blob: 3f5413696d4b2ae8718df632945942bca4dd25b0 [file] [log] [blame]
//===- SyntheticSections.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SyntheticSections.h"
#include "Config.h"
#include "ExportTrie.h"
#include "InputFiles.h"
#include "MachOStructs.h"
#include "MergedOutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Writer.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Path.h"
using namespace llvm;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
InStruct macho::in;
std::vector<SyntheticSection *> macho::syntheticSections;
SyntheticSection::SyntheticSection(const char *segname, const char *name)
: OutputSection(SyntheticKind, name), segname(segname) {
syntheticSections.push_back(this);
}
// dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
// from the beginning of the file (i.e. the header).
MachHeaderSection::MachHeaderSection()
: SyntheticSection(segment_names::text, section_names::header) {}
void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
loadCommands.push_back(lc);
sizeOfCmds += lc->getSize();
}
uint64_t MachHeaderSection::getSize() const {
return sizeof(MachO::mach_header_64) + sizeOfCmds + config->headerPad;
}
void MachHeaderSection::writeTo(uint8_t *buf) const {
auto *hdr = reinterpret_cast<MachO::mach_header_64 *>(buf);
hdr->magic = MachO::MH_MAGIC_64;
hdr->cputype = MachO::CPU_TYPE_X86_64;
hdr->cpusubtype = MachO::CPU_SUBTYPE_X86_64_ALL | MachO::CPU_SUBTYPE_LIB64;
hdr->filetype = config->outputType;
hdr->ncmds = loadCommands.size();
hdr->sizeofcmds = sizeOfCmds;
hdr->flags = MachO::MH_NOUNDEFS | MachO::MH_DYLDLINK | MachO::MH_TWOLEVEL;
if (config->outputType == MachO::MH_DYLIB && !config->hasReexports)
hdr->flags |= MachO::MH_NO_REEXPORTED_DYLIBS;
if (config->outputType == MachO::MH_EXECUTE && config->isPic)
hdr->flags |= MachO::MH_PIE;
if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition())
hdr->flags |= MachO::MH_WEAK_DEFINES;
if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry())
hdr->flags |= MachO::MH_BINDS_TO_WEAK;
for (OutputSegment *seg : outputSegments) {
for (OutputSection *osec : seg->getSections()) {
if (isThreadLocalVariables(osec->flags)) {
hdr->flags |= MachO::MH_HAS_TLV_DESCRIPTORS;
break;
}
}
}
uint8_t *p = reinterpret_cast<uint8_t *>(hdr + 1);
for (LoadCommand *lc : loadCommands) {
lc->writeTo(p);
p += lc->getSize();
}
}
PageZeroSection::PageZeroSection()
: SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
uint64_t Location::getVA() const {
if (const auto *isec = section.dyn_cast<const InputSection *>())
return isec->getVA() + offset;
return section.get<const OutputSection *>()->addr + offset;
}
RebaseSection::RebaseSection()
: LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
namespace {
struct Rebase {
OutputSegment *segment = nullptr;
uint64_t offset = 0;
uint64_t consecutiveCount = 0;
};
} // namespace
// Rebase opcodes allow us to describe a contiguous sequence of rebase location
// using a single DO_REBASE opcode. To take advantage of it, we delay emitting
// `DO_REBASE` until we have reached the end of a contiguous sequence.
