,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
if (P.getNode())
P.getNode()->setIROrder(idx + 1);
for (unsigned j = 0; j < NumElts; ++j) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
DAG.getIntPtrConstant(j, dl));
// We've loaded i1 as an i8 and now must truncate it back to i1
if (EltVT == MVT::i1)
Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
// v2f16 was loaded as an i32. Now we must bitcast it back.
else if (EltVT == MVT::v2f16)
Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
// Extend the element if necessary (e.g. an i8 is loaded
// into an i16 register)
if (Ins[InsIdx].VT.isInteger() &&
Ins[InsIdx].VT.getFixedSizeInBits() >
LoadVT.getFixedSizeInBits()) {
unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
}
InVals.push_back(Elt);
}
// Reset vector tracking state.
VecIdx = -1;
}
++InsIdx;
}
if (VTs.size() > 0)
--InsIdx;
continue;
}
// Param has ByVal attribute
// Return MoveParam(param symbol).
// Ideally, the param symbol can be returned directly,
// but when SDNode builder decides to use it in a CopyToReg(),
// machine instruction fails because TargetExternalSymbol
// (not lowered) is target dependent, and CopyToReg assumes
// the source is lowered.
EVT ObjectVT = getValueType(DL, Ty);
assert(ObjectVT == Ins[InsIdx].VT &&
"Ins type did not match function type");
SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
if (p.getNode())
p.getNode()->setIROrder(idx + 1);
InVals.push_back(p);
}
// Clang will check explicit VarArg and issue error if any. However, Clang
// will let code with
// implicit var arg like f() pass. See bug 617733.
// We treat this case as if the arg list is empty.
// if (F.isVarArg()) {
// assert(0 && "VarArg not supported yet!");
//}
if (!OutChains.empty())
DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
return Chain;
}
SDValue
NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
Type *RetTy = MF.getFunction().getReturnType();
bool isABI = (STI.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return Chain;
const DataLayout &DL = DAG.getDataLayout();
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
auto VectorInfo = VectorizePTXValueVTs(
VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1));
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
// 32-bits are sign extended or zero extended, depending on whether
// they are signed or unsigned types.
bool ExtendIntegerRetVal =
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
SmallVector<SDValue, 6> StoreOperands;
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
// New load/store. Record chain and offset operands.
if (VectorInfo[i] & PVF_FIRST) {
assert(StoreOperands.empty() && "Orphaned operand list.");
StoreOperands.push_back(Chain);
StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
}
SDValue RetVal = OutVals[i];
if (ExtendIntegerRetVal) {
RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND,
dl, MVT::i32, RetVal);
} else if (RetVal.getValueSizeInBits() < 16) {
// Use 16-bit registers for small load-stores as it's the
// smallest general purpose register size supported by NVPTX.
RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
}
// Record the value to return.
StoreOperands.push_back(RetVal);
// That's the last element of this store op.
if (VectorInfo[i] & PVF_LAST) {
NVPTXISD::NodeType Op;
unsigned NumElts = StoreOperands.size() - 2;
switch (NumElts) {
case 1:
Op = NVPTXISD::StoreRetval;
break;
case 2:
Op = NVPTXISD::StoreRetvalV2;
break;
case 4:
Op = NVPTXISD::StoreRetvalV4;
break;
default:
llvm_unreachable("Invalid vector info.");
}
// Adjust type of load/store op if we've extended the scalar
// return value.
EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
Chain = DAG.getMemIntrinsicNode(
Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
// Cleanup vector state.
StoreOperands.clear();
}
}
return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
}
void NVPTXTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
if (Constraint.length() > 1)
return;
else
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
switch (Intrinsic) {
default:
return 0;
case Intrinsic::nvvm_tex_1d_v4f32_s32:
return NVPTXISD::Tex1DFloatS32;
case Intrinsic::nvvm_tex_1d_v4f32_f32:
return NVPTXISD::Tex1DFloatFloat;
case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
return NVPTXISD::Tex1DFloatFloatLevel;
case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
return NVPTXISD::Tex1DFloatFloatGrad;
case Intrinsic::nvvm_tex_1d_v4s32_s32:
return NVPTXISD::Tex1DS32S32;
case Intrinsic::nvvm_tex_1d_v4s32_f32:
return NVPTXISD::Tex1DS32Float;
case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
return NVPTXISD::Tex1DS32FloatLevel;
case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
return NVPTXISD::Tex1DS32FloatGrad;
case Intrinsic::nvvm_tex_1d_v4u32_s32:
return NVPTXISD::Tex1DU32S32;
case Intrinsic::nvvm_tex_1d_v4u32_f32:
return NVPTXISD::Tex1DU32Float;
case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
return NVPTXISD::Tex1DU32FloatLevel;
case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
return NVPTXISD::Tex1DU32FloatGrad;
case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
return NVPTXISD::Tex1DArrayFloatS32;
case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
return NVPTXISD::Tex1DArrayFloatFloat;
case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
return NVPTXISD::Tex1DArrayFloatFloatLevel;
case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
return NVPTXISD::Tex1DArrayFloatFloatGrad;
case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
return NVPTXISD::Tex1DArrayS32S32;
case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
return NVPTXISD::Tex1DArrayS32Float;
case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
return NVPTXISD::Tex1DArrayS32FloatLevel;
case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
return NVPTXISD::Tex1DArrayS32FloatGrad;
case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
return NVPTXISD::Tex1DArrayU32S32;
case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
return NVPTXISD::Tex1DArrayU32Float;
case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
return NVPTXISD::Tex1DArrayU32FloatLevel;
case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
return NVPTXISD::Tex1DArrayU32FloatGrad;
case Intrinsic::nvvm_tex_2d_v4f32_s32:
return NVPTXISD::Tex2DFloatS32;
case Intrinsic::nvvm_tex_2d_v4f32_f32:
return NVPTXISD::Tex2DFloatFloat;
case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
return NVPTXISD::Tex2DFloatFloatLevel;
case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
return NVPTXISD::Tex2DFloatFloatGrad;
case Intrinsic::nvvm_tex_2d_v4s32_s32:
return NVPTXISD::Tex2DS32S32;
case Intrinsic::nvvm_tex_2d_v4s32_f32:
return NVPTXISD::Tex2DS32Float;
case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
return NVPTXISD::Tex2DS32FloatLevel;
case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
return NVPTXISD::Tex2DS32FloatGrad;
case Intrinsic::nvvm_tex_2d_v4u32_s32:
return NVPTXISD::Tex2DU32S32;
case Intrinsic::nvvm_tex_2d_v4u32_f32:
return NVPTXISD::Tex2DU32Float;
case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
return NVPTXISD::Tex2DU32FloatLevel;
case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
return NVPTXISD::Tex2DU32FloatGrad;
case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
return NVPTXISD::Tex2DArrayFloatS32;
case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
return NVPTXISD::Tex2DArrayFloatFloat;
case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
return NVPTXISD::Tex2DArrayFloatFloatLevel;
case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
return NVPTXISD::Tex2DArrayFloatFloatGrad;
case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
return NVPTXISD::Tex2DArrayS32S32;
case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
return NVPTXISD::Tex2DArrayS32Float;
case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
return NVPTXISD::Tex2DArrayS32FloatLevel;
case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
return NVPTXISD::Tex2DArrayS32FloatGrad;
case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
return NVPTXISD::Tex2DArrayU32S32;
case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
return NVPTXISD::Tex2DArrayU32Float;
