blob: 38a8e2ef9c53ccd0ff24d0152182864d997f53c0 [file] [log] [blame]
//===--------------------- BottleneckAnalysis.cpp ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the functionalities used by the BottleneckAnalysis
/// to report bottleneck info.
///
//===----------------------------------------------------------------------===//
#include "Views/BottleneckAnalysis.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MCA/Support.h"
#include "llvm/Support/Format.h"
namespace llvm {
namespace mca {
#define DEBUG_TYPE "llvm-mca"
PressureTracker::PressureTracker(const MCSchedModel &Model)
: SM(Model),
ResourcePressureDistribution(Model.getNumProcResourceKinds(), 0),
ProcResID2Mask(Model.getNumProcResourceKinds(), 0),
ResIdx2ProcResID(Model.getNumProcResourceKinds(), 0),
ProcResID2ResourceUsersIndex(Model.getNumProcResourceKinds(), 0) {
computeProcResourceMasks(SM, ProcResID2Mask);
// Ignore the invalid resource at index zero.
unsigned NextResourceUsersIdx = 0;
for (unsigned I = 1, E = Model.getNumProcResourceKinds(); I < E; ++I) {
const MCProcResourceDesc &ProcResource = *SM.getProcResource(I);
ProcResID2ResourceUsersIndex[I] = NextResourceUsersIdx;
NextResourceUsersIdx += ProcResource.NumUnits;
uint64_t ResourceMask = ProcResID2Mask[I];
ResIdx2ProcResID[getResourceStateIndex(ResourceMask)] = I;
}
ResourceUsers.resize(NextResourceUsersIdx);
std::fill(ResourceUsers.begin(), ResourceUsers.end(),
std::make_pair<unsigned, unsigned>(~0U, 0U));
}
void PressureTracker::getResourceUsers(uint64_t ResourceMask,
SmallVectorImpl<User> &Users) const {
unsigned Index = getResourceStateIndex(ResourceMask);
unsigned ProcResID = ResIdx2ProcResID[Index];
const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResID);
for (unsigned I = 0, E = PRDesc.NumUnits; I < E; ++I) {
const User U = getResourceUser(ProcResID, I);
if (U.second && IPI.find(U.first) != IPI.end())
Users.emplace_back(U);
}
}
void PressureTracker::onInstructionDispatched(unsigned IID) {
IPI.insert(std::make_pair(IID, InstructionPressureInfo()));
}
void PressureTracker::onInstructionExecuted(unsigned IID) { IPI.erase(IID); }
void PressureTracker::handleInstructionIssuedEvent(
const HWInstructionIssuedEvent &Event) {
unsigned IID = Event.IR.getSourceIndex();
using ResourceRef = HWInstructionIssuedEvent::ResourceRef;
using ResourceUse = std::pair<ResourceRef, ResourceCycles>;
for (const ResourceUse &Use : Event.UsedResources) {
const ResourceRef &RR = Use.first;
unsigned Index = ProcResID2ResourceUsersIndex[RR.first];
Index += countTrailingZeros(RR.second);
ResourceUsers[Index] = std::make_pair(IID, Use.second.getNumerator());
}
}
void PressureTracker::updateResourcePressureDistribution(
uint64_t CumulativeMask) {
while (CumulativeMask) {
uint64_t Current = CumulativeMask & (-CumulativeMask);
unsigned ResIdx = getResourceStateIndex(Current);
unsigned ProcResID = ResIdx2ProcResID[ResIdx];
uint64_t Mask = ProcResID2Mask[ProcResID];
if (Mask == Current) {
ResourcePressureDistribution[ProcResID]++;
CumulativeMask ^= Current;
continue;
}
Mask ^= Current;
while (Mask) {
uint64_t SubUnit = Mask & (-Mask);
ResIdx = getResourceStateIndex(SubUnit);
ProcResID = ResIdx2ProcResID[ResIdx];
ResourcePressureDistribution[ProcResID]++;
Mask ^= SubUnit;
}
CumulativeMask ^= Current;
}
}
void PressureTracker::handlePressureEvent(const HWPressureEvent &Event) {
assert(Event.Reason != HWPressureEvent::INVALID &&
"Unexpected invalid event!");
switch (Event.Reason) {
default:
break;