static void encodeDoRebase(Rebase &rebase, raw_svector_ostream &os) {
using namespace llvm::MachO;
assert(rebase.consecutiveCount != 0);
if (rebase.consecutiveCount <= REBASE_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
rebase.consecutiveCount);
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
encodeULEB128(rebase.consecutiveCount, os);
}
rebase.consecutiveCount = 0;
}
static void encodeRebase(const OutputSection *osec, uint64_t outSecOff,
Rebase &lastRebase, raw_svector_ostream &os) {
using namespace llvm::MachO;
OutputSegment *seg = osec->parent;
uint64_t offset = osec->getSegmentOffset() + outSecOff;
if (lastRebase.segment != seg || lastRebase.offset != offset) {
if (lastRebase.consecutiveCount != 0)
encodeDoRebase(lastRebase, os);
if (lastRebase.segment != seg) {
os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index);
encodeULEB128(offset, os);
lastRebase.segment = seg;
lastRebase.offset = offset;
} else {
assert(lastRebase.offset != offset);
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
encodeULEB128(offset - lastRebase.offset, os);
lastRebase.offset = offset;
}
}
++lastRebase.consecutiveCount;
// DO_REBASE causes dyld to both perform the binding and increment the offset
lastRebase.offset += WordSize;
}
void RebaseSection::finalizeContents() {
using namespace llvm::MachO;
if (locations.empty())
return;
raw_svector_ostream os{contents};
Rebase lastRebase;
os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
llvm::sort(locations, [](const Location &a, const Location &b) {
return a.getVA() < b.getVA();
});
for (const Location &loc : locations) {
if (const auto *isec = loc.section.dyn_cast<const InputSection *>()) {
encodeRebase(isec->parent, isec->outSecOff + loc.offset, lastRebase, os);
} else {
const auto *osec = loc.section.get<const OutputSection *>();
encodeRebase(osec, loc.offset, lastRebase, os);
}
}
if (lastRebase.consecutiveCount != 0)
encodeDoRebase(lastRebase, os);
os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
}
void RebaseSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
const char *name)
: SyntheticSection(segname, name) {
align = 8;
flags = MachO::S_NON_LAZY_SYMBOL_POINTERS;
}
void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
if (entries.insert(sym)) {
assert(!sym->isInGot());
sym->gotIndex = entries.size() - 1;
addNonLazyBindingEntries(sym, this, sym->gotIndex * WordSize);
}
}
void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
for (size_t i = 0, n = entries.size(); i < n; ++i)
if (auto *defined = dyn_cast<Defined>(entries[i]))
write64le(&buf[i * WordSize], defined->getVA());
}
BindingSection::BindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::binding) {}
namespace {
struct Binding {
OutputSegment *segment = nullptr;
uint64_t offset = 0;
int64_t addend = 0;
uint8_t ordinal = 0;
};
} // namespace
// Encode a sequence of opcodes that tell dyld to write the address of symbol +
// addend at osec->addr + outSecOff.
//
// The bind opcode "interpreter" remembers the values of each binding field, so
// we only need to encode the differences between bindings. Hence the use of
// lastBinding.
static void encodeBinding(const Symbol *sym, const OutputSection *osec,
uint64_t outSecOff, int64_t addend,
bool isWeakBinding, Binding &lastBinding,
raw_svector_ostream &os) {
using namespace llvm::MachO;
OutputSegment *seg = osec->parent;
uint64_t offset = osec->getSegmentOffset() + outSecOff;
if (lastBinding.segment != seg) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index);
encodeULEB128(offset, os);
lastBinding.segment = seg;
lastBinding.offset = offset;
} else if (lastBinding.offset != offset) {
os << static_cast<uint8_t>(BIND_OPCODE_ADD_ADDR_ULEB);
encodeULEB128(offset - lastBinding.offset, os);
lastBinding.offset = offset;
}
if (lastBinding.addend != addend) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_ADDEND_SLEB);
encodeSLEB128(addend, os);
lastBinding.addend = addend;
}
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (!isWeakBinding && sym->isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER)
<< static_cast<uint8_t>(BIND_OPCODE_DO_BIND);
// DO_BIND causes dyld to both perform the binding and increment the offset
lastBinding.offset += WordSize;
}
// Non-weak bindings need to have their dylib ordinal encoded as well.
static void encodeDylibOrdinal(const DylibSymbol *dysym, Binding &lastBinding,
raw_svector_ostream &os) {
using namespace llvm::MachO;
if (lastBinding.ordinal != dysym->file->ordinal) {
if (dysym->file->ordinal <= BIND_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM |
dysym->file->ordinal);
} else {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
encodeULEB128(dysym->file->ordinal, os);
}
lastBinding.ordinal = dysym->file->ordinal;
}
}
static void encodeWeakOverride(const Defined *defined,
raw_svector_ostream &os) {
using namespace llvm::MachO;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
<< defined->getName() << '\0';
}
// Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
// interprets to update a record with the following fields:
// * segment index (of the segment to write the symbol addresses to, typically
// the __DATA_CONST segment which contains the GOT)
// * offset within the segment, indicating the next location to write a binding
// * symbol type
// * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
// * symbol name
// * addend
// When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
// a symbol in the GOT, and increments the segment offset to point to the next
// entry. It does *not* clear the record state after doing the bind, so
// subsequent opcodes only need to encode the differences between bindings.
void BindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
// Since bindings are delta-encoded, sorting them allows for a more compact
// result. Note that sorting by address alone ensures that bindings for the
// same segment / section are located together.
llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
return a.target.getVA() < b.target.getVA();
});
for (const BindingEntry &b : bindings) {
encodeDylibOrdinal(b.dysym, lastBinding, os);
if (auto *isec = b.target.section.dyn_cast<const InputSection *>()) {
encodeBinding(b.dysym, isec->parent, isec->outSecOff + b.target.offset,
b.addend, /*isWeakBinding=*/false, lastBinding, os);
} else {
auto *osec = b.target.section.get<const OutputSection *>();
encodeBinding(b.dysym, osec, b.target.offset, b.addend,
/*isWeakBinding=*/false, lastBinding, os);
}
}
if (!bindings.empty())
os << static_cast<uint8_t>(MachO::BIND_OPCODE_DONE);
}
void BindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
WeakBindingSection::WeakBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
void WeakBindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
for (const Defined *defined : definitions)
encodeWeakOverride(defined, os);
// Since bindings are delta-encoded, sorting them allows for a more compact
// result.
llvm::sort(bindings,
[](const WeakBindingEntry &a, const WeakBindingEntry &b) {
return a.target.getVA() < b.target.getVA();
});
for (const WeakBindingEntry &b : bindings) {
if (auto *isec = b.target.section.dyn_cast<const InputSection *>()) {
encodeBinding(b.symbol, isec->parent, isec->outSecOff + b.target.offset,
b.addend, /*isWeakBinding=*/true, lastBinding, os);
} else {
auto *osec = b.target.section.get<const OutputSection *>();
encodeBinding(b.symbol, osec, b.target.offset, b.addend,
/*isWeakBinding=*/true, lastBinding, os);
}
}
if (!bindings.empty() || !definitions.empty())
os << static_cast<uint8_t>(MachO::BIND_OPCODE_DONE);
}
void WeakBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
bool macho::needsBinding(const Symbol *sym) {
if (isa<DylibSymbol>(sym))
return true;
if (const auto *defined = dyn_cast<Defined>(sym))
return defined->isExternalWeakDef();
return false;
}
void macho::addNonLazyBindingEntries(const Symbol *sym,
SectionPointerUnion section,
uint64_t offset, int64_t addend) {
if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
in.binding->addEntry(dysym, section, offset, addend);
if (dysym->isWeakDef())
in.weakBinding->addEntry(sym, section, offset, addend);
} else if (auto *defined = dyn_cast<Defined>(sym)) {
in.rebase->addEntry(section, offset);
if (defined->isExternalWeakDef())
in.weakBinding->addEntry(sym, section, offset, addend);
} else if (isa<DSOHandle>(sym)) {
error("cannot bind to " + DSOHandle::name);
} else {
// Undefined symbols are filtered out in scanRelocations(); we should never
// get here
llvm_unreachable("cannot bind to an undefined symbol");
}
}
StubsSection::StubsSection()
: SyntheticSection(segment_names::text, "__stubs") {
flags = MachO::S_SYMBOL_STUBS;
reserved2 = target->stubSize;
}
uint64_t StubsSection::getSize() const {
return entries.size() * target->stubSize;
}
void StubsSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : entries) {
target->writeStub(buf + off, *sym);
off += target->stubSize;
}
}
bool StubsSection::addEntry(Symbol *sym) {
bool inserted = entries.insert(sym);
if (inserted)
sym->stubsIndex = entries.size() - 1;
return inserted;
}
StubHelperSection::StubHelperSection()
: SyntheticSection(segment_names::text, "__stub_helper") {}
uint64_t StubHelperSection::getSize() const {
return target->stubHelperHeaderSize +
in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
}
bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
void StubHelperSection::writeTo(uint8_t *buf) const {
target->writeStubHelperHeader(buf);
size_t off = target->stubHelperHeaderSize;
for (const DylibSymbol *sym : in.lazyBinding->getEntries()) {
target->writeStubHelperEntry(buf + off, *sym, addr + off);
off += target->stubHelperEntrySize;
}
}
void StubHelperSection::setup() {
stubBinder = dyn_cast_or_null<DylibSymbol>(symtab->find("dyld_stub_binder"));
if (stubBinder == nullptr) {
error("symbol dyld_stub_binder not found (normally in libSystem.dylib). "
"Needed to perform lazy binding.");
return;
}
stubBinder->refState = RefState::Strong;
in.got->addEntry(stubBinder);
inputSections.push_back(in.imageLoaderCache);
dyldPrivate =
make<Defined>("__dyld_private", in.imageLoaderCache, 0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false);
}