case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
return NVPTXISD::Tex2DArrayU32FloatLevel;
case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
return NVPTXISD::Tex2DArrayU32FloatGrad;
case Intrinsic::nvvm_tex_3d_v4f32_s32:
return NVPTXISD::Tex3DFloatS32;
case Intrinsic::nvvm_tex_3d_v4f32_f32:
return NVPTXISD::Tex3DFloatFloat;
case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
return NVPTXISD::Tex3DFloatFloatLevel;
case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
return NVPTXISD::Tex3DFloatFloatGrad;
case Intrinsic::nvvm_tex_3d_v4s32_s32:
return NVPTXISD::Tex3DS32S32;
case Intrinsic::nvvm_tex_3d_v4s32_f32:
return NVPTXISD::Tex3DS32Float;
case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
return NVPTXISD::Tex3DS32FloatLevel;
case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
return NVPTXISD::Tex3DS32FloatGrad;
case Intrinsic::nvvm_tex_3d_v4u32_s32:
return NVPTXISD::Tex3DU32S32;
case Intrinsic::nvvm_tex_3d_v4u32_f32:
return NVPTXISD::Tex3DU32Float;
case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
return NVPTXISD::Tex3DU32FloatLevel;
case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
return NVPTXISD::Tex3DU32FloatGrad;
case Intrinsic::nvvm_tex_cube_v4f32_f32:
return NVPTXISD::TexCubeFloatFloat;
case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
return NVPTXISD::TexCubeFloatFloatLevel;
case Intrinsic::nvvm_tex_cube_v4s32_f32:
return NVPTXISD::TexCubeS32Float;
case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
return NVPTXISD::TexCubeS32FloatLevel;
case Intrinsic::nvvm_tex_cube_v4u32_f32:
return NVPTXISD::TexCubeU32Float;
case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
return NVPTXISD::TexCubeU32FloatLevel;
case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
return NVPTXISD::TexCubeArrayFloatFloat;
case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
return NVPTXISD::TexCubeArrayFloatFloatLevel;
case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
return NVPTXISD::TexCubeArrayS32Float;
case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
return NVPTXISD::TexCubeArrayS32FloatLevel;
case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
return NVPTXISD::TexCubeArrayU32Float;
case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
return NVPTXISD::TexCubeArrayU32FloatLevel;
case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
return NVPTXISD::Tld4R2DFloatFloat;
case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
return NVPTXISD::Tld4G2DFloatFloat;
case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
return NVPTXISD::Tld4B2DFloatFloat;
case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
return NVPTXISD::Tld4A2DFloatFloat;
case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
return NVPTXISD::Tld4R2DS64Float;
case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
return NVPTXISD::Tld4G2DS64Float;
case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
return NVPTXISD::Tld4B2DS64Float;
case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
return NVPTXISD::Tld4A2DS64Float;
case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
return NVPTXISD::Tld4R2DU64Float;
case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
return NVPTXISD::Tld4G2DU64Float;
case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
return NVPTXISD::Tld4B2DU64Float;
case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
return NVPTXISD::Tld4A2DU64Float;
case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
return NVPTXISD::TexUnified1DFloatS32;
case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
return NVPTXISD::TexUnified1DFloatFloat;
case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
return NVPTXISD::TexUnified1DFloatFloatLevel;
case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
return NVPTXISD::TexUnified1DFloatFloatGrad;
case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
return NVPTXISD::TexUnified1DS32S32;
case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
return NVPTXISD::TexUnified1DS32Float;
case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
return NVPTXISD::TexUnified1DS32FloatLevel;
case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
return NVPTXISD::TexUnified1DS32FloatGrad;
case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
return NVPTXISD::TexUnified1DU32S32;
case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
return NVPTXISD::TexUnified1DU32Float;
case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
return NVPTXISD::TexUnified1DU32FloatLevel;
case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
return NVPTXISD::TexUnified1DU32FloatGrad;
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
return NVPTXISD::TexUnified1DArrayFloatS32;
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
return NVPTXISD::TexUnified1DArrayFloatFloat;
case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
return NVPTXISD::TexUnified1DArrayS32S32;
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
return NVPTXISD::TexUnified1DArrayS32Float;
case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
return NVPTXISD::TexUnified1DArrayS32FloatLevel;
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
return NVPTXISD::TexUnified1DArrayS32FloatGrad;
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
return NVPTXISD::TexUnified1DArrayU32S32;
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
return NVPTXISD::TexUnified1DArrayU32Float;
case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
return NVPTXISD::TexUnified1DArrayU32FloatLevel;
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
return NVPTXISD::TexUnified1DArrayU32FloatGrad;
case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
return NVPTXISD::TexUnified2DFloatS32;
case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
return NVPTXISD::TexUnified2DFloatFloat;
case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
return NVPTXISD::TexUnified2DFloatFloatLevel;
case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
return NVPTXISD::TexUnified2DFloatFloatGrad;
case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
return NVPTXISD::TexUnified2DS32S32;
case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
return NVPTXISD::TexUnified2DS32Float;
case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
return NVPTXISD::TexUnified2DS32FloatLevel;
case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
return NVPTXISD::TexUnified2DS32FloatGrad;
case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
return NVPTXISD::TexUnified2DU32S32;
case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
return NVPTXISD::TexUnified2DU32Float;
case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
return NVPTXISD::TexUnified2DU32FloatLevel;
case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
return NVPTXISD::TexUnified2DU32FloatGrad;
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
return NVPTXISD::TexUnified2DArrayFloatS32;
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
return NVPTXISD::TexUnified2DArrayFloatFloat;
case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
return NVPTXISD::TexUnified2DArrayS32S32;
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
return NVPTXISD::TexUnified2DArrayS32Float;
case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
return NVPTXISD::TexUnified2DArrayS32FloatLevel;
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
return NVPTXISD::TexUnified2DArrayS32FloatGrad;
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
return NVPTXISD::TexUnified2DArrayU32S32;
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
return NVPTXISD::TexUnified2DArrayU32Float;
case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
return NVPTXISD::TexUnified2DArrayU32FloatLevel;
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
return NVPTXISD::TexUnified2DArrayU32FloatGrad;
case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
return NVPTXISD::TexUnified3DFloatS32;
case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
return NVPTXISD::TexUnified3DFloatFloat;
case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
return NVPTXISD::TexUnified3DFloatFloatLevel;
case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