case HWPressureEvent::RESOURCES: {
const uint64_t ResourceMask = Event.ResourceMask;
updateResourcePressureDistribution(Event.ResourceMask);
for (const InstRef &IR : Event.AffectedInstructions) {
const Instruction &IS = *IR.getInstruction();
unsigned BusyResources = IS.getCriticalResourceMask() & ResourceMask;
if (!BusyResources)
continue;
unsigned IID = IR.getSourceIndex();
IPI[IID].ResourcePressureCycles++;
}
break;
}
case HWPressureEvent::REGISTER_DEPS:
for (const InstRef &IR : Event.AffectedInstructions) {
unsigned IID = IR.getSourceIndex();
IPI[IID].RegisterPressureCycles++;
}
break;
case HWPressureEvent::MEMORY_DEPS:
for (const InstRef &IR : Event.AffectedInstructions) {
unsigned IID = IR.getSourceIndex();
IPI[IID].MemoryPressureCycles++;
}
}
}
#ifndef NDEBUG
void DependencyGraph::dumpDependencyEdge(raw_ostream &OS,
const DependencyEdge &DepEdge,
MCInstPrinter &MCIP) const {
unsigned FromIID = DepEdge.FromIID;
unsigned ToIID = DepEdge.ToIID;
assert(FromIID < ToIID && "Graph should be acyclic!");
const DependencyEdge::Dependency &DE = DepEdge.Dep;
assert(DE.Type != DependencyEdge::DT_INVALID && "Unexpected invalid edge!");
OS << " FROM: " << FromIID << " TO: " << ToIID << " ";
if (DE.Type == DependencyEdge::DT_REGISTER) {
OS << " - REGISTER: ";
MCIP.printRegName(OS, DE.ResourceOrRegID);
} else if (DE.Type == DependencyEdge::DT_MEMORY) {
OS << " - MEMORY";
} else {
assert(DE.Type == DependencyEdge::DT_RESOURCE &&
"Unsupported dependency type!");
OS << " - RESOURCE MASK: " << DE.ResourceOrRegID;
}
OS << " - COST: " << DE.Cost << '\n';
}
#endif // NDEBUG
void DependencyGraph::pruneEdges(unsigned Iterations) {
for (DGNode &N : Nodes) {
unsigned NumPruned = 0;
const unsigned Size = N.OutgoingEdges.size();
// Use a cut-off threshold to prune edges with a low frequency.
for (unsigned I = 0, E = Size; I < E; ++I) {
DependencyEdge &Edge = N.OutgoingEdges[I];
if (Edge.Frequency == Iterations)
continue;
double Factor = (double)Edge.Frequency / Iterations;
if (0.10 < Factor)
continue;
Nodes[Edge.ToIID].NumPredecessors--;
std::swap(Edge, N.OutgoingEdges[E - 1]);
--E;
++NumPruned;
}
if (NumPruned)
N.OutgoingEdges.resize(Size - NumPruned);
}
}
void DependencyGraph::initializeRootSet(
SmallVectorImpl<unsigned> &RootSet) const {
for (unsigned I = 0, E = Nodes.size(); I < E; ++I) {
const DGNode &N = Nodes[I];
if (N.NumPredecessors == 0 && !N.OutgoingEdges.empty())
RootSet.emplace_back(I);
}
}
void DependencyGraph::propagateThroughEdges(
SmallVectorImpl<unsigned> &RootSet, unsigned Iterations) {
SmallVector<unsigned, 8> ToVisit;
// A critical sequence is computed as the longest path from a node of the
// RootSet to a leaf node (i.e. a node with no successors). The RootSet is
// composed of nodes with at least one successor, and no predecessors.
//
// Each node of the graph starts with an initial default cost of zero. The
// cost of a node is a measure of criticality: the higher the cost, the bigger
// is the performance impact.
// For register and memory dependencies, the cost is a function of the write
// latency as well as the actual delay (in cycles) caused to users.
// For processor resource dependencies, the cost is a function of the resource
// pressure. Resource interferences with low frequency values are ignored.
//
// This algorithm is very similar to a (reverse) Dijkstra. Every iteration of
// the inner loop selects (i.e. visits) a node N from a set of `unvisited
// nodes`, and then propagates the cost of N to all its neighbors.
