| //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the InstructionSelector class for |
| /// AArch64. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64GlobalISelUtils.h" |
| #include "AArch64InstrInfo.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64RegisterBankInfo.h" |
| #include "AArch64RegisterInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "AArch64TargetMachine.h" |
| #include "AArch64GlobalISelUtils.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "MCTargetDesc/AArch64MCTargetDesc.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #define DEBUG_TYPE "aarch64-isel" |
| |
| using namespace llvm; |
| using namespace MIPatternMatch; |
| using namespace AArch64GISelUtils; |
| |
| namespace llvm { |
| class BlockFrequencyInfo; |
| class ProfileSummaryInfo; |
| } |
| |
| namespace { |
| |
| #define GET_GLOBALISEL_PREDICATE_BITSET |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATE_BITSET |
| |
| class AArch64InstructionSelector : public InstructionSelector { |
| public: |
| AArch64InstructionSelector(const AArch64TargetMachine &TM, |
| const AArch64Subtarget &STI, |
| const AArch64RegisterBankInfo &RBI); |
| |
| bool select(MachineInstr &I) override; |
| static const char *getName() { return DEBUG_TYPE; } |
| |
| void setupMF(MachineFunction &MF, GISelKnownBits *KB, |
| CodeGenCoverage &CoverageInfo, ProfileSummaryInfo *PSI, |
| BlockFrequencyInfo *BFI) override { |
| InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI); |
| MIB.setMF(MF); |
| |
| // hasFnAttribute() is expensive to call on every BRCOND selection, so |
| // cache it here for each run of the selector. |
| ProduceNonFlagSettingCondBr = |
| !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); |
| MFReturnAddr = Register(); |
| |
| processPHIs(MF); |
| } |
| |
| private: |
| /// tblgen-erated 'select' implementation, used as the initial selector for |
| /// the patterns that don't require complex C++. |
| bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; |
| |
| // A lowering phase that runs before any selection attempts. |
| // Returns true if the instruction was modified. |
| bool preISelLower(MachineInstr &I); |
| |
| // An early selection function that runs before the selectImpl() call. |
| bool earlySelect(MachineInstr &I); |
| |
| // Do some preprocessing of G_PHIs before we begin selection. |
| void processPHIs(MachineFunction &MF); |
| |
| bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| /// Eliminate same-sized cross-bank copies into stores before selectImpl(). |
| bool contractCrossBankCopyIntoStore(MachineInstr &I, |
| MachineRegisterInfo &MRI); |
| |
| bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF, |
| MachineRegisterInfo &MRI) const; |
| bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF, |
| MachineRegisterInfo &MRI) const; |
| |
| ///@{ |
| /// Helper functions for selectCompareBranch. |
| bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp, |
| MachineIRBuilder &MIB) const; |
| bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, |
| MachineIRBuilder &MIB) const; |
| bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, |
| MachineIRBuilder &MIB) const; |
| bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert, |
| MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const; |
| ///@} |
| |
| bool selectCompareBranch(MachineInstr &I, MachineFunction &MF, |
| MachineRegisterInfo &MRI); |
| |
| bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| // Helper to generate an equivalent of scalar_to_vector into a new register, |
| // returned via 'Dst'. |
| MachineInstr *emitScalarToVector(unsigned EltSize, |
| const TargetRegisterClass *DstRC, |
| Register Scalar, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a lane insert into \p DstReg, or a new vector register if None is |
| /// provided. |
| /// |
| /// The lane inserted into is defined by \p LaneIdx. The vector source |
| /// register is given by \p SrcReg. The register containing the element is |
| /// given by \p EltReg. |
| MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg, |
| Register EltReg, unsigned LaneIdx, |
| const RegisterBank &RB, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a sequence of instructions representing a constant \p CV for a |
| /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.) |
| /// |
| /// \returns the last instruction in the sequence on success, and nullptr |
| /// otherwise. |
| MachineInstr *emitConstantVector(Register Dst, Constant *CV, |
| MachineIRBuilder &MIRBuilder, |
| MachineRegisterInfo &MRI); |
| |
| bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy, |
| MachineRegisterInfo &MRI); |
| /// \returns true if a G_BUILD_VECTOR instruction \p MI can be selected as a |
| /// SUBREG_TO_REG. |
| bool tryOptBuildVecToSubregToReg(MachineInstr &MI, MachineRegisterInfo &MRI); |
| bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectSplitVectorUnmerge(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| /// Helper function to select vector load intrinsics like |
| /// @llvm.aarch64.neon.ld2.*, @llvm.aarch64.neon.ld4.*, etc. |
| /// \p Opc is the opcode that the selected instruction should use. |
| /// \p NumVecs is the number of vector destinations for the instruction. |
| /// \p I is the original G_INTRINSIC_W_SIDE_EFFECTS instruction. |
| bool selectVectorLoadIntrinsic(unsigned Opc, unsigned NumVecs, |
| MachineInstr &I); |
| bool selectIntrinsicWithSideEffects(MachineInstr &I, |
| MachineRegisterInfo &MRI); |
| bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const; |
| bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const; |
| bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectUSMovFromExtend(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| unsigned emitConstantPoolEntry(const Constant *CPVal, |
| MachineFunction &MF) const; |
| MachineInstr *emitLoadFromConstantPool(const Constant *CPVal, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| // Emit a vector concat operation. |
| MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1, |
| Register Op2, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| // Emit an integer compare between LHS and RHS, which checks for Predicate. |
| MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS, |
| MachineOperand &Predicate, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a floating point comparison between \p LHS and \p RHS. |
| /// \p Pred if given is the intended predicate to use. |
| MachineInstr *emitFPCompare(Register LHS, Register RHS, |
| MachineIRBuilder &MIRBuilder, |
| Optional<CmpInst::Predicate> = None) const; |
| |
| MachineInstr *emitInstr(unsigned Opcode, |
| std::initializer_list<llvm::DstOp> DstOps, |
| std::initializer_list<llvm::SrcOp> SrcOps, |
| MachineIRBuilder &MIRBuilder, |
| const ComplexRendererFns &RenderFns = None) const; |
| /// Helper function to emit an add or sub instruction. |
| /// |
| /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above |
| /// in a specific order. |
| /// |
| /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode. |
| /// |
| /// \code |
| /// const std::array<std::array<unsigned, 2>, 4> Table { |
| /// {{AArch64::ADDXri, AArch64::ADDWri}, |
| /// {AArch64::ADDXrs, AArch64::ADDWrs}, |
| /// {AArch64::ADDXrr, AArch64::ADDWrr}, |
| /// {AArch64::SUBXri, AArch64::SUBWri}, |
| /// {AArch64::ADDXrx, AArch64::ADDWrx}}}; |
| /// \endcode |
| /// |
| /// Each row in the table corresponds to a different addressing mode. Each |
| /// column corresponds to a different register size. |
| /// |
| /// \attention Rows must be structured as follows: |
| /// - Row 0: The ri opcode variants |
| /// - Row 1: The rs opcode variants |
| /// - Row 2: The rr opcode variants |
| /// - Row 3: The ri opcode variants for negative immediates |
| /// - Row 4: The rx opcode variants |
| /// |
| /// \attention Columns must be structured as follows: |
| /// - Column 0: The 64-bit opcode variants |
| /// - Column 1: The 32-bit opcode variants |
| /// |
| /// \p Dst is the destination register of the binop to emit. |
| /// \p LHS is the left-hand operand of the binop to emit. |
| /// \p RHS is the right-hand operand of the binop to emit. |
| MachineInstr *emitAddSub( |
| const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode, |
| Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, |
| MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS, |
| AArch64CC::CondCode CC, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitExtractVectorElt(Optional<Register> DstReg, |
| const RegisterBank &DstRB, LLT ScalarTy, |
| Register VecReg, unsigned LaneIdx, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitCSINC(Register Dst, Register Src1, Register Src2, |
| AArch64CC::CondCode Pred, |
| MachineIRBuilder &MIRBuilder) const; |
| /// Emit a CSet for a FP compare. |
| /// |
| /// \p Dst is expected to be a 32-bit scalar register. |
| MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit the overflow op for \p Opcode. |
| /// |
| /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO, |
| /// G_USUBO, etc. |
| std::pair<MachineInstr *, AArch64CC::CondCode> |
| emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS, |
| MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg. |
| /// \p IsNegative is true if the test should be "not zero". |
| /// This will also optimize the test bit instruction when possible. |
| MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative, |
| MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const; |
| |
| /// Emit a CB(N)Z instruction which branches to \p DestMBB. |
| MachineInstr *emitCBZ(Register CompareReg, bool IsNegative, |
| MachineBasicBlock *DestMBB, |
| MachineIRBuilder &MIB) const; |
| |
| // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td. |
| // We use these manually instead of using the importer since it doesn't |
| // support SDNodeXForm. |
| ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const; |
| ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const; |
| ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const; |
| ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const; |
| |
| ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const; |
| ComplexRendererFns selectArithImmed(MachineOperand &Root) const; |
| ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const; |
| |
| ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root, |
| unsigned Size) const; |
| |
| ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 1); |
| } |
| ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 2); |
| } |
| ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 4); |
| } |
| ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 8); |
| } |
| ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 16); |