return NVPTXISD::TexUnified3DFloatFloatGrad;
case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
return NVPTXISD::TexUnified3DS32S32;
case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
return NVPTXISD::TexUnified3DS32Float;
case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
return NVPTXISD::TexUnified3DS32FloatLevel;
case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
return NVPTXISD::TexUnified3DS32FloatGrad;
case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
return NVPTXISD::TexUnified3DU32S32;
case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
return NVPTXISD::TexUnified3DU32Float;
case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
return NVPTXISD::TexUnified3DU32FloatLevel;
case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
return NVPTXISD::TexUnified3DU32FloatGrad;
case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
return NVPTXISD::TexUnifiedCubeFloatFloat;
case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
return NVPTXISD::TexUnifiedCubeS32Float;
case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
return NVPTXISD::TexUnifiedCubeS32FloatLevel;
case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
return NVPTXISD::TexUnifiedCubeU32Float;
case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
return NVPTXISD::TexUnifiedCubeU32FloatLevel;
case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
return NVPTXISD::TexUnifiedCubeArrayS32Float;
case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
return NVPTXISD::TexUnifiedCubeArrayU32Float;
case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
return NVPTXISD::Tld4UnifiedR2DFloatFloat;
case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
return NVPTXISD::Tld4UnifiedG2DFloatFloat;
case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
return NVPTXISD::Tld4UnifiedB2DFloatFloat;
case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
return NVPTXISD::Tld4UnifiedA2DFloatFloat;
case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
return NVPTXISD::Tld4UnifiedR2DS64Float;
case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
return NVPTXISD::Tld4UnifiedG2DS64Float;
case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
return NVPTXISD::Tld4UnifiedB2DS64Float;
case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
return NVPTXISD::Tld4UnifiedA2DS64Float;
case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
return NVPTXISD::Tld4UnifiedR2DU64Float;
case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
return NVPTXISD::Tld4UnifiedG2DU64Float;
case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
return NVPTXISD::Tld4UnifiedB2DU64Float;
case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
return NVPTXISD::Tld4UnifiedA2DU64Float;
}
}
static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
switch (Intrinsic) {
default:
return 0;
case Intrinsic::nvvm_suld_1d_i8_clamp:
return NVPTXISD::Suld1DI8Clamp;
case Intrinsic::nvvm_suld_1d_i16_clamp:
return NVPTXISD::Suld1DI16Clamp;
case Intrinsic::nvvm_suld_1d_i32_clamp:
return NVPTXISD::Suld1DI32Clamp;
case Intrinsic::nvvm_suld_1d_i64_clamp:
return NVPTXISD::Suld1DI64Clamp;
case Intrinsic::nvvm_suld_1d_v2i8_clamp:
return NVPTXISD::Suld1DV2I8Clamp;
case Intrinsic::nvvm_suld_1d_v2i16_clamp:
return NVPTXISD::Suld1DV2I16Clamp;
case Intrinsic::nvvm_suld_1d_v2i32_clamp:
return NVPTXISD::Suld1DV2I32Clamp;
case Intrinsic::nvvm_suld_1d_v2i64_clamp:
return NVPTXISD::Suld1DV2I64Clamp;
case Intrinsic::nvvm_suld_1d_v4i8_clamp:
return NVPTXISD::Suld1DV4I8Clamp;
case Intrinsic::nvvm_suld_1d_v4i16_clamp:
return NVPTXISD::Suld1DV4I16Clamp;
case Intrinsic::nvvm_suld_1d_v4i32_clamp:
return NVPTXISD::Suld1DV4I32Clamp;
case Intrinsic::nvvm_suld_1d_array_i8_clamp:
return NVPTXISD::Suld1DArrayI8Clamp;
case Intrinsic::nvvm_suld_1d_array_i16_clamp:
return NVPTXISD::Suld1DArrayI16Clamp;
case Intrinsic::nvvm_suld_1d_array_i32_clamp:
return NVPTXISD::Suld1DArrayI32Clamp;
case Intrinsic::nvvm_suld_1d_array_i64_clamp:
return NVPTXISD::Suld1DArrayI64Clamp;
case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
return NVPTXISD::Suld1DArrayV2I8Clamp;
case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
return NVPTXISD::Suld1DArrayV2I16Clamp;
case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
return NVPTXISD::Suld1DArrayV2I32Clamp;
case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
return NVPTXISD::Suld1DArrayV2I64Clamp;
case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
return NVPTXISD::Suld1DArrayV4I8Clamp;
case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
return NVPTXISD::Suld1DArrayV4I16Clamp;
case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
return NVPTXISD::Suld1DArrayV4I32Clamp;
case Intrinsic::nvvm_suld_2d_i8_clamp:
return NVPTXISD::Suld2DI8Clamp;
case Intrinsic::nvvm_suld_2d_i16_clamp:
return NVPTXISD::Suld2DI16Clamp;
case Intrinsic::nvvm_suld_2d_i32_clamp:
return NVPTXISD::Suld2DI32Clamp;
case Intrinsic::nvvm_suld_2d_i64_clamp:
return NVPTXISD::Suld2DI64Clamp;
case Intrinsic::nvvm_suld_2d_v2i8_clamp:
return NVPTXISD::Suld2DV2I8Clamp;
case Intrinsic::nvvm_suld_2d_v2i16_clamp:
return NVPTXISD::Suld2DV2I16Clamp;
case Intrinsic::nvvm_suld_2d_v2i32_clamp:
return NVPTXISD::Suld2DV2I32Clamp;
case Intrinsic::nvvm_suld_2d_v2i64_clamp:
return NVPTXISD::Suld2DV2I64Clamp;
case Intrinsic::nvvm_suld_2d_v4i8_clamp:
return NVPTXISD::Suld2DV4I8Clamp;
case Intrinsic::nvvm_suld_2d_v4i16_clamp:
return NVPTXISD::Suld2DV4I16Clamp;
case Intrinsic::nvvm_suld_2d_v4i32_clamp:
return NVPTXISD::Suld2DV4I32Clamp;
case Intrinsic::nvvm_suld_2d_array_i8_clamp:
return NVPTXISD::Suld2DArrayI8Clamp;
case Intrinsic::nvvm_suld_2d_array_i16_clamp:
return NVPTXISD::Suld2DArrayI16Clamp;
case Intrinsic::nvvm_suld_2d_array_i32_clamp:
return NVPTXISD::Suld2DArrayI32Clamp;
case Intrinsic::nvvm_suld_2d_array_i64_clamp:
return NVPTXISD::Suld2DArrayI64Clamp;
case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
return NVPTXISD::Suld2DArrayV2I8Clamp;
case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
return NVPTXISD::Suld2DArrayV2I16Clamp;
case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
return NVPTXISD::Suld2DArrayV2I32Clamp;
case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
return NVPTXISD::Suld2DArrayV2I64Clamp;
case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
return NVPTXISD::Suld2DArrayV4I8Clamp;
case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
return NVPTXISD::Suld2DArrayV4I16Clamp;
case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
return NVPTXISD::Suld2DArrayV4I32Clamp;
case Intrinsic::nvvm_suld_3d_i8_clamp:
return NVPTXISD::Suld3DI8Clamp;
case Intrinsic::nvvm_suld_3d_i16_clamp:
return NVPTXISD::Suld3DI16Clamp;
case Intrinsic::nvvm_suld_3d_i32_clamp:
return NVPTXISD::Suld3DI32Clamp;
case Intrinsic::nvvm_suld_3d_i64_clamp:
return NVPTXISD::Suld3DI64Clamp;
case Intrinsic::nvvm_suld_3d_v2i8_clamp:
return NVPTXISD::Suld3DV2I8Clamp;
case Intrinsic::nvvm_suld_3d_v2i16_clamp:
return NVPTXISD::Suld3DV2I16Clamp;
case Intrinsic::nvvm_suld_3d_v2i32_clamp:
return NVPTXISD::Suld3DV2I32Clamp;
case Intrinsic::nvvm_suld_3d_v2i64_clamp:
return NVPTXISD::Suld3DV2I64Clamp;
case Intrinsic::nvvm_suld_3d_v4i8_clamp:
return NVPTXISD::Suld3DV4I8Clamp;
case Intrinsic::nvvm_suld_3d_v4i16_clamp:
return NVPTXISD::Suld3DV4I16Clamp;
case Intrinsic::nvvm_suld_3d_v4i32_clamp:
return NVPTXISD::Suld3DV4I32Clamp;
case Intrinsic::nvvm_suld_1d_i8_trap:
return NVPTXISD::Suld1DI8Trap;
case Intrinsic::nvvm_suld_1d_i16_trap:
return NVPTXISD::Suld1DI16Trap;
case Intrinsic::nvvm_suld_1d_i32_trap:
return NVPTXISD::Suld1DI32Trap;
case Intrinsic::nvvm_suld_1d_i64_trap:
return NVPTXISD::Suld1DI64Trap;
case Intrinsic::nvvm_suld_1d_v2i8_trap:
return NVPTXISD::Suld1DV2I8Trap;
case Intrinsic::nvvm_suld_1d_v2i16_trap:
return NVPTXISD::Suld1DV2I16Trap;
case Intrinsic::nvvm_suld_1d_v2i32_trap:
return NVPTXISD::Suld1DV2I32Trap;
case Intrinsic::nvvm_suld_1d_v2i64_trap:
return NVPTXISD::Suld1DV2I64Trap;
case Intrinsic::nvvm_suld_1d_v4i8_trap:
return NVPTXISD::Suld1DV4I8Trap;
case Intrinsic::nvvm_suld_1d_v4i16_trap:
return NVPTXISD::Suld1DV4I16Trap;
case Intrinsic::nvvm_suld_1d_v4i32_trap:
return NVPTXISD::Suld1DV4I32Trap;
case Intrinsic::nvvm_suld_1d_array_i8_trap:
return NVPTXISD::Suld1DArrayI8Trap;
case Intrinsic::nvvm_suld_1d_array_i16_trap:
return NVPTXISD::Suld1DArrayI16Trap;
case Intrinsic::nvvm_suld_1d_array_i32_trap:
return NVPTXISD::Suld1DArrayI32Trap;
case Intrinsic::nvvm_suld_1d_array_i64_trap:
return NVPTXISD::Suld1DArrayI64Trap;
case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
return NVPTXISD::Suld1DArrayV2I8Trap;
case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
return NVPTXISD::Suld1DArrayV2I16Trap;
case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
return NVPTXISD::Suld1DArrayV2I32Trap;
case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
return NVPTXISD::Suld1DArrayV2I64Trap;
case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
return NVPTXISD::Suld1DArrayV4I8Trap;
case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
return NVPTXISD::Suld1DArrayV4I16Trap;
case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
return NVPTXISD::Suld1DArrayV4I32Trap;
case Intrinsic::nvvm_suld_2d_i8_trap:
return NVPTXISD::Suld2DI8Trap;
case Intrinsic::nvvm_suld_2d_i16_trap:
return NVPTXISD::Suld2DI16Trap;
case Intrinsic::nvvm_suld_2d_i32_trap:
return NVPTXISD::Suld2DI32Trap;
case Intrinsic::nvvm_suld_2d_i64_trap:
return NVPTXISD::Suld2DI64Trap;
case Intrinsic::nvvm_suld_2d_v2i8_trap:
return NVPTXISD::Suld2DV2I8Trap;
case Intrinsic::nvvm_suld_2d_v2i16_trap:
return NVPTXISD::Suld2DV2I16Trap;
case Intrinsic::nvvm_suld_2d_v2i32_trap:
return NVPTXISD::Suld2DV2I32Trap;
case Intrinsic::nvvm_suld_2d_v2i64_trap:
return NVPTXISD::Suld2DV2I64Trap;
case Intrinsic::nvvm_suld_2d_v4i8_trap:
return NVPTXISD::Suld2DV4I8Trap;
case Intrinsic::nvvm_suld_2d_v4i16_trap:
return NVPTXISD::Suld2DV4I16Trap;
case Intrinsic::nvvm_suld_2d_v4i32_trap:
return NVPTXISD::Suld2DV4I32Trap;
case Intrinsic::nvvm_suld_2d_array_i8_trap:
return NVPTXISD::Suld2DArrayI8Trap;
case Intrinsic::nvvm_suld_2d_array_i16_trap:
return NVPTXISD::Suld2DArrayI16Trap;
case Intrinsic::nvvm_suld_2d_array_i32_trap:
return NVPTXISD::Suld2DArrayI32Trap;
case Intrinsic::nvvm_suld_2d_array_i64_trap:
return NVPTXISD::Suld2DArrayI64Trap;
case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
return NVPTXISD::Suld2DArrayV2I8Trap;
case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
return NVPTXISD::Suld2DArrayV2I16Trap;
case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
return NVPTXISD::Suld2DArrayV2I32Trap;
case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
return NVPTXISD::Suld2DArrayV2I64Trap;
case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
return NVPTXISD::Suld2DArrayV4I8Trap;
case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
return NVPTXISD::Suld2DArrayV4I16Trap;
case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
return NVPTXISD::Suld2DArrayV4I32Trap;
case Intrinsic::nvvm_suld_3d_i8_trap:
return NVPTXISD::Suld3DI8Trap;
case Intrinsic::nvvm_suld_3d_i16_trap:
return NVPTXISD::Suld3DI16Trap;
case Intrinsic::nvvm_suld_3d_i32_trap:
return NVPTXISD::Suld3DI32Trap;
case Intrinsic::nvvm_suld_3d_i64_trap:
return NVPTXISD::Suld3DI64Trap;
case Intrinsic::nvvm_suld_3d_v2i8_trap:
return NVPTXISD::Suld3DV2I8Trap;
case Intrinsic::nvvm_suld_3d_v2i16_trap:
return NVPTXISD::Suld3DV2I16Trap;
case Intrinsic::nvvm_suld_3d_v2i32_trap:
return NVPTXISD::Suld3DV2I32Trap;
case Intrinsic::nvvm_suld_3d_v2i64_trap:
return NVPTXISD::Suld3DV2I64Trap;
case Intrinsic::nvvm_suld_3d_v4i8_trap:
return NVPTXISD::Suld3DV4I8Trap;
case Intrinsic::nvvm_suld_3d_v4i16_trap:
return NVPTXISD::Suld3DV4I16Trap;
case Intrinsic::nvvm_suld_3d_v4i32_trap:
return NVPTXISD::Suld3DV4I32Trap;
case Intrinsic::nvvm_suld_1d_i8_zero:
return NVPTXISD::Suld1DI8Zero;
case Intrinsic::nvvm_suld_1d_i16_zero:
return NVPTXISD::Suld1DI16Zero;
case Intrinsic::nvvm_suld_1d_i32_zero:
return NVPTXISD::Suld1DI32Zero;
case Intrinsic::nvvm_suld_1d_i64_zero:
return NVPTXISD::Suld1DI64Zero;
case Intrinsic::nvvm_suld_1d_v2i8_zero:
return NVPTXISD::Suld1DV2I8Zero;
case Intrinsic::nvvm_suld_1d_v2i16_zero:
return NVPTXISD::Suld1DV2I16Zero;
case Intrinsic::nvvm_suld_1d_v2i32_zero:
return NVPTXISD::Suld1DV2I32Zero;
case Intrinsic::nvvm_suld_1d_v2i64_zero:
return NVPTXISD::Suld1DV2I64Zero;
case Intrinsic::nvvm_suld_1d_v4i8_zero:
return NVPTXISD::Suld1DV4I8Zero;
case Intrinsic::nvvm_suld_1d_v4i16_zero:
return NVPTXISD::Suld1DV4I16Zero;
case Intrinsic::nvvm_suld_1d_v4i32_zero:
return NVPTXISD::Suld1DV4I32Zero;
case Intrinsic::nvvm_suld_1d_array_i8_zero:
return NVPTXISD::Suld1DArrayI8Zero;
case Intrinsic::nvvm_suld_1d_array_i16_zero:
return NVPTXISD::Suld1DArrayI16Zero;
case Intrinsic::nvvm_suld_1d_array_i32_zero:
return NVPTXISD::Suld1DArrayI32Zero;
case Intrinsic::nvvm_suld_1d_array_i64_zero:
return NVPTXISD::Suld1DArrayI64Zero;
case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
return NVPTXISD::Suld1DArrayV2I8Zero;
case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
return NVPTXISD::Suld1DArrayV2I16Zero;
case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
return NVPTXISD::Suld1DArrayV2I32Zero;
case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
return NVPTXISD::Suld1DArrayV2I64Zero;
case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
return NVPTXISD::Suld1DArrayV4I8Zero;
case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
return NVPTXISD::Suld1DArrayV4I16Zero;
case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
return NVPTXISD::Suld1DArrayV4I32Zero;
case Intrinsic::nvvm_suld_2d_i8_zero:
return NVPTXISD::Suld2DI8Zero;
case Intrinsic::nvvm_suld_2d_i16_zero:
return NVPTXISD::Suld2DI16Zero;
case Intrinsic::nvvm_suld_2d_i32_zero:
return NVPTXISD::Suld2DI32Zero;
case Intrinsic::nvvm_suld_2d_i64_zero:
return NVPTXISD::Suld2DI64Zero;
case Intrinsic::nvvm_suld_2d_v2i8_zero:
return NVPTXISD::Suld2DV2I8Zero;
case Intrinsic::nvvm_suld_2d_v2i16_zero:
return NVPTXISD::Suld2DV2I16Zero;
case Intrinsic::nvvm_suld_2d_v2i32_zero:
return NVPTXISD::Suld2DV2I32Zero;
case Intrinsic::nvvm_suld_2d_v2i64_zero:
return NVPTXISD::Suld2DV2I64Zero;
case Intrinsic::nvvm_suld_2d_v4i8_zero:
return NVPTXISD::Suld2DV4I8Zero;
case Intrinsic::nvvm_suld_2d_v4i16_zero:
return NVPTXISD::Suld2DV4I16Zero;
case Intrinsic::nvvm_suld_2d_v4i32_zero:
return NVPTXISD::Suld2DV4I32Zero;
case Intrinsic::nvvm_suld_2d_array_i8_zero:
return NVPTXISD::Suld2DArrayI8Zero;
case Intrinsic::nvvm_suld_2d_array_i16_zero:
return NVPTXISD::Suld2DArrayI16Zero;
case Intrinsic::nvvm_suld_2d_array_i32_zero:
return NVPTXISD::Suld2DArrayI32Zero;
case Intrinsic::nvvm_suld_2d_array_i64_zero:
return NVPTXISD::Suld2DArrayI64Zero;
case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
return NVPTXISD::Suld2DArrayV2I8Zero;
case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
return NVPTXISD::Suld2DArrayV2I16Zero;
case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
return NVPTXISD::Suld2DArrayV2I32Zero;
case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
return NVPTXISD::Suld2DArrayV2I64Zero;
case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
return NVPTXISD::Suld2DArrayV4I8Zero;
case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
return NVPTXISD::Suld2DArrayV4I16Zero;
case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
return NVPTXISD::Suld2DArrayV4I32Zero;
case Intrinsic::nvvm_suld_3d_i8_zero:
return NVPTXISD::Suld3DI8Zero;
case Intrinsic::nvvm_suld_3d_i16_zero:
return NVPTXISD::Suld3DI16Zero;
case Intrinsic::nvvm_suld_3d_i32_zero:
return NVPTXISD::Suld3DI32Zero;
case Intrinsic::nvvm_suld_3d_i64_zero:
return NVPTXISD::Suld3DI64Zero;
case Intrinsic::nvvm_suld_3d_v2i8_zero:
return NVPTXISD::Suld3DV2I8Zero;
case Intrinsic::nvvm_suld_3d_v2i16_zero:
return NVPTXISD::Suld3DV2I16Zero;
case Intrinsic::nvvm_suld_3d_v2i32_zero:
return NVPTXISD::Suld3DV2I32Zero;
case Intrinsic::nvvm_suld_3d_v2i64_zero:
return NVPTXISD::Suld3DV2I64Zero;
case Intrinsic::nvvm_suld_3d_v4i8_zero:
return NVPTXISD::Suld3DV4I8Zero;
case Intrinsic::nvvm_suld_3d_v4i16_zero:
return NVPTXISD::Suld3DV4I16Zero;
case Intrinsic::nvvm_suld_3d_v4i32_zero:
return NVPTXISD::Suld3DV4I32Zero;
}
}
// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
// TgtMemIntrinsic
// because we need the information that is only available in the "Value" type
// of destination
// pointer. In particular, the address space information.