//
// The `unvisited nodes` set initially contains all the nodes from the
// RootSet. A node N is added to the `unvisited nodes` if all its
// predecessors have been visited already.
//
// For simplicity, every node tracks the number of unvisited incoming edges in
// field `NumVisitedPredecessors`. When the value of that field drops to
// zero, then the corresponding node is added to a `ToVisit` set.
//
// At the end of every iteration of the outer loop, set `ToVisit` becomes our
// new `unvisited nodes` set.
//
// The algorithm terminates when the set of unvisited nodes (i.e. our RootSet)
// is empty. This algorithm works under the assumption that the graph is
// acyclic.
do {
for (unsigned IID : RootSet) {
const DGNode &N = Nodes[IID];
for (const DependencyEdge &DepEdge : N.OutgoingEdges) {
unsigned ToIID = DepEdge.ToIID;
DGNode &To = Nodes[ToIID];
uint64_t Cost = N.Cost + DepEdge.Dep.Cost;
// Check if this is the most expensive incoming edge seen so far. In
// case, update the total cost of the destination node (ToIID), as well
// its field `CriticalPredecessor`.
if (Cost > To.Cost) {
To.CriticalPredecessor = DepEdge;
To.Cost = Cost;
To.Depth = N.Depth + 1;
}
To.NumVisitedPredecessors++;
if (To.NumVisitedPredecessors == To.NumPredecessors)
ToVisit.emplace_back(ToIID);
}
}
std::swap(RootSet, ToVisit);
ToVisit.clear();
} while (!RootSet.empty());
}
void DependencyGraph::getCriticalSequence(
SmallVectorImpl<const DependencyEdge *> &Seq) const {
// At this stage, nodes of the graph have been already visited, and costs have
// been propagated through the edges (see method `propagateThroughEdges()`).
// Identify the node N with the highest cost in the graph. By construction,
// that node is the last instruction of our critical sequence.
// Field N.Depth would tell us the total length of the sequence.
//
// To obtain the sequence of critical edges, we simply follow the chain of critical
// predecessors starting from node N (field DGNode::CriticalPredecessor).
const auto It = std::max_element(
Nodes.begin(), Nodes.end(),
[](const DGNode &Lhs, const DGNode &Rhs) { return Lhs.Cost < Rhs.Cost; });
unsigned IID = std::distance(Nodes.begin(), It);
Seq.resize(Nodes[IID].Depth);
for (unsigned I = Seq.size(), E = 0; I > E; --I) {
const DGNode &N = Nodes[IID];
Seq[I - 1] = &N.CriticalPredecessor;
IID = N.CriticalPredecessor.FromIID;
}
}
void BottleneckAnalysis::printInstruction(formatted_raw_ostream &FOS,
const MCInst &MCI,
bool UseDifferentColor) const {
FOS.PadToColumn(14);
if (UseDifferentColor)
FOS.changeColor(raw_ostream::CYAN, true, false);
FOS << printInstructionString(MCI);
if (UseDifferentColor)
FOS.resetColor();
}
void BottleneckAnalysis::printCriticalSequence(raw_ostream &OS) const {
// Early exit if no bottlenecks were found during the simulation.