| } |
| |
| /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used |
| /// from complex pattern matchers like selectAddrModeIndexed(). |
| ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size, |
| MachineRegisterInfo &MRI) const; |
| |
| ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root, |
| unsigned Size) const; |
| template <int Width> |
| ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const { |
| return selectAddrModeIndexed(Root, Width / 8); |
| } |
| |
| bool isWorthFoldingIntoExtendedReg(MachineInstr &MI, |
| const MachineRegisterInfo &MRI) const; |
| ComplexRendererFns |
| selectAddrModeShiftedExtendXReg(MachineOperand &Root, |
| unsigned SizeInBytes) const; |
| |
| /// Returns a \p ComplexRendererFns which contains a base, offset, and whether |
| /// or not a shift + extend should be folded into an addressing mode. Returns |
| /// None when this is not profitable or possible. |
| ComplexRendererFns |
| selectExtendedSHL(MachineOperand &Root, MachineOperand &Base, |
| MachineOperand &Offset, unsigned SizeInBytes, |
| bool WantsExt) const; |
| ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const; |
| ComplexRendererFns selectAddrModeXRO(MachineOperand &Root, |
| unsigned SizeInBytes) const; |
| template <int Width> |
| ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const { |
| return selectAddrModeXRO(Root, Width / 8); |
| } |
| |
| ComplexRendererFns selectAddrModeWRO(MachineOperand &Root, |
| unsigned SizeInBytes) const; |
| template <int Width> |
| ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const { |
| return selectAddrModeWRO(Root, Width / 8); |
| } |
| |
| ComplexRendererFns selectShiftedRegister(MachineOperand &Root, |
| bool AllowROR = false) const; |
| |
| ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const { |
| return selectShiftedRegister(Root); |
| } |
| |
| ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const { |
| return selectShiftedRegister(Root, true); |
| } |
| |
| /// Given an extend instruction, determine the correct shift-extend type for |
| /// that instruction. |
| /// |
| /// If the instruction is going to be used in a load or store, pass |
| /// \p IsLoadStore = true. |
| AArch64_AM::ShiftExtendType |
| getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI, |
| bool IsLoadStore = false) const; |
| |
| /// Move \p Reg to \p RC if \p Reg is not already on \p RC. |
| /// |
| /// \returns Either \p Reg if no change was necessary, or the new register |
| /// created by moving \p Reg. |
| /// |
| /// Note: This uses emitCopy right now. |
| Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC, |
| MachineIRBuilder &MIB) const; |
| |
| ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const; |
| |
| void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I, |
| int OpIdx = -1) const; |
| void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I, |
| int OpIdx = -1) const; |
| void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| |
| // Materialize a GlobalValue or BlockAddress using a movz+movk sequence. |
| void materializeLargeCMVal(MachineInstr &I, const Value *V, unsigned OpFlags); |
| |
| // Optimization methods. |
| bool tryOptSelect(MachineInstr &MI); |
| MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS, |
| MachineOperand &Predicate, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Return true if \p MI is a load or store of \p NumBytes bytes. |
| bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const; |
| |
| /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit |
| /// register zeroed out. In other words, the result of MI has been explicitly |
| /// zero extended. |
| bool isDef32(const MachineInstr &MI) const; |
| |
| const AArch64TargetMachine &TM; |
| const AArch64Subtarget &STI; |
| const AArch64InstrInfo &TII; |
| const AArch64RegisterInfo &TRI; |
| const AArch64RegisterBankInfo &RBI; |
| |
| bool ProduceNonFlagSettingCondBr = false; |
| |
| // Some cached values used during selection. |
| // We use LR as a live-in register, and we keep track of it here as it can be |
| // clobbered by calls. |
| Register MFReturnAddr; |
| |
| MachineIRBuilder MIB; |
| |
| #define GET_GLOBALISEL_PREDICATES_DECL |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATES_DECL |
| |
| // We declare the temporaries used by selectImpl() in the class to minimize the |
| // cost of constructing placeholder values. |
| #define GET_GLOBALISEL_TEMPORARIES_DECL |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_TEMPORARIES_DECL |
| }; |
| |
| } // end anonymous namespace |
| |
| #define GET_GLOBALISEL_IMPL |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_IMPL |
| |
| AArch64InstructionSelector::AArch64InstructionSelector( |
| const AArch64TargetMachine &TM, const AArch64Subtarget &STI, |
| const AArch64RegisterBankInfo &RBI) |
| : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()), |
| TRI(*STI.getRegisterInfo()), RBI(RBI), |
| #define GET_GLOBALISEL_PREDICATES_INIT |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATES_INIT |
| #define GET_GLOBALISEL_TEMPORARIES_INIT |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_TEMPORARIES_INIT |
| { |
| } |
| |
| // FIXME: This should be target-independent, inferred from the types declared |
| // for each class in the bank. |
| static const TargetRegisterClass * |
| getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB, |
| const RegisterBankInfo &RBI, |
| bool GetAllRegSet = false) { |
| if (RB.getID() == AArch64::GPRRegBankID) { |
| if (Ty.getSizeInBits() <= 32) |
| return GetAllRegSet ? &AArch64::GPR32allRegClass |
| : &AArch64::GPR32RegClass; |
| if (Ty.getSizeInBits() == 64) |
| return GetAllRegSet ? &AArch64::GPR64allRegClass |
| : &AArch64::GPR64RegClass; |
| if (Ty.getSizeInBits() == 128) |
| return &AArch64::XSeqPairsClassRegClass; |
| return nullptr; |
| } |
| |
| if (RB.getID() == AArch64::FPRRegBankID) { |
| switch (Ty.getSizeInBits()) { |
| case 8: |
| return &AArch64::FPR8RegClass; |
| case 16: |
| return &AArch64::FPR16RegClass; |
| case 32: |
| return &AArch64::FPR32RegClass; |
| case 64: |
| return &AArch64::FPR64RegClass; |
| case 128: |
| return &AArch64::FPR128RegClass; |
| } |
| return nullptr; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Given a register bank, and size in bits, return the smallest register class |
| /// that can represent that combination. |
| static const TargetRegisterClass * |
| getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits, |
| bool GetAllRegSet = false) { |
| unsigned RegBankID = RB.getID(); |
| |
| if (RegBankID == AArch64::GPRRegBankID) { |
| if (SizeInBits <= 32) |
| return GetAllRegSet ? &AArch64::GPR32allRegClass |
| : &AArch64::GPR32RegClass; |
| if (SizeInBits == 64) |
| return GetAllRegSet ? &AArch64::GPR64allRegClass |
| : &AArch64::GPR64RegClass; |
| if (SizeInBits == 128) |
| return &AArch64::XSeqPairsClassRegClass; |
| } |
| |
| if (RegBankID == AArch64::FPRRegBankID) { |
| switch (SizeInBits) { |
| default: |
| return nullptr; |
| case 8: |
| return &AArch64::FPR8RegClass; |
| case 16: |
| return &AArch64::FPR16RegClass; |
| case 32: |
| return &AArch64::FPR32RegClass; |
| case 64: |
| return &AArch64::FPR64RegClass; |
| case 128: |
| return &AArch64::FPR128RegClass; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Returns the correct subregister to use for a given register class. |
| static bool getSubRegForClass(const TargetRegisterClass *RC, |
| const TargetRegisterInfo &TRI, unsigned &SubReg) { |
| switch (TRI.getRegSizeInBits(*RC)) { |
| case 8: |
| SubReg = AArch64::bsub; |
| break; |
| case 16: |
| SubReg = AArch64::hsub; |
| break; |
| case 32: |
| if (RC != &AArch64::FPR32RegClass) |
| SubReg = AArch64::sub_32; |
| else |
| SubReg = AArch64::ssub; |
| break; |
| case 64: |
| SubReg = AArch64::dsub; |
| break; |
| default: |
| LLVM_DEBUG( |
| dbgs() << "Couldn't find appropriate subregister for register class."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Returns the minimum size the given register bank can hold. |
| static unsigned getMinSizeForRegBank(const RegisterBank &RB) { |
| switch (RB.getID()) { |
| case AArch64::GPRRegBankID: |
| return 32; |
| case AArch64::FPRRegBankID: |
| return 8; |
| default: |
| llvm_unreachable("Tried to get minimum size for unknown register bank."); |
| } |
| } |
| |
| /// Create a REG_SEQUENCE instruction using the registers in \p Regs. |
| /// Helper function for functions like createDTuple and createQTuple. |
| /// |
| /// \p RegClassIDs - The list of register class IDs available for some tuple of |
| /// a scalar class. E.g. QQRegClassID, QQQRegClassID, QQQQRegClassID. This is |
| /// expected to contain between 2 and 4 tuple classes. |
| /// |
| /// \p SubRegs - The list of subregister classes associated with each register |
| /// class ID in \p RegClassIDs. E.g., QQRegClassID should use the qsub0 |
| /// subregister class. The index of each subregister class is expected to |
| /// correspond with the index of each register class. |
| /// |
| /// \returns Either the destination register of REG_SEQUENCE instruction that |
| /// was created, or the 0th element of \p Regs if \p Regs contains a single |
| /// element. |
| static Register createTuple(ArrayRef<Register> Regs, |
| const unsigned RegClassIDs[], |
| const unsigned SubRegs[], MachineIRBuilder &MIB) { |
| unsigned NumRegs = Regs.size(); |
| if (NumRegs == 1) |
| return Regs[0]; |
| assert(NumRegs >= 2 && NumRegs <= 4 && |
| "Only support between two and 4 registers in a tuple!"); |
| const TargetRegisterInfo *TRI = MIB.getMF().getSubtarget().getRegisterInfo(); |
| auto *DesiredClass = TRI->getRegClass(RegClassIDs[NumRegs - 2]); |
| auto RegSequence = |
| MIB.buildInstr(TargetOpcode::REG_SEQUENCE, {DesiredClass}, {}); |
| for (unsigned I = 0, E = Regs.size(); I < E; ++I) { |
| RegSequence.addUse(Regs[I]); |
| RegSequence.addImm(SubRegs[I]); |
| } |
| return RegSequence.getReg(0); |
| } |
| |
| /// Create a tuple of D-registers using the registers in \p Regs. |
| static Register createDTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) { |
| static const unsigned RegClassIDs[] = { |
| AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID}; |
| static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1, |
| AArch64::dsub2, AArch64::dsub3}; |
| return createTuple(Regs, RegClassIDs, SubRegs, MIB); |
| } |
| |
| /// Create a tuple of Q-registers using the registers in \p Regs. |
| static Register createQTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) { |
| static const unsigned RegClassIDs[] = { |
| AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID}; |
| static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1, |