bool NVPTXTargetLowering::getTgtMemIntrinsic(
IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF, unsigned Intrinsic) const {
switch (Intrinsic) {
default:
return false;
case Intrinsic::nvvm_match_all_sync_i32p:
case Intrinsic::nvvm_match_all_sync_i64p:
Info.opc = ISD::INTRINSIC_W_CHAIN;
// memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
// in order to model data exchange with other threads, but perform no real
// memory accesses.
Info.memVT = MVT::i1;
// Our result depends on both our and other thread's arguments.
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
return true;
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v8f16;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v4i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(4);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v4f16;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v8f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v8i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::f64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v2f64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v4f16;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v8f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v8i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v2f64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_atomic_load_inc_32:
case Intrinsic::nvvm_atomic_load_dec_32:
case Intrinsic::nvvm_atomic_add_gen_f_cta:
case Intrinsic::nvvm_atomic_add_gen_f_sys:
case Intrinsic::nvvm_atomic_add_gen_i_cta:
case Intrinsic::nvvm_atomic_add_gen_i_sys:
case Intrinsic::nvvm_atomic_and_gen_i_cta:
case Intrinsic::nvvm_atomic_and_gen_i_sys:
case Intrinsic::nvvm_atomic_cas_gen_i_cta:
case Intrinsic::nvvm_atomic_cas_gen_i_sys:
case Intrinsic::nvvm_atomic_dec_gen_i_cta:
case Intrinsic::nvvm_atomic_dec_gen_i_sys:
case Intrinsic::nvvm_atomic_inc_gen_i_cta:
case Intrinsic::nvvm_atomic_inc_gen_i_sys:
case Intrinsic::nvvm_atomic_max_gen_i_cta:
case Intrinsic::nvvm_atomic_max_gen_i_sys:
case Intrinsic::nvvm_atomic_min_gen_i_cta:
case Intrinsic::nvvm_atomic_min_gen_i_sys:
case Intrinsic::nvvm_atomic_or_gen_i_cta:
case Intrinsic::nvvm_atomic_or_gen_i_sys:
case Intrinsic::nvvm_atomic_exch_gen_i_cta:
case Intrinsic::nvvm_atomic_exch_gen_i_sys:
case Intrinsic::nvvm_atomic_xor_gen_i_cta:
case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
auto &DL = I.getModule()->getDataLayout();
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = getValueType(DL, I.getType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p: {
auto &DL = I.getModule()->getDataLayout();
Info.opc = ISD::INTRINSIC_W_CHAIN;
if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
Info.memVT = getValueType(DL, I.getType());
else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
Info.memVT = getPointerTy(DL);
else
Info.memVT = getValueType(DL, I.getType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
return true;
}
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p: {
auto &DL = I.getModule()->getDataLayout();
Info.opc = ISD::INTRINSIC_W_CHAIN;
if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
Info.memVT = getValueType(DL, I.getType());
else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
Info.memVT = getPointerTy(DL);
else
Info.memVT = getValueType(DL, I.getType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
return true;
}
case Intrinsic::nvvm_tex_1d_v4f32_s32:
case Intrinsic::nvvm_tex_1d_v4f32_f32:
case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_2d_v4f32_s32:
case Intrinsic::nvvm_tex_2d_v4f32_f32:
case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_3d_v4f32_s32:
case Intrinsic::nvvm_tex_3d_v4f32_f32:
case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_cube_v4f32_f32:
case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
Info.opc = getOpcForTextureInstr(Intrinsic);
Info.memVT = MVT::v4f32;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_tex_1d_v4s32_s32:
case Intrinsic::nvvm_tex_1d_v4s32_f32:
case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_2d_v4s32_s32:
case Intrinsic::nvvm_tex_2d_v4s32_f32:
case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_3d_v4s32_s32:
case Intrinsic::nvvm_tex_3d_v4s32_f32:
case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_cube_v4s32_f32:
case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_cube_v4u32_f32:
case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_1d_v4u32_s32:
case Intrinsic::nvvm_tex_1d_v4u32_f32:
case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_2d_v4u32_s32:
case Intrinsic::nvvm_tex_2d_v4u32_f32:
case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_3d_v4u32_s32:
case Intrinsic::nvvm_tex_3d_v4u32_f32:
case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
Info.opc = getOpcForTextureInstr(Intrinsic);
Info.memVT = MVT::v4i32;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i8_clamp:
case Intrinsic::nvvm_suld_1d_v2i8_clamp:
case Intrinsic::nvvm_suld_1d_v4i8_clamp:
case Intrinsic::nvvm_suld_1d_array_i8_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
case Intrinsic::nvvm_suld_2d_i8_clamp:
case Intrinsic::nvvm_suld_2d_v2i8_clamp:
case Intrinsic::nvvm_suld_2d_v4i8_clamp:
case Intrinsic::nvvm_suld_2d_array_i8_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
case Intrinsic::nvvm_suld_3d_i8_clamp:
case Intrinsic::nvvm_suld_3d_v2i8_clamp:
case Intrinsic::nvvm_suld_3d_v4i8_clamp:
case Intrinsic::nvvm_suld_1d_i8_trap:
case Intrinsic::nvvm_suld_1d_v2i8_trap:
case Intrinsic::nvvm_suld_1d_v4i8_trap:
case Intrinsic::nvvm_suld_1d_array_i8_trap:
case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
case Intrinsic::nvvm_suld_2d_i8_trap:
case Intrinsic::nvvm_suld_2d_v2i8_trap:
case Intrinsic::nvvm_suld_2d_v4i8_trap:
case Intrinsic::nvvm_suld_2d_array_i8_trap:
case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
case Intrinsic::nvvm_suld_3d_i8_trap:
case Intrinsic::nvvm_suld_3d_v2i8_trap:
case Intrinsic::nvvm_suld_3d_v4i8_trap:
case Intrinsic::nvvm_suld_1d_i8_zero:
case Intrinsic::nvvm_suld_1d_v2i8_zero:
case Intrinsic::nvvm_suld_1d_v4i8_zero:
case Intrinsic::nvvm_suld_1d_array_i8_zero:
case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
case Intrinsic::nvvm_suld_2d_i8_zero:
case Intrinsic::nvvm_suld_2d_v2i8_zero:
case Intrinsic::nvvm_suld_2d_v4i8_zero:
case Intrinsic::nvvm_suld_2d_array_i8_zero:
case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
case Intrinsic::nvvm_suld_3d_i8_zero:
case Intrinsic::nvvm_suld_3d_v2i8_zero:
case Intrinsic::nvvm_suld_3d_v4i8_zero:
Info.opc = getOpcForSurfaceInstr(Intrinsic);
Info.memVT = MVT::i8;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i16_clamp:
case Intrinsic::nvvm_suld_1d_v2i16_clamp:
case Intrinsic::nvvm_suld_1d_v4i16_clamp:
case Intrinsic::nvvm_suld_1d_array_i16_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
case Intrinsic::nvvm_suld_2d_i16_clamp:
case Intrinsic::nvvm_suld_2d_v2i16_clamp:
case Intrinsic::nvvm_suld_2d_v4i16_clamp:
case Intrinsic::nvvm_suld_2d_array_i16_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
case Intrinsic::nvvm_suld_3d_i16_clamp:
case Intrinsic::nvvm_suld_3d_v2i16_clamp:
case Intrinsic::nvvm_suld_3d_v4i16_clamp:
case Intrinsic::nvvm_suld_1d_i16_trap:
case Intrinsic::nvvm_suld_1d_v2i16_trap:
case Intrinsic::nvvm_suld_1d_v4i16_trap:
case Intrinsic::nvvm_suld_1d_array_i16_trap:
case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
case Intrinsic::nvvm_suld_2d_i16_trap:
case Intrinsic::nvvm_suld_2d_v2i16_trap:
case Intrinsic::nvvm_suld_2d_v4i16_trap:
case Intrinsic::nvvm_suld_2d_array_i16_trap:
case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
case Intrinsic::nvvm_suld_3d_i16_trap:
case Intrinsic::nvvm_suld_3d_v2i16_trap:
case Intrinsic::nvvm_suld_3d_v4i16_trap:
case Intrinsic::nvvm_suld_1d_i16_zero:
case Intrinsic::nvvm_suld_1d_v2i16_zero:
case Intrinsic::nvvm_suld_1d_v4i16_zero:
case Intrinsic::nvvm_suld_1d_array_i16_zero:
case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
case Intrinsic::nvvm_suld_2d_i16_zero:
case Intrinsic::nvvm_suld_2d_v2i16_zero:
case Intrinsic::nvvm_suld_2d_v4i16_zero:
case Intrinsic::nvvm_suld_2d_array_i16_zero:
case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
case Intrinsic::nvvm_suld_3d_i16_zero:
case Intrinsic::nvvm_suld_3d_v2i16_zero:
case Intrinsic::nvvm_suld_3d_v4i16_zero:
Info.opc = getOpcForSurfaceInstr(Intrinsic);
Info.memVT = MVT::i16;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i32_clamp:
case Intrinsic::nvvm_suld_1d_v2i32_clamp:
case Intrinsic::nvvm_suld_1d_v4i32_clamp:
case Intrinsic::nvvm_suld_1d_array_i32_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
case Intrinsic::nvvm_suld_2d_i32_clamp:
case Intrinsic::nvvm_suld_2d_v2i32_clamp:
case Intrinsic::nvvm_suld_2d_v4i32_clamp:
case Intrinsic::nvvm_suld_2d_array_i32_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
case Intrinsic::nvvm_suld_3d_i32_clamp:
case Intrinsic::nvvm_suld_3d_v2i32_clamp:
case Intrinsic::nvvm_suld_3d_v4i32_clamp:
case Intrinsic::nvvm_suld_1d_i32_trap:
case Intrinsic::nvvm_suld_1d_v2i32_trap:
case Intrinsic::nvvm_suld_1d_v4i32_trap:
case Intrinsic::nvvm_suld_1d_array_i32_trap:
case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
case Intrinsic::nvvm_suld_2d_i32_trap:
case Intrinsic::nvvm_suld_2d_v2i32_trap:
case Intrinsic::nvvm_suld_2d_v4i32_trap:
case Intrinsic::nvvm_suld_2d_array_i32_trap:
case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
case Intrinsic::nvvm_suld_3d_i32_trap:
case Intrinsic::nvvm_suld_3d_v2i32_trap:
case Intrinsic::nvvm_suld_3d_v4i32_trap:
case Intrinsic::nvvm_suld_1d_i32_zero:
case Intrinsic::nvvm_suld_1d_v2i32_zero:
case Intrinsic::nvvm_suld_1d_v4i32_zero:
case Intrinsic::nvvm_suld_1d_array_i32_zero:
case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
case Intrinsic::nvvm_suld_2d_i32_zero:
case Intrinsic::nvvm_suld_2d_v2i32_zero:
case Intrinsic::nvvm_suld_2d_v4i32_zero:
case Intrinsic::nvvm_suld_2d_array_i32_zero:
case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
case Intrinsic::nvvm_suld_3d_i32_zero:
case Intrinsic::nvvm_suld_3d_v2i32_zero:
case Intrinsic::nvvm_suld_3d_v4i32_zero:
Info.opc = getOpcForSurfaceInstr(Intrinsic);
Info.memVT = MVT::i32;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i64_clamp:
case Intrinsic::nvvm_suld_1d_v2i64_clamp:
case Intrinsic::nvvm_suld_1d_array_i64_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
case Intrinsic::nvvm_suld_2d_i64_clamp:
case Intrinsic::nvvm_suld_2d_v2i64_clamp:
case Intrinsic::nvvm_suld_2d_array_i64_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
case Intrinsic::nvvm_suld_3d_i64_clamp:
case Intrinsic::nvvm_suld_3d_v2i64_clamp:
case Intrinsic::nvvm_suld_1d_i64_trap:
case Intrinsic::nvvm_suld_1d_v2i64_trap:
case Intrinsic::nvvm_suld_1d_array_i64_trap:
case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
case Intrinsic::nvvm_suld_2d_i64_trap:
case Intrinsic::nvvm_suld_2d_v2i64_trap:
case Intrinsic::nvvm_suld_2d_array_i64_trap:
case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
case Intrinsic::nvvm_suld_3d_i64_trap:
case Intrinsic::nvvm_suld_3d_v2i64_trap:
case Intrinsic::nvvm_suld_1d_i64_zero:
case Intrinsic::nvvm_suld_1d_v2i64_zero:
case Intrinsic::nvvm_suld_1d_array_i64_zero:
case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
case Intrinsic::nvvm_suld_2d_i64_zero:
case Intrinsic::nvvm_suld_2d_v2i64_zero:
case Intrinsic::nvvm_suld_2d_array_i64_zero:
case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
case Intrinsic::nvvm_suld_3d_i64_zero:
case Intrinsic::nvvm_suld_3d_v2i64_zero:
Info.opc = getOpcForSurfaceInstr(Intrinsic);
Info.memVT = MVT::i64;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
return false;
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
/// Used to guide target specific optimizations, like loop strength reduction
/// (LoopStrengthReduce.cpp) and memory optimization for address mode
/// (CodeGenPrepare.cpp)
bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
// AddrMode - This represents an addressing mode of:
// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
//
// The legal address modes are
// - [avar]
// - [areg]
// - [areg+immoff]
// - [immAddr]
if (AM.BaseGV) {
return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
}
switch (AM.Scale) {
case 0: // "r", "r+i" or "i" is allowed
break;
case 1:
if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
return false;
// Otherwise we have r+i.
break;
default:
// No scale > 1 is allowed
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// NVPTX Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
NVPTXTargetLowering::ConstraintType
NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'b':
case 'r':
case 'h':
case 'c':
case 'l':
case 'f':
case 'd':
case '0':
case 'N':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'b':
return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
case 'c':
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
case 'h':
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
case 'r':
return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
case 'l':
case 'N':
return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
case 'f':
return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
case 'd':
return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
//===----------------------------------------------------------------------===//
// NVPTX DAG Combining
//===----------------------------------------------------------------------===//
bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
CodeGenOpt::Level OptLevel) const {
// Always honor command-line argument
if (FMAContractLevelOpt.getNumOccurrences() > 0)
return FMAContractLevelOpt > 0;
// Do not contract if we're not optimizing the code.
if (OptLevel == 0)
return false;
// Honor TargetOptions flags that explicitly say fusion is okay.
if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
return true;
return allowUnsafeFPMath(MF);
}
bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
// Honor TargetOptions flags that explicitly say unsafe math is okay.
if (MF.getTarget().Options.UnsafeFPMath)
return true;
// Allow unsafe math if unsafe-fp-math attribute explicitly says so.
const Function &F = MF.getFunction();
return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
}
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
/// operands N0 and N1. This is a helper for PerformADDCombine that is
/// called with the default operands, and if that fails, with commuted
/// operands.