ImageLoaderCacheSection::ImageLoaderCacheSection() {
segname = segment_names::data;
name = "__data";
uint8_t *arr = bAlloc.Allocate<uint8_t>(WordSize);
memset(arr, 0, WordSize);
data = {arr, WordSize};
}
LazyPointerSection::LazyPointerSection()
: SyntheticSection(segment_names::data, "__la_symbol_ptr") {
align = 8;
flags = MachO::S_LAZY_SYMBOL_POINTERS;
}
uint64_t LazyPointerSection::getSize() const {
return in.stubs->getEntries().size() * WordSize;
}
bool LazyPointerSection::isNeeded() const {
return !in.stubs->getEntries().empty();
}
void LazyPointerSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : in.stubs->getEntries()) {
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->hasStubsHelper()) {
uint64_t stubHelperOffset =
target->stubHelperHeaderSize +
dysym->stubsHelperIndex * target->stubHelperEntrySize;
write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
}
} else {
write64le(buf + off, sym->getVA());
}
off += WordSize;
}
}
LazyBindingSection::LazyBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
void LazyBindingSection::finalizeContents() {
// TODO: Just precompute output size here instead of writing to a temporary
// buffer
for (DylibSymbol *sym : entries)
sym->lazyBindOffset = encode(*sym);
}
void LazyBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
void LazyBindingSection::addEntry(DylibSymbol *dysym) {
if (entries.insert(dysym)) {
dysym->stubsHelperIndex = entries.size() - 1;
in.rebase->addEntry(in.lazyPointers, dysym->stubsIndex * WordSize);
}
}
// Unlike the non-lazy binding section, the bind opcodes in this section aren't
// interpreted all at once. Rather, dyld will start interpreting opcodes at a
// given offset, typically only binding a single symbol before it finds a
// BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
// we cannot encode just the differences between symbols; we have to emit the
// complete bind information for each symbol.
uint32_t LazyBindingSection::encode(const DylibSymbol &sym) {
uint32_t opstreamOffset = contents.size();
OutputSegment *dataSeg = in.lazyPointers->parent;
os << static_cast<uint8_t>(MachO::BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
dataSeg->index);
uint64_t offset = in.lazyPointers->addr - dataSeg->firstSection()->addr +
sym.stubsIndex * WordSize;
encodeULEB128(offset, os);
if (sym.file->ordinal <= MachO::BIND_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(MachO::BIND_OPCODE_SET_DYLIB_ORDINAL_IMM |
sym.file->ordinal);
} else {
os << static_cast<uint8_t>(MachO::BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
encodeULEB128(sym.file->ordinal, os);
}
uint8_t flags = MachO::BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym.isWeakRef())
flags |= MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym.getName() << '\0'
<< static_cast<uint8_t>(MachO::BIND_OPCODE_DO_BIND)
<< static_cast<uint8_t>(MachO::BIND_OPCODE_DONE);
return opstreamOffset;
}
void macho::prepareBranchTarget(Symbol *sym) {
if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (in.stubs->addEntry(dysym)) {
if (sym->isWeakDef()) {
in.binding->addEntry(dysym, in.lazyPointers,
sym->stubsIndex * WordSize);
in.weakBinding->addEntry(sym, in.lazyPointers,
sym->stubsIndex * WordSize);
} else {
in.lazyBinding->addEntry(dysym);
}
}
} else if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isExternalWeakDef()) {
if (in.stubs->addEntry(sym)) {
in.rebase->addEntry(in.lazyPointers, sym->stubsIndex * WordSize);
in.weakBinding->addEntry(sym, in.lazyPointers,
sym->stubsIndex * WordSize);
}
}
}
}
ExportSection::ExportSection()
: LinkEditSection(segment_names::linkEdit, section_names::export_) {}
void ExportSection::finalizeContents() {
trieBuilder.setImageBase(in.header->addr);
for (const Symbol *sym : symtab->getSymbols()) {
if (const auto *defined = dyn_cast<Defined>(sym)) {
if (defined->privateExtern)
continue;
trieBuilder.addSymbol(*defined);
hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
}
}
size = trieBuilder.build();
}
void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
stringTableSection(stringTableSection) {}
uint64_t SymtabSection::getRawSize() const {
return getNumSymbols() * sizeof(structs::nlist_64);
}
void SymtabSection::emitBeginSourceStab(DWARFUnit *compileUnit) {
StabsEntry stab(MachO::N_SO);
SmallString<261> dir(compileUnit->getCompilationDir());
StringRef sep = sys::path::get_separator();
// We don't use `path::append` here because we want an empty `dir` to result
// in an absolute path. `append` would give us a relative path for that case.