| AArch64::qsub2, AArch64::qsub3}; |
| return createTuple(Regs, RegClassIDs, SubRegs, MIB); |
| } |
| |
| static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) { |
| auto &MI = *Root.getParent(); |
| auto &MBB = *MI.getParent(); |
| auto &MF = *MBB.getParent(); |
| auto &MRI = MF.getRegInfo(); |
| uint64_t Immed; |
| if (Root.isImm()) |
| Immed = Root.getImm(); |
| else if (Root.isCImm()) |
| Immed = Root.getCImm()->getZExtValue(); |
| else if (Root.isReg()) { |
| auto ValAndVReg = |
| getIConstantVRegValWithLookThrough(Root.getReg(), MRI, true); |
| if (!ValAndVReg) |
| return None; |
| Immed = ValAndVReg->Value.getSExtValue(); |
| } else |
| return None; |
| return Immed; |
| } |
| |
| /// Check whether \p I is a currently unsupported binary operation: |
| /// - it has an unsized type |
| /// - an operand is not a vreg |
| /// - all operands are not in the same bank |
| /// These are checks that should someday live in the verifier, but right now, |
| /// these are mostly limitations of the aarch64 selector. |
| static bool unsupportedBinOp(const MachineInstr &I, |
| const AArch64RegisterBankInfo &RBI, |
| const MachineRegisterInfo &MRI, |
| const AArch64RegisterInfo &TRI) { |
| LLT Ty = MRI.getType(I.getOperand(0).getReg()); |
| if (!Ty.isValid()) { |
| LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n"); |
| return true; |
| } |
| |
| const RegisterBank *PrevOpBank = nullptr; |
| for (auto &MO : I.operands()) { |
| // FIXME: Support non-register operands. |
| if (!MO.isReg()) { |
| LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n"); |
| return true; |
| } |
| |
| // FIXME: Can generic operations have physical registers operands? If |
| // so, this will need to be taught about that, and we'll need to get the |
| // bank out of the minimal class for the register. |
| // Either way, this needs to be documented (and possibly verified). |
| if (!Register::isVirtualRegister(MO.getReg())) { |
| LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n"); |
| return true; |
| } |
| |
| const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI); |
| if (!OpBank) { |
| LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n"); |
| return true; |
| } |
| |
| if (PrevOpBank && OpBank != PrevOpBank) { |
| LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n"); |
| return true; |
| } |
| PrevOpBank = OpBank; |
| } |
| return false; |
| } |
| |
| /// Select the AArch64 opcode for the basic binary operation \p GenericOpc |
| /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID |
| /// and of size \p OpSize. |
| /// \returns \p GenericOpc if the combination is unsupported. |
| static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID, |
| unsigned OpSize) { |
| switch (RegBankID) { |
| case AArch64::GPRRegBankID: |
| if (OpSize == 32) { |
| switch (GenericOpc) { |
| case TargetOpcode::G_SHL: |
| return AArch64::LSLVWr; |
| case TargetOpcode::G_LSHR: |
| return AArch64::LSRVWr; |
| case TargetOpcode::G_ASHR: |
| return AArch64::ASRVWr; |
| default: |
| return GenericOpc; |
| } |
| } else if (OpSize == 64) { |
| switch (GenericOpc) { |
| case TargetOpcode::G_PTR_ADD: |
| return AArch64::ADDXrr; |
| case TargetOpcode::G_SHL: |
| return AArch64::LSLVXr; |
| case TargetOpcode::G_LSHR: |
| return AArch64::LSRVXr; |
| case TargetOpcode::G_ASHR: |
| return AArch64::ASRVXr; |
| default: |
| return GenericOpc; |
| } |
| } |
| break; |
| case AArch64::FPRRegBankID: |
| switch (OpSize) { |
| case 32: |
| switch (GenericOpc) { |
| case TargetOpcode::G_FADD: |
| return AArch64::FADDSrr; |
| case TargetOpcode::G_FSUB: |
| return AArch64::FSUBSrr; |
| case TargetOpcode::G_FMUL: |
| return AArch64::FMULSrr; |
| case TargetOpcode::G_FDIV: |
| return AArch64::FDIVSrr; |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (GenericOpc) { |
| case TargetOpcode::G_FADD: |
| return AArch64::FADDDrr; |
| case TargetOpcode::G_FSUB: |
| return AArch64::FSUBDrr; |
| case TargetOpcode::G_FMUL: |
| return AArch64::FMULDrr; |
| case TargetOpcode::G_FDIV: |
| return AArch64::FDIVDrr; |
| case TargetOpcode::G_OR: |
| return AArch64::ORRv8i8; |
| default: |
| return GenericOpc; |
| } |
| } |
| break; |
| } |
| return GenericOpc; |
| } |
| |
| /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc, |
| /// appropriate for the (value) register bank \p RegBankID and of memory access |
| /// size \p OpSize. This returns the variant with the base+unsigned-immediate |
| /// addressing mode (e.g., LDRXui). |
| /// \returns \p GenericOpc if the combination is unsupported. |
| static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID, |
| unsigned OpSize) { |
| const bool isStore = GenericOpc == TargetOpcode::G_STORE; |
| switch (RegBankID) { |
| case AArch64::GPRRegBankID: |
| switch (OpSize) { |
| case 8: |
| return isStore ? AArch64::STRBBui : AArch64::LDRBBui; |
| case 16: |
| return isStore ? AArch64::STRHHui : AArch64::LDRHHui; |
| case 32: |
| return isStore ? AArch64::STRWui : AArch64::LDRWui; |
| case 64: |
| return isStore ? AArch64::STRXui : AArch64::LDRXui; |
| } |
| break; |
| case AArch64::FPRRegBankID: |
| switch (OpSize) { |
| case 8: |
| return isStore ? AArch64::STRBui : AArch64::LDRBui; |
| case 16: |
| return isStore ? AArch64::STRHui : AArch64::LDRHui; |
| case 32: |
| return isStore ? AArch64::STRSui : AArch64::LDRSui; |
| case 64: |
| return isStore ? AArch64::STRDui : AArch64::LDRDui; |
| case 128: |
| return isStore ? AArch64::STRQui : AArch64::LDRQui; |
| } |
| break; |
| } |
| return GenericOpc; |
| } |
| |
| #ifndef NDEBUG |
| /// Helper function that verifies that we have a valid copy at the end of |
| /// selectCopy. Verifies that the source and dest have the expected sizes and |
| /// then returns true. |
| static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const RegisterBankInfo &RBI) { |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI); |
| const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI); |
| |
| // Make sure the size of the source and dest line up. |
| assert( |
| (DstSize == SrcSize || |
| // Copies are a mean to setup initial types, the number of |
| // bits may not exactly match. |
| (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) || |
| // Copies are a mean to copy bits around, as long as we are |
| // on the same register class, that's fine. Otherwise, that |
| // means we need some SUBREG_TO_REG or AND & co. |
| (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) && |
| "Copy with different width?!"); |
| |
| // Check the size of the destination. |
| assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) && |
| "GPRs cannot get more than 64-bit width values"); |
| |
| return true; |
| } |
| #endif |
| |
| /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg |
| /// to \p *To. |
| /// |
| /// E.g "To = COPY SrcReg:SubReg" |
| static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI, |
| const RegisterBankInfo &RBI, Register SrcReg, |
| const TargetRegisterClass *To, unsigned SubReg) { |
| assert(SrcReg.isValid() && "Expected a valid source register?"); |
| assert(To && "Destination register class cannot be null"); |
| assert(SubReg && "Expected a valid subregister"); |
| |
| MachineIRBuilder MIB(I); |
| auto SubRegCopy = |
| MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg); |
| MachineOperand &RegOp = I.getOperand(1); |
| RegOp.setReg(SubRegCopy.getReg(0)); |
| |
| // It's possible that the destination register won't be constrained. Make |
| // sure that happens. |
| if (!Register::isPhysicalRegister(I.getOperand(0).getReg())) |
| RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI); |
| |
| return true; |
| } |
| |
| /// Helper function to get the source and destination register classes for a |
| /// copy. Returns a std::pair containing the source register class for the |
| /// copy, and the destination register class for the copy. If a register class |
| /// cannot be determined, then it will be nullptr. |
| static std::pair<const TargetRegisterClass *, const TargetRegisterClass *> |
| getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII, |
| MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
| const RegisterBankInfo &RBI) { |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(1).getReg(); |
| const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); |
| const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); |
| unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI); |
| unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI); |
| |
| // Special casing for cross-bank copies of s1s. We can technically represent |
| // a 1-bit value with any size of register. The minimum size for a GPR is 32 |
| // bits. So, we need to put the FPR on 32 bits as well. |
| // |
| // FIXME: I'm not sure if this case holds true outside of copies. If it does, |
| // then we can pull it into the helpers that get the appropriate class for a |
| // register bank. Or make a new helper that carries along some constraint |
| // information. |
| if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1)) |
| SrcSize = DstSize = 32; |
| |
| return {getMinClassForRegBank(SrcRegBank, SrcSize, true), |
| getMinClassForRegBank(DstRegBank, DstSize, true)}; |
| } |
| |
| static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII, |
| MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
| const RegisterBankInfo &RBI) { |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(1).getReg(); |
| const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); |
| const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); |
| |
| // Find the correct register classes for the source and destination registers. |
| const TargetRegisterClass *SrcRC; |
| const TargetRegisterClass *DstRC; |
| std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI); |
| |
| if (!DstRC) { |
| LLVM_DEBUG(dbgs() << "Unexpected dest size " |
| << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n'); |
| return false; |
| } |
| |
| // A couple helpers below, for making sure that the copy we produce is valid. |
| |
| // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want |
| // to verify that the src and dst are the same size, since that's handled by |
| // the SUBREG_TO_REG. |
| bool KnownValid = false; |
| |
| // Returns true, or asserts if something we don't expect happens. Instead of |
| // returning true, we return isValidCopy() to ensure that we verify the |
| // result. |
| auto CheckCopy = [&]() { |
| // If we have a bitcast or something, we can't have physical registers. |
| assert((I.isCopy() || |
| (!Register::isPhysicalRegister(I.getOperand(0).getReg()) && |
| !Register::isPhysicalRegister(I.getOperand(1).getReg()))) && |
| "No phys reg on generic operator!"); |
| bool ValidCopy = true; |