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
const NVPTXSubtarget &Subtarget,
CodeGenOpt::Level OptLevel) {
SelectionDAG &DAG = DCI.DAG;
// Skip non-integer, non-scalar case
EVT VT=N0.getValueType();
if (VT.isVector())
return SDValue();
// fold (add (mul a, b), c) -> (mad a, b, c)
//
if (N0.getOpcode() == ISD::MUL) {
assert (VT.isInteger());
// For integer:
// Since integer multiply-add costs the same as integer multiply
// but is more costly than integer add, do the fusion only when
// the mul is only used in the add.
if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
!N0.getNode()->hasOneUse())
return SDValue();
// Do the folding
return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1), N1);
}
else if (N0.getOpcode() == ISD::FMUL) {
if (VT == MVT::f32 || VT == MVT::f64) {
const auto *TLI = static_cast<const NVPTXTargetLowering *>(
&DAG.getTargetLoweringInfo());
if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
return SDValue();
// For floating point:
// Do the fusion only when the mul has less than 5 uses and all
// are add.
// The heuristic is that if a use is not an add, then that use
// cannot be fused into fma, therefore mul is still needed anyway.
// If there are more than 4 uses, even if they are all add, fusing
// them will increase register pressue.
//
int numUses = 0;
int nonAddCount = 0;
for (const SDNode *User : N0.getNode()->uses()) {
numUses++;
if (User->getOpcode() != ISD::FADD)
++nonAddCount;
}
if (numUses >= 5)
return SDValue();
if (nonAddCount) {
int orderNo = N->getIROrder();
int orderNo2 = N0.getNode()->getIROrder();
// simple heuristics here for considering potential register
// pressure, the logics here is that the differnce are used
// to measure the distance between def and use, the longer distance
// more likely cause register pressure.
if (orderNo - orderNo2 < 500)
return SDValue();
// Now, check if at least one of the FMUL's operands is live beyond the node N,
// which guarantees that the FMA will not increase register pressure at node N.
bool opIsLive = false;
const SDNode *left = N0.getOperand(0).getNode();
const SDNode *right = N0.getOperand(1).getNode();
if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
opIsLive = true;
if (!opIsLive)
for (const SDNode *User : left->uses()) {
int orderNo3 = User->getIROrder();
if (orderNo3 > orderNo) {
opIsLive = true;
break;
}
}
if (!opIsLive)
for (const SDNode *User : right->uses()) {
int orderNo3 = User->getIROrder();
if (orderNo3 > orderNo) {
opIsLive = true;
break;
}
}
if (!opIsLive)
return SDValue();
}
return DAG.getNode(ISD::FMA, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1), N1);
}
}
return SDValue();
}
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
///
static SDValue PerformADDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const NVPTXSubtarget &Subtarget,
CodeGenOpt::Level OptLevel) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// First try with the default operand order.
if (SDValue Result =
PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
return Result;
// If that didn't work, try again with the operands commuted.
return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
}
static SDValue PerformANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// The type legalizer turns a vector load of i8 values into a zextload to i16
// registers, optionally ANY_EXTENDs it (if target type is integer),
// and ANDs off the high 8 bits. Since we turn this load into a
// target-specific DAG node, the DAG combiner fails to eliminate these AND
// nodes. Do that here.
SDValue Val = N->getOperand(0);
SDValue Mask = N->getOperand(1);
if (isa<ConstantSDNode>(Val)) {
std::swap(Val, Mask);
}
SDValue AExt;
// Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
if (Val.getOpcode() == ISD::ANY_EXTEND) {
AExt = Val;
Val = Val->getOperand(0);
}
if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
Val = Val->getOperand(0);
}
if (Val->getOpcode() == NVPTXISD::LoadV2 ||
Val->getOpcode() == NVPTXISD::LoadV4) {
ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
if (!MaskCnst) {
// Not an AND with a constant
return SDValue();
}
uint64_t MaskVal = MaskCnst->getZExtValue();
if (MaskVal != 0xff) {
// Not an AND that chops off top 8 bits
return SDValue();
}
MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
if (!Mem) {
// Not a MemSDNode?!?
return SDValue();
}
EVT MemVT = Mem->getMemoryVT();
if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
// We only handle the i8 case
return SDValue();
}
unsigned ExtType =
cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
getZExtValue();
if (ExtType == ISD::SEXTLOAD) {
// If for some reason the load is a sextload, the and is needed to zero
// out the high 8 bits
return SDValue();
}
bool AddTo = false;
if (AExt.getNode() != nullptr) {
// Re-insert the ext as a zext.
Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
AExt.getValueType(), Val);
AddTo = true;
}
// If we get here, the AND is unnecessary. Just replace it with the load
DCI.CombineTo(N, Val, AddTo);
}
return SDValue();
}
static SDValue PerformREMCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOpt::Level OptLevel) {
assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
// Don't do anything at less than -O2.
if (OptLevel < CodeGenOpt::Default)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
bool IsSigned = N->getOpcode() == ISD::SREM;
unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
const SDValue &Num = N->getOperand(0);
const SDValue &Den = N->getOperand(1);
for (const SDNode *U : Num->uses()) {
if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
U->getOperand(1) == Den) {
// Num % Den -> Num - (Num / Den) * Den
return DAG.getNode(ISD::SUB, DL, VT, Num,
DAG.getNode(ISD::MUL, DL, VT,
DAG.getNode(DivOpc, DL, VT, Num, Den),
Den));
}
}
return SDValue();
}
enum OperandSignedness {
Signed = 0,
Unsigned,
Unknown
};
/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
/// that can be demoted to \p OptSize bits without loss of information. The
/// signedness of the operand, if determinable, is placed in \p S.
static bool IsMulWideOperandDemotable(SDValue Op,
unsigned OptSize,
OperandSignedness &S) {
S = Unknown;
if (Op.getOpcode() == ISD::SIGN_EXTEND ||
Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
EVT OrigVT = Op.getOperand(0).getValueType();
if (OrigVT.getFixedSizeInBits() <= OptSize) {
S = Signed;
return true;
}
} else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
EVT OrigVT = Op.getOperand(0).getValueType();
if (OrigVT.getFixedSizeInBits() <= OptSize) {
S = Unsigned;
return true;
}
}
return false;
}
/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
/// be demoted to \p OptSize bits without loss of information. If the operands
/// contain a constant, it should appear as the RHS operand. The signedness of
/// the operands is placed in \p IsSigned.
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
unsigned OptSize,
bool &IsSigned) {
OperandSignedness LHSSign;
// The LHS operand must be a demotable op
if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
return false;
// We should have been able to determine the signedness from the LHS
if (LHSSign == Unknown)
return false;
IsSigned = (LHSSign == Signed);
// The RHS can be a demotable op or a constant
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
const APInt &Val = CI->getAPIntValue();
if (LHSSign == Unsigned) {
return Val.isIntN(OptSize);
} else {
return Val.isSignedIntN(OptSize);
}
} else {
OperandSignedness RHSSign;
if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
return false;
return LHSSign == RHSSign;
}
}
/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
/// amount.
static SDValue TryMULWIDECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT MulType = N->getValueType(0);
if (MulType != MVT::i32 && MulType != MVT::i64) {
return SDValue();
}
SDLoc DL(N);
unsigned OptSize = MulType.getSizeInBits() >> 1;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// Canonicalize the multiply so the constant (if any) is on the right
if (N->getOpcode() == ISD::MUL) {
if (isa<ConstantSDNode>(LHS)) {
std::swap(LHS, RHS);
}
}
// If we have a SHL, determine the actual multiply amount
if (N->getOpcode() == ISD::SHL) {
ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
if (!ShlRHS) {
return SDValue();
}
APInt ShiftAmt = ShlRHS->getAPIntValue();
unsigned BitWidth = MulType.getSizeInBits();
if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
} else {
return SDValue();
}
}
bool Signed;
// Verify that our operands are demotable
if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
return SDValue();
}
EVT DemotedVT;
if (MulType == MVT::i32) {
DemotedVT = MVT::i16;
} else {
DemotedVT = MVT::i32;
}
// Truncate the operands to the correct size. Note that these are just for
// type consistency and will (likely) be eliminated in later phases.