if (!dir.endswith(sep))
dir += sep;
stab.strx = stringTableSection.addString(
saver.save(dir + compileUnit->getUnitDIE().getShortName()));
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndSourceStab() {
StabsEntry stab(MachO::N_SO);
stab.sect = 1;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitObjectFileStab(ObjFile *file) {
StabsEntry stab(MachO::N_OSO);
stab.sect = target->cpuSubtype;
SmallString<261> path(!file->archiveName.empty() ? file->archiveName
: file->getName());
std::error_code ec = sys::fs::make_absolute(path);
if (ec)
fatal("failed to get absolute path for " + path);
if (!file->archiveName.empty())
path.append({"(", file->getName(), ")"});
stab.strx = stringTableSection.addString(saver.save(path.str()));
stab.desc = 1;
stab.value = file->modTime;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndFunStab(Defined *defined) {
StabsEntry stab(MachO::N_FUN);
// FIXME this should be the size of the symbol. Using the section size in
// lieu is only correct if .subsections_via_symbols is set.
stab.value = defined->isec->getSize();
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitStabs() {
std::vector<Defined *> symbolsNeedingStabs;
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols)) {
Symbol *sym = entry.sym;
if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isAbsolute())
continue;
InputSection *isec = defined->isec;
ObjFile *file = dyn_cast_or_null<ObjFile>(isec->file);
if (!file || !file->compileUnit)
continue;
symbolsNeedingStabs.push_back(defined);
}
}
llvm::stable_sort(symbolsNeedingStabs, [&](Defined *a, Defined *b) {
return a->isec->file->id < b->isec->file->id;
});
// Emit STABS symbols so that dsymutil and/or the debugger can map address
// regions in the final binary to the source and object files from which they
// originated.
InputFile *lastFile = nullptr;
for (Defined *defined : symbolsNeedingStabs) {
InputSection *isec = defined->isec;
ObjFile *file = dyn_cast<ObjFile>(isec->file);
assert(file);
if (lastFile == nullptr || lastFile != file) {
if (lastFile != nullptr)
emitEndSourceStab();
lastFile = file;
emitBeginSourceStab(file->compileUnit);
emitObjectFileStab(file);
}
StabsEntry symStab;
symStab.sect = defined->isec->parent->index;
symStab.strx = stringTableSection.addString(defined->getName());
symStab.value = defined->getVA();
if (isCodeSection(isec)) {
symStab.type = MachO::N_FUN;
stabs.emplace_back(std::move(symStab));
emitEndFunStab(defined);
} else {
symStab.type = defined->isExternal() ? MachO::N_GSYM : MachO::N_STSYM;
stabs.emplace_back(std::move(symStab));
}
}
if (!stabs.empty())
emitEndSourceStab();
}
void SymtabSection::finalizeContents() {
auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
uint32_t strx = stringTableSection.addString(sym->getName());
symbols.push_back({sym, strx});
};
// Local symbols aren't in the SymbolTable, so we walk the list of object
// files to gather them.
for (InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (Symbol *sym : objFile->symbols) {
// TODO: when we implement -dead_strip, we should filter out symbols
// that belong to dead sections.
if (auto *defined = dyn_cast<Defined>(sym)) {
if (!defined->isExternal())
addSymbol(localSymbols, sym);
}
}
}
}
// __dyld_private is a local symbol too. It's linker-created and doesn't
// exist in any object file.