| #ifndef NDEBUG |
| ValidCopy = KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI); |
| assert(ValidCopy && "Invalid copy."); |
| #endif |
| (void)KnownValid; |
| return ValidCopy; |
| }; |
| |
| // Is this a copy? If so, then we may need to insert a subregister copy. |
| if (I.isCopy()) { |
| // Yes. Check if there's anything to fix up. |
| if (!SrcRC) { |
| LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n"); |
| return false; |
| } |
| |
| unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC); |
| unsigned DstSize = TRI.getRegSizeInBits(*DstRC); |
| unsigned SubReg; |
| |
| // If the source bank doesn't support a subregister copy small enough, |
| // then we first need to copy to the destination bank. |
| if (getMinSizeForRegBank(SrcRegBank) > DstSize) { |
| const TargetRegisterClass *DstTempRC = |
| getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true); |
| getSubRegForClass(DstRC, TRI, SubReg); |
| |
| MachineIRBuilder MIB(I); |
| auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg}); |
| copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg); |
| } else if (SrcSize > DstSize) { |
| // If the source register is bigger than the destination we need to |
| // perform a subregister copy. |
| const TargetRegisterClass *SubRegRC = |
| getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true); |
| getSubRegForClass(SubRegRC, TRI, SubReg); |
| copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg); |
| } else if (DstSize > SrcSize) { |
| // If the destination register is bigger than the source we need to do |
| // a promotion using SUBREG_TO_REG. |
| const TargetRegisterClass *PromotionRC = |
| getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true); |
| getSubRegForClass(SrcRC, TRI, SubReg); |
| |
| Register PromoteReg = MRI.createVirtualRegister(PromotionRC); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(AArch64::SUBREG_TO_REG), PromoteReg) |
| .addImm(0) |
| .addUse(SrcReg) |
| .addImm(SubReg); |
| MachineOperand &RegOp = I.getOperand(1); |
| RegOp.setReg(PromoteReg); |
| |
| // Promise that the copy is implicitly validated by the SUBREG_TO_REG. |
| KnownValid = true; |
| } |
| |
| // If the destination is a physical register, then there's nothing to |
| // change, so we're done. |
| if (Register::isPhysicalRegister(DstReg)) |
| return CheckCopy(); |
| } |
| |
| // No need to constrain SrcReg. It will get constrained when we hit another |
| // of its use or its defs. Copies do not have constraints. |
| if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << " operand\n"); |
| return false; |
| } |
| |
| // If this a GPR ZEXT that we want to just reduce down into a copy. |
| // The sizes will be mismatched with the source < 32b but that's ok. |
| if (I.getOpcode() == TargetOpcode::G_ZEXT) { |
| I.setDesc(TII.get(AArch64::COPY)); |
| assert(SrcRegBank.getID() == AArch64::GPRRegBankID); |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| } |
| |
| I.setDesc(TII.get(AArch64::COPY)); |
| return CheckCopy(); |
| } |
| |
| static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) { |
| if (!DstTy.isScalar() || !SrcTy.isScalar()) |
| return GenericOpc; |
| |
| const unsigned DstSize = DstTy.getSizeInBits(); |
| const unsigned SrcSize = SrcTy.getSizeInBits(); |
| |
| switch (DstSize) { |
| case 32: |
| switch (SrcSize) { |
| case 32: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUWSri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUWSri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUWSr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUWSr; |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUXSri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUXSri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUWDr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUWDr; |
| default: |
| return GenericOpc; |
| } |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (SrcSize) { |
| case 32: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUWDri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUWDri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUXSr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUXSr; |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUXDri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUXDri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUXDr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUXDr; |
| default: |
| return GenericOpc; |
| } |
| default: |
| return GenericOpc; |
| } |
| default: |
| return GenericOpc; |
| }; |
| return GenericOpc; |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitSelect(Register Dst, Register True, |
| Register False, AArch64CC::CondCode CC, |
| MachineIRBuilder &MIB) const { |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| assert(RBI.getRegBank(False, MRI, TRI)->getID() == |
| RBI.getRegBank(True, MRI, TRI)->getID() && |
| "Expected both select operands to have the same regbank?"); |
| LLT Ty = MRI.getType(True); |
| if (Ty.isVector()) |
| return nullptr; |
| const unsigned Size = Ty.getSizeInBits(); |
| assert((Size == 32 || Size == 64) && |
| "Expected 32 bit or 64 bit select only?"); |
| const bool Is32Bit = Size == 32; |
| if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) { |
| unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr; |
| auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC); |
| constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI); |
| return &*FCSel; |
| } |
| |
| // By default, we'll try and emit a CSEL. |
| unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr; |
| bool Optimized = false; |
| auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI, |
| &Optimized](Register &Reg, Register &OtherReg, |
| bool Invert) { |
| if (Optimized) |
| return false; |
| |
| // Attempt to fold: |
| // |
| // %sub = G_SUB 0, %x |
| // %select = G_SELECT cc, %reg, %sub |
| // |
| // Into: |
| // %select = CSNEG %reg, %x, cc |
| Register MatchReg; |
| if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) { |
| Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr; |
| Reg = MatchReg; |
| if (Invert) { |
| CC = AArch64CC::getInvertedCondCode(CC); |
| std::swap(Reg, OtherReg); |
| } |
| return true; |
| } |
| |
| // Attempt to fold: |
| // |
| // %xor = G_XOR %x, -1 |
| // %select = G_SELECT cc, %reg, %xor |
| // |
| // Into: |
| // %select = CSINV %reg, %x, cc |
| if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) { |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| Reg = MatchReg; |
| if (Invert) { |
| CC = AArch64CC::getInvertedCondCode(CC); |
| std::swap(Reg, OtherReg); |
| } |
| return true; |
| } |
| |
| // Attempt to fold: |
| // |
| // %add = G_ADD %x, 1 |
| // %select = G_SELECT cc, %reg, %add |
| // |
| // Into: |
| // %select = CSINC %reg, %x, cc |
| if (mi_match(Reg, MRI, |
| m_any_of(m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)), |
| m_GPtrAdd(m_Reg(MatchReg), m_SpecificICst(1))))) { |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| Reg = MatchReg; |
| if (Invert) { |
| CC = AArch64CC::getInvertedCondCode(CC); |
| std::swap(Reg, OtherReg); |
| } |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| // Helper lambda which tries to use CSINC/CSINV for the instruction when its |
| // true/false values are constants. |
| // FIXME: All of these patterns already exist in tablegen. We should be |
| // able to import these. |
| auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI, |
| &Optimized]() { |
| if (Optimized) |
| return false; |
| auto TrueCst = getIConstantVRegValWithLookThrough(True, MRI); |
| auto FalseCst = getIConstantVRegValWithLookThrough(False, MRI); |
| if (!TrueCst && !FalseCst) |
| return false; |
| |
| Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR; |
| if (TrueCst && FalseCst) { |
| int64_t T = TrueCst->Value.getSExtValue(); |
| int64_t F = FalseCst->Value.getSExtValue(); |
| |
| if (T == 0 && F == 1) { |
| // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| True = ZReg; |
| False = ZReg; |
| return true; |
| } |
| |
| if (T == 0 && F == -1) { |
| // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| True = ZReg; |
| False = ZReg; |
| return true; |
| } |
| } |
| |
| if (TrueCst) { |
| int64_t T = TrueCst->Value.getSExtValue(); |
| if (T == 1) { |
| // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| True = False; |
| False = ZReg; |
| CC = AArch64CC::getInvertedCondCode(CC); |
| return true; |
| } |
| |
| if (T == -1) { |
| // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| True = False; |
| False = ZReg; |
| CC = AArch64CC::getInvertedCondCode(CC); |
| return true; |
| } |
| } |
| |
| if (FalseCst) { |
| int64_t F = FalseCst->Value.getSExtValue(); |
| if (F == 1) { |
| // G_SELECT cc, t, 1 -> CSINC t, zreg, cc |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| False = ZReg; |
| return true; |
| } |
| |
| if (F == -1) { |
| // G_SELECT cc, t, -1 -> CSINC t, zreg, cc |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| False = ZReg; |
| return true; |
| } |
| } |
| return false; |
| }; |
| |
| Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false); |
| Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true); |
| Optimized |= TryOptSelectCst(); |
| auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC); |
| constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI); |
| return &*SelectInst; |
| } |
| |
| static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) { |
| switch (P) { |
| default: |
| llvm_unreachable("Unknown condition code!"); |
| case CmpInst::ICMP_NE: |
| return AArch64CC::NE; |
| case CmpInst::ICMP_EQ: |
| return AArch64CC::EQ; |
| case CmpInst::ICMP_SGT: |
| return AArch64CC::GT; |
| case CmpInst::ICMP_SGE: |
| return AArch64CC::GE; |
| case CmpInst::ICMP_SLT: |
| return AArch64CC::LT; |
| case CmpInst::ICMP_SLE: |
| return AArch64CC::LE; |
| case CmpInst::ICMP_UGT: |
| return AArch64CC::HI; |
| case CmpInst::ICMP_UGE: |
| return AArch64CC::HS; |
| case CmpInst::ICMP_ULT: |
| return AArch64CC::LO; |
| case CmpInst::ICMP_ULE: |
| return AArch64CC::LS; |
| } |
| } |
| |
| /// Return a register which can be used as a bit to test in a TB(N)Z. |
| static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert, |
| MachineRegisterInfo &MRI) { |
| assert(Reg.isValid() && "Expected valid register!"); |
| bool HasZext = false; |
| while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) { |
| unsigned Opc = MI->getOpcode(); |
| |
| if (!MI->getOperand(0).isReg() || |
| !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) |
| break; |
| |
| // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. |
| // |
| // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number |
| // on the truncated x is the same as the bit number on x. |