SDValue TruncLHS =
DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
SDValue TruncRHS =
DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
unsigned Opc;
if (Signed) {
Opc = NVPTXISD::MUL_WIDE_SIGNED;
} else {
Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
}
return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
}
/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
static SDValue PerformMULCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOpt::Level OptLevel) {
if (OptLevel > 0) {
// Try mul.wide combining at OptLevel > 0
if (SDValue Ret = TryMULWIDECombine(N, DCI))
return Ret;
}
return SDValue();
}
/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
static SDValue PerformSHLCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOpt::Level OptLevel) {
if (OptLevel > 0) {
// Try mul.wide combining at OptLevel > 0
if (SDValue Ret = TryMULWIDECombine(N, DCI))
return Ret;
}
return SDValue();
}
static SDValue PerformSETCCCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT CCType = N->getValueType(0);
SDValue A = N->getOperand(0);
SDValue B = N->getOperand(1);
if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
return SDValue();
SDLoc DL(N);
// setp.f16x2 returns two scalar predicates, which we need to
// convert back to v2i1. The returned result will be scalarized by
// the legalizer, but the comparison will remain a single vector
// instruction.
SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
DCI.DAG.getVTList(MVT::i1, MVT::i1),
{A, B, N->getOperand(2)});
return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
CCNode.getValue(1));
}
SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
switch (N->getOpcode()) {
default: break;
case ISD::ADD:
case ISD::FADD:
return PerformADDCombine(N, DCI, STI, OptLevel);
case ISD::MUL:
return PerformMULCombine(N, DCI, OptLevel);
case ISD::SHL:
return PerformSHLCombine(N, DCI, OptLevel);
case ISD::AND:
return PerformANDCombine(N, DCI);
case ISD::UREM:
case ISD::SREM:
return PerformREMCombine(N, DCI, OptLevel);
case ISD::SETCC:
return PerformSETCCCombine(N, DCI);
}
return SDValue();
}
/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
EVT ResVT = N->getValueType(0);
SDLoc DL(N);
assert(ResVT.isVector() && "Vector load must have vector type");
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
// legal. We can (and should) split that into 2 loads of <2 x double> here
// but I'm leaving that as a TODO for now.
assert(ResVT.isSimple() && "Can only handle simple types");
switch (ResVT.getSimpleVT().SimpleTy) {
default:
return;
case MVT::v2i8:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f16:
case MVT::v4f32:
case MVT::v8f16: // <4 x f16x2>
// This is a "native" vector type
break;
}
LoadSDNode *LD = cast<LoadSDNode>(N);
Align Alignment = LD->getAlign();
auto &TD = DAG.getDataLayout();
Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext()));
if (Alignment < PrefAlign) {
// This load is not sufficiently aligned, so bail out and let this vector
// load be scalarized. Note that we may still be able to emit smaller
// vector loads. For example, if we are loading a <4 x float> with an
// alignment of 8, this check will fail but the legalizer will try again
// with 2 x <2 x float>, which will succeed with an alignment of 8.
return;
}
EVT EltVT = ResVT.getVectorElementType();
unsigned NumElts = ResVT.getVectorNumElements();
// Since LoadV2 is a target node, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propagate the "real" type as the memory type.
bool NeedTrunc = false;
if (EltVT.getSizeInBits() < 16) {
EltVT = MVT::i16;
NeedTrunc = true;
}
unsigned Opcode = 0;
SDVTList LdResVTs;
bool LoadF16x2 = false;
switch (NumElts) {
default:
return;
case 2:
Opcode = NVPTXISD::LoadV2;
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
break;
case 4: {
Opcode = NVPTXISD::LoadV4;
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
LdResVTs = DAG.getVTList(ListVTs);
break;
}
case 8: {
// v8f16 is a special case. PTX doesn't have ld.v8.f16
// instruction. Instead, we split the vector into v2f16 chunks and
// load them with ld.v4.b32.
assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
LoadF16x2 = true;
Opcode = NVPTXISD::LoadV4;
EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
MVT::Other};
LdResVTs = DAG.getVTList(ListVTs);
break;
}
}
// Copy regular operands
SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
// The select routine does not have access to the LoadSDNode instance, so
// pass along the extension information
OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
LD->getMemoryVT(),
LD->getMemOperand());
SmallVector<SDValue, 8> ScalarRes;
if (LoadF16x2) {
// Split v2f16 subvectors back into individual elements.
NumElts /= 2;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue SubVector = NewLD.getValue(i);
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
DAG.getIntPtrConstant(0, DL));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
DAG.getIntPtrConstant(1, DL));
ScalarRes.push_back(E0);
ScalarRes.push_back(E1);
}
} else {
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
}
SDValue LoadChain = NewLD.getValue(NumElts);
SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
Results.push_back(BuildVec);
Results.push_back(LoadChain);
}
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
SDValue Chain = N->getOperand(0);
SDValue Intrin = N->getOperand(1);
SDLoc DL(N);
// Get the intrinsic ID
unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
switch (IntrinNo) {
default:
return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p: {
EVT ResVT = N->getValueType(0);
if (ResVT.isVector()) {
// Vector LDG/LDU
unsigned NumElts = ResVT.getVectorNumElements();
EVT EltVT = ResVT.getVectorElementType();
// Since LDU/LDG are target nodes, we cannot rely on DAG type
// legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propagate the "real" type as the memory type.
bool NeedTrunc = false;
if (EltVT.getSizeInBits() < 16) {
EltVT = MVT::i16;
NeedTrunc = true;
}
unsigned Opcode = 0;
SDVTList LdResVTs;
switch (NumElts) {
default:
return;
case 2:
switch (IntrinNo) {
default:
return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
Opcode = NVPTXISD::LDGV2;
break;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Opcode = NVPTXISD::LDUV2;
break;
}
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
break;
case 4: {
switch (IntrinNo) {
default:
return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
Opcode = NVPTXISD::LDGV4;
break;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Opcode = NVPTXISD::LDUV4;
break;
}
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
LdResVTs = DAG.getVTList(ListVTs);
break;
}
}
SmallVector<SDValue, 8> OtherOps;
// Copy regular operands
OtherOps.push_back(Chain); // Chain
// Skip operand 1 (intrinsic ID)
// Others
OtherOps.append(N->op_begin() + 2, N->op_end());
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
MemSD->getMemoryVT(),
MemSD->getMemOperand());
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res =
DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
SDValue LoadChain = NewLD.getValue(NumElts);
SDValue BuildVec =
DAG.getBuildVector(ResVT, DL, ScalarRes);
Results.push_back(BuildVec);
Results.push_back(LoadChain);
} else {
// i8 LDG/LDU
assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
"Custom handling of non-i8 ldu/ldg?");
// Just copy all operands as-is
SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
// Force output to i16
SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
// We make sure the memory type is i8, which will be used during isel
// to select the proper instruction.
SDValue NewLD =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
MVT::i8, MemSD->getMemOperand());
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
NewLD.getValue(0)));
Results.push_back(NewLD.getValue(1));
}
}
}
}
void NVPTXTargetLowering::ReplaceNodeResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default:
report_fatal_error("Unhandled custom legalization");
case ISD::LOAD:
ReplaceLoadVector(N, DAG, Results);
return;
case ISD::INTRINSIC_W_CHAIN:
ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
return;
}
}
// Pin NVPTXTargetObjectFile's vtables to this file.
NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
return getDataSection();
}