if (!SeenStallCycles || !BPI.PressureIncreaseCycles)
return;
SmallVector<const DependencyEdge *, 16> Seq;
DG.getCriticalSequence(Seq);
if (Seq.empty())
return;
OS << "\nCritical sequence based on the simulation:\n\n";
const DependencyEdge &FirstEdge = *Seq[0];
ArrayRef<llvm::MCInst> Source = getSource();
unsigned FromIID = FirstEdge.FromIID % Source.size();
unsigned ToIID = FirstEdge.ToIID % Source.size();
bool IsLoopCarried = FromIID >= ToIID;
formatted_raw_ostream FOS(OS);
FOS.PadToColumn(14);
FOS << "Instruction";
FOS.PadToColumn(58);
FOS << "Dependency Information";
bool HasColors = FOS.has_colors();
unsigned CurrentIID = 0;
if (IsLoopCarried) {
FOS << "\n +----< " << FromIID << ".";
printInstruction(FOS, Source[FromIID], HasColors);
FOS << "\n |\n | < loop carried > \n |";
} else {
while (CurrentIID < FromIID) {
FOS << "\n " << CurrentIID << ".";
printInstruction(FOS, Source[CurrentIID]);
CurrentIID++;
}
FOS << "\n +----< " << CurrentIID << ".";
printInstruction(FOS, Source[CurrentIID], HasColors);
CurrentIID++;
}
for (const DependencyEdge *&DE : Seq) {
ToIID = DE->ToIID % Source.size();
unsigned LastIID = CurrentIID > ToIID ? Source.size() : ToIID;
while (CurrentIID < LastIID) {
FOS << "\n | " << CurrentIID << ".";
printInstruction(FOS, Source[CurrentIID]);
CurrentIID++;
}
if (CurrentIID == ToIID) {
FOS << "\n +----> " << ToIID << ".";
printInstruction(FOS, Source[CurrentIID], HasColors);
} else {
FOS << "\n |\n | < loop carried > \n |"
<< "\n +----> " << ToIID << ".";
printInstruction(FOS, Source[ToIID], HasColors);
}
FOS.PadToColumn(58);
const DependencyEdge::Dependency &Dep = DE->Dep;
if (HasColors)
FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
if (Dep.Type == DependencyEdge::DT_REGISTER) {
FOS << "## REGISTER dependency: ";
if (HasColors)
FOS.changeColor(raw_ostream::MAGENTA, true, false);
getInstPrinter().printRegName(FOS, Dep.ResourceOrRegID);
} else if (Dep.Type == DependencyEdge::DT_MEMORY) {
FOS << "## MEMORY dependency.";
} else {
assert(Dep.Type == DependencyEdge::DT_RESOURCE &&
"Unsupported dependency type!");
FOS << "## RESOURCE interference: ";
if (HasColors)
FOS.changeColor(raw_ostream::MAGENTA, true, false);
FOS << Tracker.resolveResourceName(Dep.ResourceOrRegID);
if (HasColors) {
FOS.resetColor();
FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
}
FOS << " [ probability: " << ((DE->Frequency * 100) / Iterations)
<< "% ]";
}
if (HasColors)
FOS.resetColor();
++CurrentIID;
}
while (CurrentIID < Source.size()) {
FOS << "\n " << CurrentIID << ".";
printInstruction(FOS, Source[CurrentIID]);
CurrentIID++;
}
FOS << '\n';
FOS.flush();
}
#ifndef NDEBUG
void DependencyGraph::dump(raw_ostream &OS, MCInstPrinter &MCIP) const {
OS << "\nREG DEPS\n";
for (const DGNode &Node : Nodes)
for (const DependencyEdge &DE : Node.OutgoingEdges)
if (DE.Dep.Type == DependencyEdge::DT_REGISTER)
dumpDependencyEdge(OS, DE, MCIP);
OS << "\nMEM DEPS\n";
for (const DGNode &Node : Nodes)
for (const DependencyEdge &DE : Node.OutgoingEdges)
if (DE.Dep.Type == DependencyEdge::DT_MEMORY)
dumpDependencyEdge(OS, DE, MCIP);
OS << "\nRESOURCE DEPS\n";
for (const DGNode &Node : Nodes)
for (const DependencyEdge &DE : Node.OutgoingEdges)
if (DE.Dep.Type == DependencyEdge::DT_RESOURCE)
dumpDependencyEdge(OS, DE, MCIP);
}
#endif // NDEBUG
void DependencyGraph::addDependency(unsigned From, unsigned To,
DependencyEdge::Dependency &&Dep) {
DGNode &NodeFrom = Nodes[From];
DGNode &NodeTo = Nodes[To];
SmallVectorImpl<DependencyEdge> &Vec = NodeFrom.OutgoingEdges;