| if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT || |
| Opc == TargetOpcode::G_TRUNC) { |
| if (Opc == TargetOpcode::G_ZEXT) |
| HasZext = true; |
| |
| Register NextReg = MI->getOperand(1).getReg(); |
| // Did we find something worth folding? |
| if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg)) |
| break; |
| |
| // NextReg is worth folding. Keep looking. |
| Reg = NextReg; |
| continue; |
| } |
| |
| // Attempt to find a suitable operation with a constant on one side. |
| Optional<uint64_t> C; |
| Register TestReg; |
| switch (Opc) { |
| default: |
| break; |
| case TargetOpcode::G_AND: |
| case TargetOpcode::G_XOR: { |
| TestReg = MI->getOperand(1).getReg(); |
| Register ConstantReg = MI->getOperand(2).getReg(); |
| auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI); |
| if (!VRegAndVal) { |
| // AND commutes, check the other side for a constant. |
| // FIXME: Can we canonicalize the constant so that it's always on the |
| // same side at some point earlier? |
| std::swap(ConstantReg, TestReg); |
| VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI); |
| } |
| if (VRegAndVal) { |
| if (HasZext) |
| C = VRegAndVal->Value.getZExtValue(); |
| else |
| C = VRegAndVal->Value.getSExtValue(); |
| } |
| break; |
| } |
| case TargetOpcode::G_ASHR: |
| case TargetOpcode::G_LSHR: |
| case TargetOpcode::G_SHL: { |
| TestReg = MI->getOperand(1).getReg(); |
| auto VRegAndVal = |
| getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); |
| if (VRegAndVal) |
| C = VRegAndVal->Value.getSExtValue(); |
| break; |
| } |
| } |
| |
| // Didn't find a constant or viable register. Bail out of the loop. |
| if (!C || !TestReg.isValid()) |
| break; |
| |
| // We found a suitable instruction with a constant. Check to see if we can |
| // walk through the instruction. |
| Register NextReg; |
| unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits(); |
| switch (Opc) { |
| default: |
| break; |
| case TargetOpcode::G_AND: |
| // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set. |
| if ((*C >> Bit) & 1) |
| NextReg = TestReg; |
| break; |
| case TargetOpcode::G_SHL: |
| // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in |
| // the type of the register. |
| if (*C <= Bit && (Bit - *C) < TestRegSize) { |
| NextReg = TestReg; |
| Bit = Bit - *C; |
| } |
| break; |
| case TargetOpcode::G_ASHR: |
| // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits |
| // in x |
| NextReg = TestReg; |
| Bit = Bit + *C; |
| if (Bit >= TestRegSize) |
| Bit = TestRegSize - 1; |
| break; |
| case TargetOpcode::G_LSHR: |
| // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x |
| if ((Bit + *C) < TestRegSize) { |
| NextReg = TestReg; |
| Bit = Bit + *C; |
| } |
| break; |
| case TargetOpcode::G_XOR: |
| // We can walk through a G_XOR by inverting whether we use tbz/tbnz when |
| // appropriate. |
| // |
| // e.g. If x' = xor x, c, and the b-th bit is set in c then |
| // |
| // tbz x', b -> tbnz x, b |
| // |
| // Because x' only has the b-th bit set if x does not. |
| if ((*C >> Bit) & 1) |
| Invert = !Invert; |
| NextReg = TestReg; |
| break; |
| } |
| |
| // Check if we found anything worth folding. |
| if (!NextReg.isValid()) |
| return Reg; |
| Reg = NextReg; |
| } |
| |
| return Reg; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitTestBit( |
| Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const { |
| assert(TestReg.isValid()); |
| assert(ProduceNonFlagSettingCondBr && |
| "Cannot emit TB(N)Z with speculation tracking!"); |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| |
| // Attempt to optimize the test bit by walking over instructions. |
| TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI); |
| LLT Ty = MRI.getType(TestReg); |
| unsigned Size = Ty.getSizeInBits(); |
| assert(!Ty.isVector() && "Expected a scalar!"); |
| assert(Bit < 64 && "Bit is too large!"); |
| |
| // When the test register is a 64-bit register, we have to narrow to make |
| // TBNZW work. |
| bool UseWReg = Bit < 32; |
| unsigned NecessarySize = UseWReg ? 32 : 64; |
| if (Size != NecessarySize) |
| TestReg = moveScalarRegClass( |
| TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass, |
| MIB); |
| |
| static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX}, |
| {AArch64::TBZW, AArch64::TBNZW}}; |
| unsigned Opc = OpcTable[UseWReg][IsNegative]; |
| auto TestBitMI = |
| MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB); |
| constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI); |
| return &*TestBitMI; |
| } |
| |
| bool AArch64InstructionSelector::tryOptAndIntoCompareBranch( |
| MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const { |
| assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?"); |
| // Given something like this: |
| // |
| // %x = ...Something... |
| // %one = G_CONSTANT i64 1 |
| // %zero = G_CONSTANT i64 0 |
| // %and = G_AND %x, %one |
| // %cmp = G_ICMP intpred(ne), %and, %zero |
| // %cmp_trunc = G_TRUNC %cmp |
| // G_BRCOND %cmp_trunc, %bb.3 |
| // |
| // We want to try and fold the AND into the G_BRCOND and produce either a |
| // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)). |
| // |
| // In this case, we'd get |
| // |
| // TBNZ %x %bb.3 |
| // |
| |
| // Check if the AND has a constant on its RHS which we can use as a mask. |
| // If it's a power of 2, then it's the same as checking a specific bit. |
| // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set) |
| auto MaybeBit = getIConstantVRegValWithLookThrough( |
| AndInst.getOperand(2).getReg(), *MIB.getMRI()); |
| if (!MaybeBit) |
| return false; |
| |
| int32_t Bit = MaybeBit->Value.exactLogBase2(); |
| if (Bit < 0) |
| return false; |
| |
| Register TestReg = AndInst.getOperand(1).getReg(); |
| |
| // Emit a TB(N)Z. |
| emitTestBit(TestReg, Bit, Invert, DstMBB, MIB); |
| return true; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg, |
| bool IsNegative, |
| MachineBasicBlock *DestMBB, |
| MachineIRBuilder &MIB) const { |
| assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!"); |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() == |
| AArch64::GPRRegBankID && |
| "Expected GPRs only?"); |
| auto Ty = MRI.getType(CompareReg); |
| unsigned Width = Ty.getSizeInBits(); |
| assert(!Ty.isVector() && "Expected scalar only?"); |
| assert(Width <= 64 && "Expected width to be at most 64?"); |
| static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX}, |
| {AArch64::CBNZW, AArch64::CBNZX}}; |
| unsigned Opc = OpcTable[IsNegative][Width == 64]; |
| auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB); |
| constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI); |
| return &*BranchMI; |
| } |
| |
| bool AArch64InstructionSelector::selectCompareBranchFedByFCmp( |
| MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const { |
| assert(FCmp.getOpcode() == TargetOpcode::G_FCMP); |
| assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't |
| // totally clean. Some of them require two branches to implement. |
| auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate(); |
| emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB, |
| Pred); |
| AArch64CC::CondCode CC1, CC2; |
| changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2); |
| MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); |
| MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB); |
| if (CC2 != AArch64CC::AL) |
| MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp( |
| MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { |
| assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); |
| assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z. |
| // |
| // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z |
| // instructions will not be produced, as they are conditional branch |
| // instructions that do not set flags. |
| if (!ProduceNonFlagSettingCondBr) |
| return false; |
| |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); |
| auto Pred = |
| static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate()); |
| Register LHS = ICmp.getOperand(2).getReg(); |
| Register RHS = ICmp.getOperand(3).getReg(); |
| |
| // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that. |
| auto VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI); |
| MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI); |
| |
| // When we can emit a TB(N)Z, prefer that. |
| // |
| // Handle non-commutative condition codes first. |
| // Note that we don't want to do this when we have a G_AND because it can |
| // become a tst. The tst will make the test bit in the TB(N)Z redundant. |
| if (VRegAndVal && !AndInst) { |
| int64_t C = VRegAndVal->Value.getSExtValue(); |
| |
| // When we have a greater-than comparison, we can just test if the msb is |
| // zero. |
| if (C == -1 && Pred == CmpInst::ICMP_SGT) { |
| uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1; |
| emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // When we have a less than comparison, we can just test if the msb is not |
| // zero. |
| if (C == 0 && Pred == CmpInst::ICMP_SLT) { |
| uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1; |
| emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| } |
| |
| // Attempt to handle commutative condition codes. Right now, that's only |
| // eq/ne. |
| if (ICmpInst::isEquality(Pred)) { |
| if (!VRegAndVal) { |
| std::swap(RHS, LHS); |
| VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI); |
| AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI); |
| } |
| |
| if (VRegAndVal && VRegAndVal->Value == 0) { |
| // If there's a G_AND feeding into this branch, try to fold it away by |
| // emitting a TB(N)Z instead. |
| // |
| // Note: If we have LT, then it *is* possible to fold, but it wouldn't be |
| // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding |
| // would be redundant. |
| if (AndInst && |
| tryOptAndIntoCompareBranch( |
| *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) { |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // Otherwise, try to emit a CB(N)Z instead. |
| auto LHSTy = MRI.getType(LHS); |
| if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) { |
| emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool AArch64InstructionSelector::selectCompareBranchFedByICmp( |
| MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { |
| assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); |
| assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| if (tryOptCompareBranchFedByICmp(I, ICmp, MIB)) |
| return true; |
| |
| // Couldn't optimize. Emit a compare + a Bcc. |
| MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); |
| auto PredOp = ICmp.getOperand(1); |
| emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB); |