if (Defined* dyldPrivate = in.stubHelper->dyldPrivate)
addSymbol(localSymbols, dyldPrivate);
for (Symbol *sym : symtab->getSymbols()) {
if (auto *defined = dyn_cast<Defined>(sym)) {
assert(defined->isExternal());
(void)defined;
addSymbol(externalSymbols, sym);
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->isReferenced())
addSymbol(undefinedSymbols, sym);
}
}
emitStabs();
uint32_t symtabIndex = stabs.size();
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
entry.sym->symtabIndex = symtabIndex++;
}
}
uint32_t SymtabSection::getNumSymbols() const {
return stabs.size() + localSymbols.size() + externalSymbols.size() +
undefinedSymbols.size();
}
void SymtabSection::writeTo(uint8_t *buf) const {
auto *nList = reinterpret_cast<structs::nlist_64 *>(buf);
// Emit the stabs entries before the "real" symbols. We cannot emit them
// after as that would render Symbol::symtabIndex inaccurate.
for (const StabsEntry &entry : stabs) {
nList->n_strx = entry.strx;
nList->n_type = entry.type;
nList->n_sect = entry.sect;
nList->n_desc = entry.desc;
nList->n_value = entry.value;
++nList;
}
for (const SymtabEntry &entry : concat<const SymtabEntry>(
localSymbols, externalSymbols, undefinedSymbols)) {
nList->n_strx = entry.strx;
// TODO populate n_desc with more flags
if (auto *defined = dyn_cast<Defined>(entry.sym)) {
uint8_t scope = 0;
if (defined->privateExtern) {
// Private external -- dylib scoped symbol.
// Promote to non-external at link time.
assert(defined->isExternal() && "invalid input file");
scope = MachO::N_PEXT;
} else if (defined->isExternal()) {
// Normal global symbol.
scope = MachO::N_EXT;
} else {
// TU-local symbol from localSymbols.
scope = 0;
}
if (defined->isAbsolute()) {
nList->n_type = scope | MachO::N_ABS;
nList->n_sect = MachO::NO_SECT;
nList->n_value = defined->value;
} else {
nList->n_type = scope | MachO::N_SECT;
nList->n_sect = defined->isec->parent->index;
// For the N_SECT symbol type, n_value is the address of the symbol
nList->n_value = defined->getVA();
}
nList->n_desc |= defined->isExternalWeakDef() ? MachO::N_WEAK_DEF : 0;
} else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
uint16_t n_desc = nList->n_desc;
MachO::SET_LIBRARY_ORDINAL(n_desc, dysym->file->ordinal);
nList->n_type = MachO::N_EXT;
n_desc |= dysym->isWeakRef() ? MachO::N_WEAK_REF : 0;
nList->n_desc = n_desc;
}
++nList;
}
}
IndirectSymtabSection::IndirectSymtabSection()
: LinkEditSection(segment_names::linkEdit,
section_names::indirectSymbolTable) {}
uint32_t IndirectSymtabSection::getNumSymbols() const {
return in.got->getEntries().size() + in.tlvPointers->getEntries().size() +
in.stubs->getEntries().size();
}
bool IndirectSymtabSection::isNeeded() const {
return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
in.stubs->isNeeded();
}
void IndirectSymtabSection::finalizeContents() {
uint32_t off = 0;
in.got->reserved1 = off;
off += in.got->getEntries().size();
in.tlvPointers->reserved1 = off;
off += in.tlvPointers->getEntries().size();
// There is a 1:1 correspondence between stubs and LazyPointerSection
// entries, so they can share the same sub-array in the table.
in.stubs->reserved1 = in.lazyPointers->reserved1 = off;
}
void IndirectSymtabSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (const Symbol *sym : in.got->getEntries()) {
write32le(buf + off * sizeof(uint32_t), sym->symtabIndex);
++off;
}
for (const Symbol *sym : in.tlvPointers->getEntries()) {
write32le(buf + off * sizeof(uint32_t), sym->symtabIndex);
++off;
}
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), sym->symtabIndex);
++off;
}
}
StringTableSection::StringTableSection()
: LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
uint32_t StringTableSection::addString(StringRef str) {
uint32_t strx = size;
strings.push_back(str); // TODO: consider deduplicating strings
size += str.size() + 1; // account for null terminator
return strx;
}
void StringTableSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (StringRef str : strings) {
memcpy(buf + off, str.data(), str.size());
off += str.size() + 1; // account for null terminator
}
}