auto It = find_if(Vec, [To, Dep](DependencyEdge &DE) {
return DE.ToIID == To && DE.Dep.ResourceOrRegID == Dep.ResourceOrRegID;
});
if (It != Vec.end()) {
It->Dep.Cost += Dep.Cost;
It->Frequency++;
return;
}
DependencyEdge DE = {Dep, From, To, 1};
Vec.emplace_back(DE);
NodeTo.NumPredecessors++;
}
BottleneckAnalysis::BottleneckAnalysis(const MCSubtargetInfo &sti,
MCInstPrinter &Printer,
ArrayRef<MCInst> S, unsigned NumIter)
: InstructionView(sti, Printer, S), Tracker(sti.getSchedModel()),
DG(S.size() * 3), Iterations(NumIter), TotalCycles(0),
PressureIncreasedBecauseOfResources(false),
PressureIncreasedBecauseOfRegisterDependencies(false),
PressureIncreasedBecauseOfMemoryDependencies(false),
SeenStallCycles(false), BPI() {}
void BottleneckAnalysis::addRegisterDep(unsigned From, unsigned To,
unsigned RegID, unsigned Cost) {
bool IsLoopCarried = From >= To;
unsigned SourceSize = getSource().size();
if (IsLoopCarried) {
DG.addRegisterDep(From, To + SourceSize, RegID, Cost);
DG.addRegisterDep(From + SourceSize, To + (SourceSize * 2), RegID, Cost);
return;
}
DG.addRegisterDep(From + SourceSize, To + SourceSize, RegID, Cost);
}
void BottleneckAnalysis::addMemoryDep(unsigned From, unsigned To,
unsigned Cost) {
bool IsLoopCarried = From >= To;
unsigned SourceSize = getSource().size();
if (IsLoopCarried) {
DG.addMemoryDep(From, To + SourceSize, Cost);
DG.addMemoryDep(From + SourceSize, To + (SourceSize * 2), Cost);
return;
}
DG.addMemoryDep(From + SourceSize, To + SourceSize, Cost);
}
void BottleneckAnalysis::addResourceDep(unsigned From, unsigned To,
uint64_t Mask, unsigned Cost) {
bool IsLoopCarried = From >= To;
unsigned SourceSize = getSource().size();
if (IsLoopCarried) {
DG.addResourceDep(From, To + SourceSize, Mask, Cost);
DG.addResourceDep(From + SourceSize, To + (SourceSize * 2), Mask, Cost);
return;
}
DG.addResourceDep(From + SourceSize, To + SourceSize, Mask, Cost);
}
void BottleneckAnalysis::onEvent(const HWInstructionEvent &Event) {
const unsigned IID = Event.IR.getSourceIndex();
if (Event.Type == HWInstructionEvent::Dispatched) {
Tracker.onInstructionDispatched(IID);
return;
}
if (Event.Type == HWInstructionEvent::Executed) {
Tracker.onInstructionExecuted(IID);
return;
}
if (Event.Type != HWInstructionEvent::Issued)
return;
ArrayRef<llvm::MCInst> Source = getSource();
const Instruction &IS = *Event.IR.getInstruction();
unsigned To = IID % Source.size();
unsigned Cycles = 2 * Tracker.getResourcePressureCycles(IID);
uint64_t ResourceMask = IS.getCriticalResourceMask();
SmallVector<std::pair<unsigned, unsigned>, 4> Users;
while (ResourceMask) {
uint64_t Current = ResourceMask & (-ResourceMask);
Tracker.getResourceUsers(Current, Users);
for (const std::pair<unsigned, unsigned> &U : Users)
addResourceDep(U.first % Source.size(), To, Current, U.second + Cycles);
Users.clear();
ResourceMask ^= Current;
}
const CriticalDependency &RegDep = IS.getCriticalRegDep();
if (RegDep.Cycles) {
Cycles = RegDep.Cycles + 2 * Tracker.getRegisterPressureCycles(IID);
unsigned From = RegDep.IID % Source.size();
addRegisterDep(From, To, RegDep.RegID, Cycles);
}
const CriticalDependency &MemDep = IS.getCriticalMemDep();
if (MemDep.Cycles) {
Cycles = MemDep.Cycles + 2 * Tracker.getMemoryPressureCycles(IID);
unsigned From = MemDep.IID % Source.size();
addMemoryDep(From, To, Cycles);
}
Tracker.handleInstructionIssuedEvent(
static_cast<const HWInstructionIssuedEvent &>(Event));
// Check if this is the last simulated instruction.