| const AArch64CC::CondCode CC = changeICMPPredToAArch64CC( |
| static_cast<CmpInst::Predicate>(PredOp.getPredicate())); |
| MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectCompareBranch( |
| MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) { |
| Register CondReg = I.getOperand(0).getReg(); |
| MachineInstr *CCMI = MRI.getVRegDef(CondReg); |
| if (CCMI->getOpcode() == TargetOpcode::G_TRUNC) { |
| CondReg = CCMI->getOperand(1).getReg(); |
| CCMI = MRI.getVRegDef(CondReg); |
| } |
| |
| // Try to select the G_BRCOND using whatever is feeding the condition if |
| // possible. |
| unsigned CCMIOpc = CCMI->getOpcode(); |
| if (CCMIOpc == TargetOpcode::G_FCMP) |
| return selectCompareBranchFedByFCmp(I, *CCMI, MIB); |
| if (CCMIOpc == TargetOpcode::G_ICMP) |
| return selectCompareBranchFedByICmp(I, *CCMI, MIB); |
| |
| // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z |
| // instructions will not be produced, as they are conditional branch |
| // instructions that do not set flags. |
| if (ProduceNonFlagSettingCondBr) { |
| emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true, |
| I.getOperand(1).getMBB(), MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead. |
| auto TstMI = |
| MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1); |
| constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI); |
| auto Bcc = MIB.buildInstr(AArch64::Bcc) |
| .addImm(AArch64CC::EQ) |
| .addMBB(I.getOperand(1).getMBB()); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI); |
| } |
| |
| /// Returns the element immediate value of a vector shift operand if found. |
| /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR. |
| static Optional<int64_t> getVectorShiftImm(Register Reg, |
| MachineRegisterInfo &MRI) { |
| assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand"); |
| MachineInstr *OpMI = MRI.getVRegDef(Reg); |
| assert(OpMI && "Expected to find a vreg def for vector shift operand"); |
| return getAArch64VectorSplatScalar(*OpMI, MRI); |
| } |
| |
| /// Matches and returns the shift immediate value for a SHL instruction given |
| /// a shift operand. |
| static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) { |
| Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI); |
| if (!ShiftImm) |
| return None; |
| // Check the immediate is in range for a SHL. |
| int64_t Imm = *ShiftImm; |
| if (Imm < 0) |
| return None; |
| switch (SrcTy.getElementType().getSizeInBits()) { |
| default: |
| LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift"); |
| return None; |
| case 8: |
| if (Imm > 7) |
| return None; |
| break; |
| case 16: |
| if (Imm > 15) |
| return None; |
| break; |
| case 32: |
| if (Imm > 31) |
| return None; |
| break; |
| case 64: |
| if (Imm > 63) |
| return None; |
| break; |
| } |
| return Imm; |
| } |
| |
| bool AArch64InstructionSelector::selectVectorSHL(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_SHL); |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT Ty = MRI.getType(DstReg); |
| Register Src1Reg = I.getOperand(1).getReg(); |
| Register Src2Reg = I.getOperand(2).getReg(); |
| |
| if (!Ty.isVector()) |
| return false; |
| |
| // Check if we have a vector of constants on RHS that we can select as the |
| // immediate form. |
| Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI); |
| |
| unsigned Opc = 0; |
| if (Ty == LLT::fixed_vector(2, 64)) { |
| Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64; |
| } else if (Ty == LLT::fixed_vector(4, 32)) { |
| Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32; |
| } else if (Ty == LLT::fixed_vector(2, 32)) { |
| Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32; |
| } else if (Ty == LLT::fixed_vector(4, 16)) { |
| Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16; |
| } else if (Ty == LLT::fixed_vector(8, 16)) { |
| Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16; |
| } else if (Ty == LLT::fixed_vector(16, 8)) { |
| Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8; |
| } else if (Ty == LLT::fixed_vector(8, 8)) { |
| Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8; |
| } else { |
| LLVM_DEBUG(dbgs() << "Unhandled G_SHL type"); |
| return false; |
| } |
| |
| auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg}); |
| if (ImmVal) |
| Shl.addImm(*ImmVal); |
| else |
| Shl.addUse(Src2Reg); |
| constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectVectorAshrLshr( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_ASHR || |
| I.getOpcode() == TargetOpcode::G_LSHR); |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT Ty = MRI.getType(DstReg); |
| Register Src1Reg = I.getOperand(1).getReg(); |
| Register Src2Reg = I.getOperand(2).getReg(); |
| |
| if (!Ty.isVector()) |
| return false; |
| |
| bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR; |
| |
| // We expect the immediate case to be lowered in the PostLegalCombiner to |
| // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents. |
| |
| // There is not a shift right register instruction, but the shift left |
| // register instruction takes a signed value, where negative numbers specify a |
| // right shift. |
| |
| unsigned Opc = 0; |
| unsigned NegOpc = 0; |
| const TargetRegisterClass *RC = |
| getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID), RBI); |
| if (Ty == LLT::fixed_vector(2, 64)) { |
| Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64; |
| NegOpc = AArch64::NEGv2i64; |
| } else if (Ty == LLT::fixed_vector(4, 32)) { |
| Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32; |
| NegOpc = AArch64::NEGv4i32; |
| } else if (Ty == LLT::fixed_vector(2, 32)) { |
| Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32; |
| NegOpc = AArch64::NEGv2i32; |
| } else if (Ty == LLT::fixed_vector(4, 16)) { |
| Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16; |
| NegOpc = AArch64::NEGv4i16; |
| } else if (Ty == LLT::fixed_vector(8, 16)) { |
| Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16; |
| NegOpc = AArch64::NEGv8i16; |
| } else if (Ty == LLT::fixed_vector(16, 8)) { |
| Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8; |
| NegOpc = AArch64::NEGv16i8; |
| } else if (Ty == LLT::fixed_vector(8, 8)) { |
| Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8; |
| NegOpc = AArch64::NEGv8i8; |
| } else { |
| LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type"); |
| return false; |
| } |
| |
| auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg}); |
| constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI); |
| auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg}); |
| constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectVaStartAAPCS( |
| MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { |
| return false; |
| } |
| |
| bool AArch64InstructionSelector::selectVaStartDarwin( |
| MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { |
| AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| Register ListReg = I.getOperand(0).getReg(); |
| |
| Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| |
| auto MIB = |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri)) |
| .addDef(ArgsAddrReg) |
| .addFrameIndex(FuncInfo->getVarArgsStackIndex()) |
| .addImm(0) |
| .addImm(0); |
| |
| constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); |
| |
| MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui)) |
| .addUse(ArgsAddrReg) |
| .addUse(ListReg) |
| .addImm(0) |
| .addMemOperand(*I.memoperands_begin()); |
| |
| constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| void AArch64InstructionSelector::materializeLargeCMVal( |
| MachineInstr &I, const Value *V, unsigned OpFlags) { |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {}); |
| MovZ->addOperand(MF, I.getOperand(1)); |
| MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 | |
| AArch64II::MO_NC); |
| MovZ->addOperand(MF, MachineOperand::CreateImm(0)); |
| constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI); |
| |
| auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset, |
| Register ForceDstReg) { |
| Register DstReg = ForceDstReg |
| ? ForceDstReg |
| : MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg); |
| if (auto *GV = dyn_cast<GlobalValue>(V)) { |
| MovI->addOperand(MF, MachineOperand::CreateGA( |
| GV, MovZ->getOperand(1).getOffset(), Flags)); |
| } else { |
| MovI->addOperand( |
| MF, MachineOperand::CreateBA(cast<BlockAddress>(V), |
| MovZ->getOperand(1).getOffset(), Flags)); |
| } |
| MovI->addOperand(MF, MachineOperand::CreateImm(Offset)); |
| constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI); |
| return DstReg; |
| }; |
| Register DstReg = BuildMovK(MovZ.getReg(0), |
| AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0); |
| DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0); |
| BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg()); |
| } |
| |
| bool AArch64InstructionSelector::preISelLower(MachineInstr &I) { |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| switch (I.getOpcode()) { |
| case TargetOpcode::G_STORE: { |
| bool Changed = contractCrossBankCopyIntoStore(I, MRI); |
| MachineOperand &SrcOp = I.getOperand(0); |
| if (MRI.getType(SrcOp.getReg()).isPointer()) { |
| // Allow matching with imported patterns for stores of pointers. Unlike |
| // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy |
| // and constrain. |
| auto Copy = MIB.buildCopy(LLT::scalar(64), SrcOp); |
| Register NewSrc = Copy.getReg(0); |
| SrcOp.setReg(NewSrc); |
| RBI.constrainGenericRegister(NewSrc, AArch64::GPR64RegClass, MRI); |
| Changed = true; |
| } |
| return Changed; |
| } |
| case TargetOpcode::G_PTR_ADD: |
| return convertPtrAddToAdd(I, MRI); |
| case TargetOpcode::G_LOAD: { |
| // For scalar loads of pointers, we try to convert the dest type from p0 |
| // to s64 so that our imported patterns can match. Like with the G_PTR_ADD |
| // conversion, this should be ok because all users should have been |
| // selected already, so the type doesn't matter for them. |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT DstTy = MRI.getType(DstReg); |
| if (!DstTy.isPointer()) |
| return false; |
| MRI.setType(DstReg, LLT::scalar(64)); |
| return true; |
| } |
| case AArch64::G_DUP: { |
| // Convert the type from p0 to s64 to help selection. |
| LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| if (!DstTy.getElementType().isPointer()) |
| return false; |
| auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg()); |
| MRI.setType(I.getOperand(0).getReg(), |
| DstTy.changeElementType(LLT::scalar(64))); |
| MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass); |
| I.getOperand(1).setReg(NewSrc.getReg(0)); |
| return true; |
| } |
| case TargetOpcode::G_UITOFP: |
| case TargetOpcode::G_SITOFP: { |
| // If both source and destination regbanks are FPR, then convert the opcode |
| // to G_SITOF so that the importer can select it to an fpr variant. |
| // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank |
| // copy. |
| Register SrcReg = I.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
| return false; |
| |
| if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) { |
| if (I.getOpcode() == TargetOpcode::G_SITOFP) |
| I.setDesc(TII.get(AArch64::G_SITOF)); |
| else |
| I.setDesc(TII.get(AArch64::G_UITOF)); |
| return true; |
| } |
| return false; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| /// This lowering tries to look for G_PTR_ADD instructions and then converts |
| /// them to a standard G_ADD with a COPY on the source. |
| /// |
| /// The motivation behind this is to expose the add semantics to the imported |
| /// tablegen patterns. We shouldn't need to check for uses being loads/stores, |
| /// because the selector works bottom up, uses before defs. By the time we |
| /// end up trying to select a G_PTR_ADD, we should have already attempted to |
| /// fold this into addressing modes and were therefore unsuccessful. |
| bool AArch64InstructionSelector::convertPtrAddToAdd( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); |
| Register DstReg = I.getOperand(0).getReg(); |
| Register AddOp1Reg = I.getOperand(1).getReg(); |
| const LLT PtrTy = MRI.getType(DstReg); |
| if (PtrTy.getAddressSpace() != 0) |
| return false; |
| |
| const LLT CastPtrTy = |
| PtrTy.isVector() ? LLT::fixed_vector(2, 64) : LLT::scalar(64); |
| auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg); |
| // Set regbanks on the registers. |
| if (PtrTy.isVector()) |
| MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID)); |
| else |
| MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID)); |
| |
| // Now turn the %dst(p0) = G_PTR_ADD %base, off into: |
| // %dst(intty) = G_ADD %intbase, off |
| I.setDesc(TII.get(TargetOpcode::G_ADD)); |
| MRI.setType(DstReg, CastPtrTy); |
| I.getOperand(1).setReg(PtrToInt.getReg(0)); |
| if (!select(*PtrToInt)) { |
| LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd"); |
| return false; |
| } |
| |
| // Also take the opportunity here to try to do some optimization. |
| // Try to convert this into a G_SUB if the offset is a 0-x negate idiom. |
| Register NegatedReg; |
| if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg)))) |
| return true; |
| I.getOperand(2).setReg(NegatedReg); |
| I.setDesc(TII.get(TargetOpcode::G_SUB)); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::earlySelectSHL(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| // We try to match the immediate variant of LSL, which is actually an alias |
| // for a special case of UBFM. Otherwise, we fall back to the imported |
| // selector which will match the register variant. |
| assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op"); |
| const auto &MO = I.getOperand(2); |
| auto VRegAndVal = getIConstantVRegVal(MO.getReg(), MRI); |
| if (!VRegAndVal) |
| return false; |
| |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| if (DstTy.isVector()) |
| return false; |
| bool Is64Bit = DstTy.getSizeInBits() == 64; |
| auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO); |
| auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO); |
| |
| if (!Imm1Fn || !Imm2Fn) |
| return false; |
| |
| auto NewI = |
| MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri, |
| {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()}); |
| |
| for (auto &RenderFn : *Imm1Fn) |
| RenderFn(NewI); |
| for (auto &RenderFn : *Imm2Fn) |
| RenderFn(NewI); |
| |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI); |
| } |
| |
| bool AArch64InstructionSelector::contractCrossBankCopyIntoStore( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE"); |
| // If we're storing a scalar, it doesn't matter what register bank that |
| // scalar is on. All that matters is the size. |
| // |
| // So, if we see something like this (with a 32-bit scalar as an example): |
| // |
| // %x:gpr(s32) = ... something ... |
| // %y:fpr(s32) = COPY %x:gpr(s32) |
| // G_STORE %y:fpr(s32) |
| // |
| // We can fix this up into something like this: |
| // |
| // G_STORE %x:gpr(s32) |
| // |
| // And then continue the selection process normally. |
| Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI); |
| if (!DefDstReg.isValid()) |
| return false; |
| LLT DefDstTy = MRI.getType(DefDstReg); |
| Register StoreSrcReg = I.getOperand(0).getReg(); |
| LLT StoreSrcTy = MRI.getType(StoreSrcReg); |
| |
| // If we get something strange like a physical register, then we shouldn't |
| // go any further. |
| if (!DefDstTy.isValid()) |
| return false; |
| |
| // Are the source and dst types the same size? |
| if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits()) |
| return false; |
| |
| if (RBI.getRegBank(StoreSrcReg, MRI, TRI) == |
| RBI.getRegBank(DefDstReg, MRI, TRI)) |
| return false; |
| |
| // We have a cross-bank copy, which is entering a store. Let's fold it. |
| I.getOperand(0).setReg(DefDstReg); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::earlySelect(MachineInstr &I) { |
| assert(I.getParent() && "Instruction should be in a basic block!"); |
| assert(I.getParent()->getParent() && "Instruction should be in a function!"); |
| |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| switch (I.getOpcode()) { |
| case AArch64::G_DUP: { |
| // Before selecting a DUP instruction, check if it is better selected as a |
| // MOV or load from a constant pool. |
| Register Src = I.getOperand(1).getReg(); |
| auto ValAndVReg = getIConstantVRegValWithLookThrough(Src, MRI); |
| if (!ValAndVReg) |
| return false; |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| Register Dst = I.getOperand(0).getReg(); |
| auto *CV = ConstantDataVector::getSplat( |
| MRI.getType(Dst).getNumElements(), |
| ConstantInt::get(Type::getIntNTy(Ctx, MRI.getType(Src).getSizeInBits()), |
| ValAndVReg->Value)); |
| if (!emitConstantVector(Dst, CV, MIB, MRI)) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_SEXT: |
| // Check for i64 sext(i32 vector_extract) prior to tablegen to select SMOV |
| // over a normal extend. |
| if (selectUSMovFromExtend(I, MRI)) |
| return true; |
| return false; |
| case TargetOpcode::G_BR: |
| return false; |
| case TargetOpcode::G_SHL: |
| return earlySelectSHL(I, MRI); |
| case TargetOpcode::G_CONSTANT: { |
| bool IsZero = false; |
| if (I.getOperand(1).isCImm()) |
| IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0; |
| else if (I.getOperand(1).isImm()) |
| IsZero = I.getOperand(1).getImm() == 0; |
| |
| if (!IsZero) |
| return false; |
| |
| Register DefReg = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DefReg); |
| if (Ty.getSizeInBits() == 64) { |
| I.getOperand(1).ChangeToRegister(AArch64::XZR, false); |
| RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI); |
| } else if (Ty.getSizeInBits() == 32) { |
| I.getOperand(1).ChangeToRegister(AArch64::WZR, false); |
| RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI); |
| } else |
| return false; |
| |
| I.setDesc(TII.get(TargetOpcode::COPY)); |
| return true; |
| } |
| |
| case TargetOpcode::G_ADD: { |
| // Check if this is being fed by a G_ICMP on either side. |
| // |
| // (cmp pred, x, y) + z |
| // |
| // In the above case, when the cmp is true, we increment z by 1. So, we can |
| // fold the add into the cset for the cmp by using cinc. |
| // |
| // FIXME: This would probably be a lot nicer in PostLegalizerLowering. |
| Register AddDst = I.getOperand(0).getReg(); |
| Register AddLHS = I.getOperand(1).getReg(); |
| Register AddRHS = I.getOperand(2).getReg(); |
| // Only handle scalars. |
| LLT Ty = MRI.getType(AddLHS); |
| if (Ty.isVector()) |
| return false; |
| // Since G_ICMP is modeled as ADDS/SUBS/ANDS, we can handle 32 bits or 64 |
| // bits. |
| unsigned Size = Ty.getSizeInBits(); |
| if (Size != 32 && Size != 64) |
| return false; |
| auto MatchCmp = [&](Register Reg) -> MachineInstr * { |
| if (!MRI.hasOneNonDBGUse(Reg)) |
| return nullptr; |
| // If the LHS of the add is 32 bits, then we want to fold a 32-bit |
| // compare. |
| if (Size == 32) |
| return getOpcodeDef(TargetOpcode::G_ICMP, Reg, MRI); |
| // We model scalar compares using 32-bit destinations right now. |
| // If it's a 64-bit compare, it'll have 64-bit sources. |
| Register ZExt; |
| if (!mi_match(Reg, MRI, |
| m_OneNonDBGUse(m_GZExt(m_OneNonDBGUse(m_Reg(ZExt)))))) |
| return nullptr; |
| auto *Cmp = getOpcodeDef(TargetOpcode::G_ICMP, ZExt, MRI); |
| if (!Cmp || |
| MRI.getType(Cmp->getOperand(2).getReg()).getSizeInBits() != 64) |
| return nullptr; |
| return Cmp; |
| }; |
| // Try to match |
| // z + (cmp pred, x, y) |
| MachineInstr *Cmp = MatchCmp(AddRHS); |
| if (!Cmp) { |
| // (cmp pred, x, y) + z |
| std::swap(AddLHS, AddRHS); |
| Cmp = MatchCmp(AddRHS); |
| if (!Cmp) |
| return false; |
| } |
| auto &PredOp = Cmp->getOperand(1); |
| auto Pred = static_cast<CmpInst::Predicate>(PredOp.getPredicate()); |
| const AArch64CC::CondCode InvCC = |
| changeICMPPredToAArch64CC(CmpInst::getInversePredicate(Pred)); |
| MIB.setInstrAndDebugLoc(I); |
| emitIntegerCompare(/*LHS=*/Cmp->getOperand(2), |
| /*RHS=*/Cmp->getOperand(3), PredOp, MIB); |
| emitCSINC(/*Dst=*/AddDst, /*Src =*/AddLHS, /*Src2=*/AddLHS, InvCC, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_OR: { |
| // Look for operations that take the lower `Width=Size-ShiftImm` bits of |
| // `ShiftSrc` and insert them into the upper `Width` bits of `MaskSrc` via |
| // shifting and masking that we can replace with a BFI (encoded as a BFM). |
| Register Dst = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(Dst); |
| |
| if (!Ty.isScalar()) |
| return false; |
| |
| unsigned Size = Ty.getSizeInBits(); |
| if (Size != 32 && Size != 64) |
| return false; |
| |
| Register ShiftSrc; |
| int64_t ShiftImm; |
| Register MaskSrc; |
| int64_t MaskImm; |
| if (!mi_match( |
| Dst, MRI, |
| m_GOr(m_OneNonDBGUse(m_GShl(m_Reg(ShiftSrc), m_ICst(ShiftImm))), |
| m_OneNonDBGUse(m_GAnd(m_Reg(MaskSrc), m_ICst(MaskImm)))))) |
| return false; |
| |
| if (ShiftImm > Size || ((1ULL << ShiftImm) - 1ULL) != uint64_t(MaskImm)) |
| return false; |
| |
| int64_t Immr = Size - ShiftImm; |
| int64_t Imms = Size - ShiftImm - 1; |
| unsigned Opc = Size == 32 ? AArch64::BFMWri : AArch64::BFMXri; |
| emitInstr(Opc, {Dst}, {MaskSrc, ShiftSrc, Immr, Imms}, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| bool AArch64InstructionSelector::select(MachineInstr &I) { |
| assert(I.getParent() && "Instruction should be in a basic block!"); |
| assert(I.getParent()->getParent() && "Instruction should be in a function!"); |