if (IID == ((Iterations * Source.size()) - 1))
DG.finalizeGraph(Iterations);
}
void BottleneckAnalysis::onEvent(const HWPressureEvent &Event) {
assert(Event.Reason != HWPressureEvent::INVALID &&
"Unexpected invalid event!");
Tracker.handlePressureEvent(Event);
switch (Event.Reason) {
default:
break;
case HWPressureEvent::RESOURCES:
PressureIncreasedBecauseOfResources = true;
break;
case HWPressureEvent::REGISTER_DEPS:
PressureIncreasedBecauseOfRegisterDependencies = true;
break;
case HWPressureEvent::MEMORY_DEPS:
PressureIncreasedBecauseOfMemoryDependencies = true;
break;
}
}
void BottleneckAnalysis::onCycleEnd() {
++TotalCycles;
bool PressureIncreasedBecauseOfDataDependencies =
PressureIncreasedBecauseOfRegisterDependencies ||
PressureIncreasedBecauseOfMemoryDependencies;
if (!PressureIncreasedBecauseOfResources &&
!PressureIncreasedBecauseOfDataDependencies)
return;
++BPI.PressureIncreaseCycles;
if (PressureIncreasedBecauseOfRegisterDependencies)
++BPI.RegisterDependencyCycles;
if (PressureIncreasedBecauseOfMemoryDependencies)
++BPI.MemoryDependencyCycles;
if (PressureIncreasedBecauseOfDataDependencies)
++BPI.DataDependencyCycles;
if (PressureIncreasedBecauseOfResources)
++BPI.ResourcePressureCycles;
PressureIncreasedBecauseOfResources = false;
PressureIncreasedBecauseOfRegisterDependencies = false;
PressureIncreasedBecauseOfMemoryDependencies = false;
}
void BottleneckAnalysis::printBottleneckHints(raw_ostream &OS) const {
if (!SeenStallCycles || !BPI.PressureIncreaseCycles) {
OS << "\n\nNo resource or data dependency bottlenecks discovered.\n";
return;
}
double PressurePerCycle =
(double)BPI.PressureIncreaseCycles * 100 / TotalCycles;
double ResourcePressurePerCycle =
(double)BPI.ResourcePressureCycles * 100 / TotalCycles;
double DDPerCycle = (double)BPI.DataDependencyCycles * 100 / TotalCycles;
double RegDepPressurePerCycle =
(double)BPI.RegisterDependencyCycles * 100 / TotalCycles;
double MemDepPressurePerCycle =
(double)BPI.MemoryDependencyCycles * 100 / TotalCycles;
OS << "\n\nCycles with backend pressure increase [ "
<< format("%.2f", floor((PressurePerCycle * 100) + 0.5) / 100) << "% ]";
OS << "\nThroughput Bottlenecks: "
<< "\n Resource Pressure [ "
<< format("%.2f", floor((ResourcePressurePerCycle * 100) + 0.5) / 100)
<< "% ]";
if (BPI.PressureIncreaseCycles) {
ArrayRef<unsigned> Distribution = Tracker.getResourcePressureDistribution();
const MCSchedModel &SM = getSubTargetInfo().getSchedModel();
for (unsigned I = 0, E = Distribution.size(); I < E; ++I) {
unsigned ResourceCycles = Distribution[I];
if (ResourceCycles) {
double Frequency = (double)ResourceCycles * 100 / TotalCycles;
const MCProcResourceDesc &PRDesc = *SM.getProcResource(I);
OS << "\n - " << PRDesc.Name << " [ "
<< format("%.2f", floor((Frequency * 100) + 0.5) / 100) << "% ]";
}
}
}
OS << "\n Data Dependencies: [ "
<< format("%.2f", floor((DDPerCycle * 100) + 0.5) / 100) << "% ]";
OS << "\n - Register Dependencies [ "
<< format("%.2f", floor((RegDepPressurePerCycle * 100) + 0.5) / 100)
<< "% ]";
OS << "\n - Memory Dependencies [ "
<< format("%.2f", floor((MemDepPressurePerCycle * 100) + 0.5) / 100)
<< "% ]\n";
}
void BottleneckAnalysis::printView(raw_ostream &OS) const {
std::string Buffer;
raw_string_ostream TempStream(Buffer);
printBottleneckHints(TempStream);
TempStream.flush();
OS << Buffer;
printCriticalSequence(OS);
}
} // namespace mca.
} // namespace llvm