| |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| const AArch64Subtarget *Subtarget = |
| &static_cast<const AArch64Subtarget &>(MF.getSubtarget()); |
| if (Subtarget->requiresStrictAlign()) { |
| // We don't support this feature yet. |
| LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n"); |
| return false; |
| } |
| |
| MIB.setInstrAndDebugLoc(I); |
| |
| unsigned Opcode = I.getOpcode(); |
| // G_PHI requires same handling as PHI |
| if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) { |
| // Certain non-generic instructions also need some special handling. |
| |
| if (Opcode == TargetOpcode::LOAD_STACK_GUARD) |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| |
| if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) { |
| const Register DefReg = I.getOperand(0).getReg(); |
| const LLT DefTy = MRI.getType(DefReg); |
| |
| const RegClassOrRegBank &RegClassOrBank = |
| MRI.getRegClassOrRegBank(DefReg); |
| |
| const TargetRegisterClass *DefRC |
| = RegClassOrBank.dyn_cast<const TargetRegisterClass *>(); |
| if (!DefRC) { |
| if (!DefTy.isValid()) { |
| LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n"); |
| return false; |
| } |
| const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>(); |
| DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI); |
| if (!DefRC) { |
| LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n"); |
| return false; |
| } |
| } |
| |
| I.setDesc(TII.get(TargetOpcode::PHI)); |
| |
| return RBI.constrainGenericRegister(DefReg, *DefRC, MRI); |
| } |
| |
| if (I.isCopy()) |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| |
| return true; |
| } |
| |
| |
| if (I.getNumOperands() != I.getNumExplicitOperands()) { |
| LLVM_DEBUG( |
| dbgs() << "Generic instruction has unexpected implicit operands\n"); |
| return false; |
| } |
| |
| // Try to do some lowering before we start instruction selecting. These |
| // lowerings are purely transformations on the input G_MIR and so selection |
| // must continue after any modification of the instruction. |
| if (preISelLower(I)) { |
| Opcode = I.getOpcode(); // The opcode may have been modified, refresh it. |
| } |
| |
| // There may be patterns where the importer can't deal with them optimally, |
| // but does select it to a suboptimal sequence so our custom C++ selection |
| // code later never has a chance to work on it. Therefore, we have an early |
| // selection attempt here to give priority to certain selection routines |
| // over the imported ones. |
| if (earlySelect(I)) |
| return true; |
| |
| if (selectImpl(I, *CoverageInfo)) |
| return true; |
| |
| LLT Ty = |
| I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{}; |
| |
| switch (Opcode) { |
| case TargetOpcode::G_SBFX: |
| case TargetOpcode::G_UBFX: { |
| static const unsigned OpcTable[2][2] = { |
| {AArch64::UBFMWri, AArch64::UBFMXri}, |
| {AArch64::SBFMWri, AArch64::SBFMXri}}; |
| bool IsSigned = Opcode == TargetOpcode::G_SBFX; |
| unsigned Size = Ty.getSizeInBits(); |
| unsigned Opc = OpcTable[IsSigned][Size == 64]; |
| auto Cst1 = |
| getIConstantVRegValWithLookThrough(I.getOperand(2).getReg(), MRI); |
| assert(Cst1 && "Should have gotten a constant for src 1?"); |
| auto Cst2 = |
| getIConstantVRegValWithLookThrough(I.getOperand(3).getReg(), MRI); |
| assert(Cst2 && "Should have gotten a constant for src 2?"); |
| auto LSB = Cst1->Value.getZExtValue(); |
| auto Width = Cst2->Value.getZExtValue(); |
| auto BitfieldInst = |
| MIB.buildInstr(Opc, {I.getOperand(0)}, {I.getOperand(1)}) |
| .addImm(LSB) |
| .addImm(LSB + Width - 1); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*BitfieldInst, TII, TRI, RBI); |
| } |
| case TargetOpcode::G_BRCOND: |
| return selectCompareBranch(I, MF, MRI); |
| |
| case TargetOpcode::G_BRINDIRECT: { |
| I.setDesc(TII.get(AArch64::BR)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_BRJT: |
| return selectBrJT(I, MRI); |
| |
| case AArch64::G_ADD_LOW: { |
| // This op may have been separated from it's ADRP companion by the localizer |
| // or some other code motion pass. Given that many CPUs will try to |
| // macro fuse these operations anyway, select this into a MOVaddr pseudo |
| // which will later be expanded into an ADRP+ADD pair after scheduling. |
| MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg()); |
| if (BaseMI->getOpcode() != AArch64::ADRP) { |
| I.setDesc(TII.get(AArch64::ADDXri)); |
| I.addOperand(MachineOperand::CreateImm(0)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| assert(TM.getCodeModel() == CodeModel::Small && |
| "Expected small code model"); |
| auto Op1 = BaseMI->getOperand(1); |
| auto Op2 = I.getOperand(2); |
| auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {}) |
| .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(), |
| Op1.getTargetFlags()) |
| .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(), |
| Op2.getTargetFlags()); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_BSWAP: { |
| // Handle vector types for G_BSWAP directly. |
| Register DstReg = I.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| |
| // We should only get vector types here; everything else is handled by the |
| // importer right now. |
| if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) { |
| LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n"); |
| return false; |
| } |
| |
| // Only handle 4 and 2 element vectors for now. |
| // TODO: 16-bit elements. |
| unsigned NumElts = DstTy.getNumElements(); |
| if (NumElts != 4 && NumElts != 2) { |
| LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n"); |
| return false; |
| } |
| |
| // Choose the correct opcode for the supported types. Right now, that's |
| // v2s32, v4s32, and v2s64. |
| unsigned Opc = 0; |
| unsigned EltSize = DstTy.getElementType().getSizeInBits(); |
| if (EltSize == 32) |
| Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8 |
| : AArch64::REV32v16i8; |
| else if (EltSize == 64) |
| Opc = AArch64::REV64v16i8; |
| |
| // We should always get something by the time we get here... |
| assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?"); |
| |
| I.setDesc(TII.get(Opc)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_FCONSTANT: |
| case TargetOpcode::G_CONSTANT: { |
| const bool isFP = Opcode == TargetOpcode::G_FCONSTANT; |
| |
| const LLT s8 = LLT::scalar(8); |
| const LLT s16 = LLT::scalar(16); |
| const LLT s32 = LLT::scalar(32); |
| const LLT s64 = LLT::scalar(64); |
| const LLT s128 = LLT::scalar(128); |
| const LLT p0 = LLT::pointer(0, 64); |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| const LLT DefTy = MRI.getType(DefReg); |
| const unsigned DefSize = DefTy.getSizeInBits(); |
| const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); |
| |
| // FIXME: Redundant check, but even less readable when factored out. |
| if (isFP) { |
| if (Ty != s16 && Ty != s32 && Ty != s64 && Ty != s128) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty |
| << " constant, expected: " << s16 << " or " << s32 |
| << " or " << s64 << " or " << s128 << '\n'); |
| return false; |
| } |
| |
| if (RB.getID() != AArch64::FPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty |
| << " constant on bank: " << RB |
| << ", expected: FPR\n"); |
| return false; |
| } |
| |
| // The case when we have 0.0 is covered by tablegen. Reject it here so we |
| // can be sure tablegen works correctly and isn't rescued by this code. |
| // 0.0 is not covered by tablegen for FP128. So we will handle this |
| // scenario in the code here. |
| if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0)) |
| return false; |
| } else { |
| // s32 and s64 are covered by tablegen. |
| if (Ty != p0 && Ty != s8 && Ty != s16) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty |
| << " constant, expected: " << s32 << ", " << s64 |
| << ", or " << p0 << '\n'); |
| return false; |
| } |
| |
| if (RB.getID() != AArch64::GPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty |
| << " constant on bank: " << RB |
| << ", expected: GPR\n"); |
| return false; |
| } |
| } |
| |
| if (isFP) { |
| const TargetRegisterClass &FPRRC = *getMinClassForRegBank(RB, DefSize); |
| // For 16, 64, and 128b values, emit a constant pool load. |
| switch (DefSize) { |
| default: |
| llvm_unreachable("Unexpected destination size for G_FCONSTANT?"); |
| case 32: |
| // For s32, use a cp load if we have optsize/minsize. |
| if (!shouldOptForSize(&MF)) |
| break; |
| LLVM_FALLTHROUGH; |
| case 16: |
| case 64: |
| case 128: { |
| auto *FPImm = I.getOperand(1).getFPImm(); |
| auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB); |
| if (!LoadMI) { |
| LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n"); |
| return false; |
| } |
| MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()}); |
| I.eraseFromParent(); |
| return RBI.constrainGenericRegister(DefReg, FPRRC, MRI); |
| } |
| } |
| |
| // Either emit a FMOV, or emit a copy to emit a normal mov. |
| assert(DefSize == 32 && |
| "Expected constant pool loads for all sizes other than 32!"); |
| const Register DefGPRReg = |
| MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| MachineOperand &RegOp = I.getOperand(0); |
| RegOp.setReg(DefGPRReg); |
| MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator())); |
| MIB.buildCopy({DefReg}, {DefGPRReg}); |
| |
| if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n"); |
| return false; |
| } |
| |
| MachineOperand &ImmOp = I.getOperand(1); |
| // FIXME: Is going through int64_t always correct? |
| ImmOp.ChangeToImmediate( |
| ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue()); |
| } else if (I.getOperand(1).isCImm()) { |
| uint64_t Val = I.getOperand(1).getCImm()->getZExtValue(); |
| I.getOperand(1).ChangeToImmediate(Val); |
| } else if (I.getOperand(1).isImm()) { |
| uint64_t Val = I.getOperand(1).getImm(); |
| I.getOperand(1).ChangeToImmediate(Val); |
| } |
| |
| const unsigned MovOpc = |
| DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm; |
| I.setDesc(TII.get(MovOpc)); |
| constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| return true; |
| } |
| case TargetOpcode::G_EXTRACT: { |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| LLT DstTy = MRI.getType(DstReg); |
| (void)DstTy; |
| unsigned SrcSize = SrcTy.getSizeInBits(); |
| |
| if (SrcTy.getSizeInBits() > 64) { |
| // This should be an extract of an s128, which is like a vector extract. |
| if (SrcTy.getSizeInBits() != 128) |
| return false; |
| // Only support extracting 64 bits from an s128 at the moment. |
| if (DstTy.getSizeInBits() != 64) |
| return false; |
| |
| unsigned Offset = I.getOperand(2).getImm(); |
| if (Offset % 64 != 0) |
| return false; |
| |
| // Check we have the right regbank always. |
| const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI); |